首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 3 毫秒
1.
The use of inertial measurement units (IMUs) for gait analysis has emerged as a tool for clinical applications. Shank gyroscope signals have been utilized to identify heel-strike and toe-off, which serve as the foundation for calculating temporal parameters of gait such as single and double limb support time. Recent publications have shown that toe-off occurs later than predicted by the dual minima method (DMM), which has been adopted as an IMU-based gait event detection algorithm. In this study, a real-time algorithm, Noise-Zero Crossing (NZC), was developed to accurately compute temporal gait parameters. Our objective was to determine the concurrent validity of temporal gait parameters derived from the NZC algorithm against parameters measured by an instrumented walkway. The accuracy and precision of temporal gait parameters derived using NZC were compared to those derived using the DMM. The results from Bland-Altman Analysis showed that the NZC algorithm had excellent agreement with the instrumented walkway for identifying the temporal gait parameters of Gait Cycle Time (GCT), Single Limb Support (SLS) time, and Double Limb Support (DLS) time. By utilizing the moment of zero shank angular velocity to identify toe-off, the NZC algorithm performed better than the DMM algorithm in measuring SLS and DLS times. Utilizing the NZC algorithm’s gait event detection preserves DLS time, which has significant clinical implications for pathologic gait assessment.  相似文献   

2.
This study assessed ankle kinematics, surface electromyography, and center-of-pressure (COP) progression relative to the medial border of the foot during a side-cutting task in individuals with and without chronic ankle instability (CAI). Thirty participants (CAI = 15; Controls = 15) performed a side-cutting task on a force platform while 3-dimentional ankle kinematics, COP position, and surface electromyography from the tibialis anterior, medial gastrocnemius, fibularis longus, fibularis brevis, vastus medialis, and semitendinosus were recorded on the testing leg. Ankle kinematics, root-mean-square muscle activity and COP position relative to the medial boarder of the foot were compared between CAI and healthy controls (p < 0.05). Significantly greater ankle internal rotation from 35–54% of the stance phase (p = 0.032) was found for the CAI group compared to controls. Furthermore, significantly greater tibialis anterior muscle activity from 86–94% of the stance phase (p = 0.022) and a more medial COP position from 81–100% (p < 0.05) and of the stance phase was also observed in the CAI group. Less lateral COP progression and increased tibialis anterior activation in the CAI group could reflect a protective movement strategy during anticipated side-cutting to avoid recurrent injury. However, greater ankle internal rotation during mid-stance highlights a potential ‘giving way’ mechanism in individuals with CAI.  相似文献   

3.
Reliability of isometric, isokinetic and isoinertial modalities for quadriceps strength evaluation, and the relation between quadriceps strength and physical function was investigated in 29 total knee arthroplasty (TKA) patients, with an average age of 63 years. Isometric maximal voluntary contraction torque, isokinetic peak torque, and isoinertial one-repetition maximum load of the involved and uninvolved quadriceps were evaluated as well as objective (walking parameters) and subjective physical function (WOMAC). Reliability was good and comparable for the isometric, isokinetic, and isoinertial strength outcomes on both sides (intraclass correlation coefficient range: 0.947–0.966; standard error of measurement range: 5.1–9.3%). Involved quadriceps strength was significantly correlated to walking speed (r range: 0.641–0.710), step length (r range: 0.685–0.820) and WOMAC function (r range: 0.575–0.663), independent from the modality (P < 0.05). Uninvolved quadriceps strength was also significantly correlated to walking speed (r range: 0.413–0.539), step length (r range: 0.514–0.608) and WOMAC function (r range: 0.374–0.554) (P < 0.05), except for WOMAC function/isokinetic peak torque (P > 0.05). In conclusion, isometric, isokinetic, and isoinertial modalities ensure valid and reliable assessment of quadriceps muscle strength in TKA patients.  相似文献   

4.
Over ground motion analysis in horses is limited by a small number of strides and restraints of the indoor gait laboratory. Inertial measurement units (IMUs) are transforming the knowledge of human motion and objective clinical assessment through the opportunity to obtain clinically relevant data under various conditions. When using IMUs on the limbs of horses to determine local position estimates, conditions with high dynamic range of both accelerations and rotational velocities prove particularly challenging. Here we apply traditional method agreement and suggest a novel method of functional data analysis to compare motion capture with IMUs placed over the fetlock joint in seven horses. We demonstrate acceptable accuracy and precision at less than or equal to 5% of the range of motion for detection of distal limb mounted cranio-caudal and vertical position. We do not recommend the use of the latero-medial position estimate of the distal metacarpus/metatarsus during walk where the average error is 10% and the maximum error 111% of the range. We also show that functional data analysis and functional limits of agreement are sensitive methods for comparison of cyclical data and could be applied to differentiate changes in gait for individuals across time and conditions.  相似文献   

5.
To date, kinematics data analyzing continuous 3D motion of upper cervical spine (UCS) manipulation is lacking. This in vitro study aims at investigating inter- and intra-operator reliability of kinematics during high velocity low amplitude manipulation of the UCS.Three fresh specimens were used. Restricted dissection was realized to attach technical clusters to each bone (skull to C2). Motion data was obtained using an optoelectronic system during manipulation. Kinematics data were integrated into specific-subject 3D models to provide anatomical motion representation during thrust manipulation. The reliability of manipulation kinematics was assessed for three practitioners performing two sessions of three repetitions on two separate days.For pre-manipulation positioning, average UCS ROM (SD) were 10° (5°), 22° (5°) and 14° (4°) for lateral bending, axial rotation and flexion–extension, respectively. For the impulse phase, average axial rotation magnitude ranged from 7° to 12°. Reliability analysis showed average RMS up to 8° for pre-manipulation positioning and up to 5° for the impulse phase.As compared to physiological ROM, this study supports the limited angular displacement during manipulation for UCS motion components, especially for axial rotation. Kinematics reliability confirms intra- and inter-operator consistency although pre-manipulation positioning reliability is slightly lower between practitioners and sessions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号