首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
PurposeThe aim of this study was to account for interfractional clinical target volume (CTV) shape variation and apply this to the planning target volume (PTV) margin for prostate cancer radiation treatment plans.MethodsInterfractional CTV shape variations were estimated from weekly cone-beam computed tomography (CBCT) images using statistical point distribution models. The interfractional CTV shape variation was taken into account in the van Herk’s margin formula. The PTV margins without and with the CTV shape variation, i.e., standard (PTVori) and new (PTVshape) margins, were applied to 10 clinical cases that had weekly CBCT images acquired during their treatment sessions. Each patient was replanned for low-, intermediate-, and high-risk CTVs, using both margins. The dose indices (D98 and V70) of treatment plans with the two margins were compared on weekly pseudo-planning computed tomography (PCT) images, which were defined as PCT images registered using a deformable image registration technique with weekly CBCT images, including contours of the CTV, rectum, and bladder.ResultsThe percentage of treatment fractions of patients who received CTV D98 greater than 95% of a prescribed dose increased from 80.3 (PTVori) to 81.8% (PTVshape) for low-risk CTVs, 78.8 (PTVori) to 87.9% (PTVshape) for intermediate-risk CTVs, and 80.3 (PTVori) to 87.9% (PTVshape) for high-risk CTVs. In most cases, the dose indices of the rectum and bladder were acceptable in clinical practice.ConclusionThe results of this study suggest that interfractional CTV shape variations should be taken into account when determining PTV margins to increase CTV coverages.  相似文献   

2.
BackgroundAcuros XB (AXB) may predict better rectal toxicities and treatment outcomes in cervix carcinoma. The aim of the study was to quantify the potential impact of AXB computations on the cervix radiotherapy using the RapidArc (RA ) technique as compared to anisotropic analytical algorithm (AA) computations.Materials and methodsA cohort of 30 patients previously cared for cervix carcinoma (stages II–IIIB) was selected for the present analysis. The RA plans were computed using AA and AXB dose computation engines under identical beam setup and MLC pattern.ResultsThere was no significant (p > 0.05) difference in D95% and D98% to the planning target volume (PTV); moreover, a significant (p < 0.05) rise was noticed for mean dose to the PTV (0.26%), D50% (0.26%), D2% (0.80%) and V110% (44.24%) for AXB computation as compared to AA computations. Further, AXB estimated a significantly (p < 0.05) lower value for maximum and minimum dose to the PTV. Additionally, there was a significant (p < 0.05) reduction observed in mean dose to organs at risk (OARs) for AXB computation as compared to AA, though the reduction in mean dose was non-significant (p > 0.05) for the rectum. The maximum difference observed was 4.78% for the rectum V50Gy, 1.72%, 1.15% in mean dose and 2.22%, 1.48% in D2% of the left femur and right femur, respectively, between AA and AXB dose estimations.ConclusionFor similar target coverage, there were significant differences observed between the AAA and AXB computations. AA underestimates the V50Gy of the rectum and overestimates the mean dose and D2% for femoral heads as compared to AXB. Therefore, the use of AXB in the case of cervix carcinoma may predict better rectal toxicities and treatment outcomes in cervix carcinoma using the RA technique.  相似文献   

3.
PurposeHigh-speed cone-beam computed tomography (CBCT) scan for image-guided radiotherapy (IGRT) can reduce both the scan time and the exposure dose. However, it causes noise and artifacts in the reconstructed images due to the lower number of acquired projection data. The purpose of this study is to improve the image quality of high-speed CBCT using a deep convolutional neural network (DCNN).MethodsCBCT images of 36 prostate cancer patients were selected. The CBCT images acquired at normal scan speed were defined as CBCT100%. Simulated high-speed CBCT images acquired at twofold and fourfold scan speed were created, which were defined as CBCT50% and CBCT25%, respectively. The image quality of the CBCT50% was treated as the requirement for IGRT in this study because previous studies reported that its image is sufficient with respect to IGRT. The DCNN model was trained to learn direct mapping from CBCT25% to the corresponding CBCT100%. The performance of the DCNN model was evaluated using the sixfold cross-validation method. CBCT images generated by DCNN (CBCT25%+DCNN) were evaluated for voxel value accuracy and image quality.ResultsThe DCNN model can process CBCT25% of a new patient within 0.06 s/slice. The CBCT25%+DCNN was comparable to the CBCT50% in terms of both voxel value accuracy and image quality.ConclusionsWe developed a DCNN model to remove noise and artifacts from high-speed CBCT. We emphasize that it is possible to reduce exposure to one quarter and to increase the CBCT scan speed by a factor of four.  相似文献   

4.
PurposeAdaptive Stereotactic Body Radiotherapy (SBRT) of prostate cancer (PC) by online 1.5 T MRi-guidance prolongs session-time, due to contouring and planning tasks, thus increasing the risk of prostate motion. Hence, the interest to verify the adequacy of the delivered dose.Material and methodsFor twenty PC patients treated by 35 Gy (Dp) in five fractions, daily pre- and post- delivery MRi scans were respectively used for adapt-to-shape (ATS) optimization, and re-computation of the delivered irradiation (Drec). Two expansion recipes, from Clinical (CTV) to Planning target volume (PTV), which slightly differed in the posterior margin were used for groups I and II, of ten patients each. Plans had to assure D95% ≥ 95%Dp to PTV, and D1cc ≤ Dp to rectum, bladder, penile bulb, and urethral planning-risk-volume (urethral-PRV). The adequacy of the delivered dose was estimated by inter-fraction average (ifa) of dose-volume metrics computed from Drec. A cumulative dose (Dsum) was calculated from the five daily Drec deformed onto the simulation MRi.ResultsFor each patient, CTV coverage resulted in D95% > 95%Dp when estimated as ifa by Drec. No significant difference for D95% and D99% metrics to CTV resulted between groups I and II. D1cc was < Dp for rectum, urethral-PRV, and penile bulb, whereas < 103.5%Dp for the bladder.Significant correlations resulted between metrics computed by Dsum and as ifa by Drec, by both linear-correlation analysis, and Receiver-Operating-Characteristic curve analysis.ConclusionsOur results for PC-SBRT confirm the adequacy of the delivered dose by ATS with 1.5 T MR-linac, and the consistency between dose-volume metrics computed by Drec and Dsum.  相似文献   

5.
PurposeTo evaluate the utility of the use of iterative cone-beam computed tomography (CBCT) for machine log file-based dose verification during volumetric modulated arc therapy (VMAT) for prostate cancer patients.MethodsAll CBCT acquisition data were used to reconstruct images with the Feldkamp-Davis-Kress algorithm (FDK-CBCT) and the novel iterative algorithm (iCBCT). The Hounsfield unit (HU)-electron density curves for CBCT images were created using the Advanced Electron Density Phantom. The I’mRT and anthropomorphic phantoms were irradiated with VMAT after CBCT registration. Subsequently, fourteen prostate cancer patients received VMAT after CBCT registration. Machine log files and both CBCT images were exported to the PerFRACTION software, and a 3D patient dose was reconstructed. Mean dose for planning target volume (PTV), the bladder, and rectum and the 3D gamma analysis were evaluated.ResultsFor the phantom studies, the variation of HU values was observed at the central position surrounding the bones in FDK-CBCT. There were almost no changes in the difference of doses at the isocenter between measurement and reconstructed dose for planning CT (pCT), FDK-CBCT, and iCBCT. Mean dose differences of PTV, rectum, and bladder between iCBCT and pCT were approximately 2% lower than those between FDK-CBCT and pCT. For the clinical study, average gamma analysis for 2%/2 mm was 98.22% ± 1.07 and 98.81% ± 1.25% in FDK-CBCT and iCBCT, respectively.ConclusionsA similar machine log file-based dose verification accuracy is obtained for FDK-CBCT and iCBCT during VMAT for prostate cancer patients.  相似文献   

6.
PurposeTo evaluate the feasibility of the use of iterative cone-beam computed tomography (CBCT) for dose calculation in the head and neck region.MethodsThis study includes phantom and clinical studies. All acquired CBCT images were reconstructed with Feldkamp–Davis–Kress algorithm-based CBCT (FDK-CBCT) and iterative CBCT (iCBCT) algorithm. The Hounsfield unit (HU) consistency between the head and body phantoms was determined in both reconstruction techniques. Volumetric modulated arc therapy (VMAT) plans were generated for 16 head and neck patients on a planning CT scan, and the doses were recalculated on FDK-CBCT and iCBCT with Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB). As a comparison of the accuracy of dose calculations, the absolute dosimetric difference and 1%/1 mm gamma passing rate analysis were analyzed.ResultsThe difference in the mean HU values between the head and body phantoms was larger for FDK-CBCT (max value: 449.1 HU) than iCBCT (260.0 HU). The median dosimetric difference from the planning CT were <1.0% for both FDK-CBCT and iCBCT but smaller differences were found with iCBCT (planning target volume D50%: 0.38% (0.15–0.59%) for FDK-CBCT, 0.28% (0.13–0.49%) for iCBCT, AAA; 0.14% (0.04–0.19%) for FDK-CBCT, 0.07% (0.02–0.20%) for iCBCT). The mean gamma passing rate was significantly better in iCBCT than FDK-CBCT (AAA: 98.7% for FDK-CBCT, 99.4% for iCBCT; AXB: 96.8% for FDK_CBCT, 97.5% for iCBCT).ConclusionThe iCBCT-based dose calculation in VMAT for head and neck cancer was accurate compared to FDK-CBCT.  相似文献   

7.
PurposeTo propose a geometrical margin for definition of the vaginal cuff PTV using only CT images of the full bladder (CTfull) in postoperative cervical cancer patients.MethodsTwenty-nine operated cervical cancer patients underwent volumetric arc therapy with a bladder filling protocol. This study assessed bladder filling using a portable bladder scanner and cone-beam computed tomography (CBCT) during the entire treatment period. The measured bladder volumes with a BladderScan® were compared with the delineated volume on CBCT. Titanium clips in the vaginal cuff were analysed to assess geometrical uncertainty and the influence of rectal and bladder volume changes.ResultsBladderScan® showed good agreement with the delineated volume (R = 0.80). The volume changes in the bladder have a greater influence on the clip displacements than in the rectum. The 95th percentile of uncertainty of the clips in reference to CTfull in the right-left (RL), the superoinferior (SI), and the anteroposterior (AP) was 0.32, 0.65, and 1.15 cm, respectively. From this result and intra-fractional movements of the vaginal cuff reported by Haripotepornkul, a new geometrical margin was proposed for definition of the vaginal cuff planning target volume (PTV): 0.5, 0.9, and 1.4 cm in the RL, SI, and AP directions, respectively.ConclusionsA new geometrical margin was proposed for definition of the vaginal cuff PTV based on CTfull, which will be needless of empty bladder at the planning CT scan. This method allows patients to reduce the burden and efficient routine CT scans can be improved.  相似文献   

8.
AimThe primary aim of this study is to provide preliminary indications for safe constraints of rectum and bladder in patients re-irradiated with stereotactic body RT (SBRT).MethodsData from patients treated for prostate cancer (PCa) and intraprostatic relapse, from 1998 to 2016, were retrospectively collected. First RT course was delivered with 3D conformal RT techniques, SBRT or volumetric modulated arc therapy (VMAT). All patients underwent re-irradiation with SBRT with heavy hypofractionated schedules. Cumulative dose-volume values to organs at risk (OARs) were computed and possible correlation with developed toxicities was investigated.ResultsTwenty-six patients were included. Median age at re-irradiation was 75 years, mean interval between the two RT courses was 5.6 years and the median follow-up was 47.7 months (13.4–114.3 months). After re-irradiation, acute and late G ≥ 2 GU toxicity events were reported in 3 (12%) and 10 (38%) patients, respectively, while late G ≥ 2 GI events were reported in 4 (15%) patients. No acute G ≥ 2 GI side effects were registered. Patients receiving an equivalent uniform dose of the two RT treatments < 131 Gy appeared to be at higher risk of progression (4-yr b-PFS: 19% vs 33%, p = 0.145). Cumulative re-irradiation constraints that appear to be safe are D30% < 57.9 Gy for bladder and D30% < 66.0 Gy, D60% < 38.0 Gy and V122.1 Gy < 5% for rectum.ConclusionPreliminary re-irradiation constraints for bladder and rectum have been reported. Our preliminary investigation may serve to clear some grey areas of PCa re-irradiation.  相似文献   

9.
ObjectiveTo investigate the potential of Particle Swarm Optimization (PSO) for fully automatic VMAT radiotherapy (RT) treatment planning.Material and MethodsIn PSO a solution space of planning constraints is searched for the best possible RT plan in an iterative, statistical method, optimizing a population of candidate solutions. To identify the best candidate solution and for final evaluation a plan quality score (PQS), based on dose volume histogram (DVH) parameters, was introduced.Automatic PSO-based RT planning was used for N = 10 postoperative prostate cancer cases, retrospectively taken from our clinical database, with a prescribed dose of EUD = 66 Gy in addition to two constraints for rectum and one for bladder. Resulting PSO-based plans were compared dosimetrically to manually generated VMAT plans.ResultsPSO successfully proposed treatment plans comparable to manually optimized ones in 9/10 cases. The median (range) PTV EUD was 65.4 Gy (64.7–66.0) for manual and 65.3 Gy (62.5–65.5) for PSO plans, respectively. However PSO plans achieved significantly lower doses in rectum D2% 67.0 Gy (66.5–67.5) vs. 66.1 Gy (64.7–66.5, p = 0.016). All other evaluated parameters (PTV D98% and D2%, rectum V40Gy and V60Gy, bladder D2% and V60Gy) were comparable in both plans. Manual plans had lower PQS compared to PSO plans with −0.82 (−16.43–1.08) vs. 0.91 (−5.98–6.25).ConclusionPSO allows for fully automatic generation of VMAT plans with plan quality comparable to manually optimized plans. However, before clinical implementation further research is needed concerning further adaptation of PSO-specific parameters and the refinement of the PQS.  相似文献   

10.
AimTo use Monte Carlo (MC) together with voxel phantoms to analyze the tissue heterogeneity effect in the dose distributions and equivalent uniform dose (EUD) for 125I prostate implants.BackgroundDose distribution calculations in low dose-rate brachytherapy are based on the dose deposition around a single source in a water phantom. This formalism does not take into account tissue heterogeneities, interseed attenuation, or finite patient dimensions effects. Tissue composition is especially important due to the photoelectric effect.Materials and methodsThe computed tomographies (CT) of two patients with prostate cancer were used to create voxel phantoms for the MC simulations. An elemental composition and density were assigned to each structure. Densities of the prostate, vesicles, rectum and bladder were determined through the CT electronic densities of 100 patients. The same simulations were performed considering the same phantom as pure water. Results were compared via dose–volume histograms and EUD for the prostate and rectum.ResultsThe mean absorbed doses presented deviations of 3.3–4.0% for the prostate and of 2.3–4.9% for the rectum, when comparing calculations in water with calculations in the heterogeneous phantom. In the calculations in water, the prostate D90 was overestimated by 2.8–3.9% and the rectum D0.1cc resulted in dose differences of 6–8%. The EUD resulted in an overestimation of 3.5–3.7% for the prostate and of 7.7–8.3% for the rectum.ConclusionsThe deposited dose was consistently overestimated for the simulation in water. In order to increase the accuracy in the determination of dose distributions, especially around the rectum, the introduction of the model-based algorithms is recommended.  相似文献   

11.
PurposeThe conventional weighted computed tomography dose index (CTDIw) may not be suitable for cone-beam computed tomography (CBCT) dosimetry because a cross-sectional dose distribution is angularly inhomogeneous owing to partial angle irradiations. This study was conducted to develop a new dose metric (f(0)CBw) for CBCT dosimetry to determine a more accurate average dose in the central cross-sectional plane of a cylindrical phantom using Monte Carlo simulations.MethodsFirst, cross-sectional dose distributions of cylindrical polymethyl methacrylate phantoms over a wide range of phantom diameters (8–40 cm) were calculated for various CBCT scan protocols. Then, by obtaining linear least-squares fits of the full datasets of the cross-sectional dose distributions, the optimal radial positions, which represented measurement positions for the average phantom dose, were determined. Finally, the f(0)CBw method was developed by averaging point doses at the optimal radial positions of the phantoms. To demonstrate its validity, the relative differences between the average doses and each dose index value were estimated for the devised f(0)CBw, conventional CTDIw, and Haba’s CTDIw methods, respectively.ResultsThe relative differences between the average doses and each dose index value were within 4.1%, 16.7%, and 11.9% for the devised, conventional CTDIw, and Haba’s CTDIw methods, respectively.ConclusionsThe devised f(0)CBw value was calculated by averaging four “point doses” at 90° intervals and the optimal radial positions of the cylindrical phantom. The devised method can estimate the average dose more accurately than the previously developed CTDIw methods for CBCT dosimetry.  相似文献   

12.
PurposeThis study retrospectively reviewed locally set pass rates/tolerances for COMPASS® pre-treatment quality assurance results for RapidArc prostate plans to determine if these are appropriate. This was performed via quantifying the agreement between treatment planning system calculations and measurements based on absolute dose comparisons (3% tolerance for all dose points) and global gamma index assessment (3%/3 mm criterion for 97% of points).MethodSeventy-three prostate one-arc RapidArc plans, delivered by four dosimetrically matched linacs, were measured using the MatriXX Evolution two-dimensional array and analysed using COMPASS® (v.3, IBA Dosimetry). For the planning target volumes (PTV) considered, the D99%, D50%, D1% and DMean differences were analysed. The percentage volume with gamma greater than 1, average gamma and DMean difference were investigated for all structures. Nine plans were also assessed across the linac fleet to investigate potential linac dependence of results.Results and ConclusionsRegarding PTV DMean differences, all plans fell within the 3% tolerance and mostly within 2%, although there was a relatively small systematic difference. The absolute percentage differences of average and median doses suggested a weak linac dependence of the results which was found to be clinically insignificant. New stricter tolerances were established both for dose comparisons and gamma evaluation. Correlation between the gamma pass rates and the differences in the D99%, D50% and D1% was found to be moderate suggesting that gamma analysis in isolation has questionable clinical meaning and should only be used to indicate outliers for further analysis.  相似文献   

13.
PurposeTo analyze the uncertainties of the rectum due to anisotropic shape variations by using a statistical point distribution model (PDM).Materials and methodsThe PDM was applied to the rectum contours that were delineated on planning computed tomography (CT) and cone-beam CT (CBCT) at 80 fractions of 11 patients. The standard deviations (SDs) of systematic and random errors of the shape variations of the whole rectum and the region in which the rectum overlapped with the PTV (ROP regions) were derived from the PDMs at all fractions of each patient. The systematic error was derived by using the PDMs of planning and average rectum surface determined from rectum surfaces at all fractions, while the random error was derived by using a PDM-based covariance matrix at all fractions of each patient.ResultsRegarding whole rectum, the population SDs were larger than 1.0 mm along all directions for random error, and along the anterior, superior, and inferior directions for systematic error. The deviation is largest along the superior and inferior directions for systematic and random errors, respectively. For ROP regions, the population SDs of systematic error were larger than 1.0 mm along the superior and inferior directions. The population SDs of random error for the ROP regions were larger than 1.0 mm except along the right and posterior directions.ConclusionsThe anisotropic shape variations of the rectum, especially in the ROP regions, should be considered when determining a planning risk volume (PRV) margins for the rectum associated with the acute toxicities.  相似文献   

14.
Purpose: Nowadays, patient positioning and target localization can be verified by using kilovolt cone beam computed tomography (kV-CBCT). There have been various studies on the absorbed doses and image qualities of different kV-CBCT systems. However, the Varian TrueBeam CBCT (TB CBCT) system has not been investigated so far. We assess the image quality and absorbed dose of TB CBCT through comparison with those of on-board imager (OBI) CBCT.Methods: The image quality was evaluated using two phantoms. A CATPHAN phantom measured the image quality parameters of the American Association of Physicists in Medicine Task Group 142 (AAPM TG-142) report. These factors are the pixel value stability and accuracy, noise, high-contrast resolution, low-contrast resolution, and image uniformity. A H2SO4 phantom was used to evaluate the image uniformity over a larger region than the CATPHAN phantom. In evaluating the absorbed dose, the radial dose profile and the patient organ doses at the prostate and rectum levels were evaluated.Results: The image quality parameters of AAPM TG-142 using TB CBCT are equal to or greater than those of OBI CBCT. In particular, the contrast-to-noise ratio with TB CBCT is 2.5 times higher than that with OBI CBCT. For the test of a large field uniformity, the maximum difference in the Hounsfield unit (HU) values between the centre and peripheral regions is within 30 HU with TB CBCT and 283 HU with OBI CBCT. The maximum absorbed dose with TB CBCT is decreased by 60%.Conclusions: We find that the image quality improved and the absorbed dose decreased with TB CBCT in comparison to those with OBI CBCT. Its image uniformity is also superior over a larger scanning range.  相似文献   

15.
Background and purposeThe use of cone beam computed tomography (CBCT) for performing dose calculations in radiation therapy has been widely investigated as it could provide a quantitative analysis of the dosimetric impact of changes in patients during the treatment. The aim of this review was to classify different techniques adopted to perform CBCT dose calculation and to report their dosimetric accuracy with respect to the metrics used.Methods and materialsA literature search was carried out in PubMed and ScienceDirect databases, based upon the following keywords: “cone beam computed tomography”, “CBCT”, “cone beam CT”, “dose calculation”, “accuracy”. Sixty-nine peer-reviewed relevant articles were included in this review: thirty-one patient studies, fifteen phantom studies and twenty-three patient & phantom studies. Most studies were found to have focused on head and neck, lung and prostate cancers.ResultsThe techniques adopted to perform CBCT dose calculation have been grouped in six categories labelled as (1) pCT calibration, (2) CBCT calibration, (3) HU override, (4) Deformable image registration, (5) Dose deformation, and (6) Combined techniques. Differences between CBCT dose and reference dose were reported both for target volumes and OARs.ConclusionsA comparison among the available techniques for CBCT dose calculations is challenging as many variables are involved. Therefore, a set of reporting standards is recommended to enable meaningful comparisons among different studies. The accuracy of the results was strongly dependent on the image quality, regardless of the methods used, highlighting the need for dose validation and quality assurance standards.  相似文献   

16.
IntroductionDose-response relationships for local control of lung tumours treated with stereotactic body radiotherapy (SBRT) have proved ambiguous, however, these have been based on the prescribed or planned dose. Delivered dose to the target may be a better predictor for local control. In this study, the probability of the delivered minimum dose to the clinical target volume (CTV) in relation to the prescribed dose was estimated for a cohort of patients, considering geometrical uncertainties.Materials and methodsDelivered doses were retrospectively simulated for 50 patients treated with SBRT for lung tumours, comparing two image-guidance techniques: pre-treatment verification computed tomography (IG1) and online cone-beam computed tomography (IG2). The prescribed dose was typically to the 67% isodose line of the treatment plan. Simulations used in-house software that shifted the static planned dose according to a breathing motion and sampled setup/matching errors. Each treatment was repeatedly simulated, generating a multiplicity of dose-volume histograms (DVH). From these, tumour-specific and population-averaged statistics were derived.ResultsFor IG1, the probability that the minimum CTV dose (D98%) exceeded 100% of the prescribed dose was 90%. With IG2, this probability increased to 99%.ConclusionsDoses below the prescribed dose were delivered to a considerably larger part of the population prior to the introduction of online soft-tissue image-guidance. However, there is no clear evidence that this impacts local control, when compared to previous published data.  相似文献   

17.

Cone-beam computed tomography (CBCT) is widely used for pre-treatment verification and patient setup in image-guided radiation therapy (IGRT). CBCT imaging is employed daily and several times per patient, resulting in potentially high cumulative imaging doses to healthy tissues that surround exposed target organs. Computed tomography dose index (CTDI) is the parameter used by CBCT equipment as indication of the radiation output to patients. This study aimed to increase the knowledge on the relation between CBCT organ doses and weighted CTDI (CTDIW) for a thorax scanning protocol. A CBCT system was modelled using the Monte Carlo (MC) radiation transport program MCNPX2.7.0. Simulation results were validated against half-value layer (HVL), axial beam profile, patient skin dose (PSD) and CTDI measurements. For organ dose calculations, a male voxel phantom (“Golem”) was implemented with the CBCT scanner computational model. After a successful MC model validation with measurements, a systematic comparison was performed between organ doses (and their distribution) and CTDI dosimetry concepts [CTDIW and cumulative dose quantities f100(150) and \({\text{CTD}}{{\text{I}}_\infty }\)]. The results obtained show that CBCT organ doses vary between 1.2 ± 0.1 mGy and 3.3 ± 0.2 mGy for organs located within the primary beam. It was also verified that CTDIW allows prediction of absorbed doses to tissues at distances of about 5 cm from the isocentre of the CBCT system, whereas f100(150) allows prediction of organ doses at distances of about 10 cm from the isocentre, independently from its location. This study demonstrates that these dosimetric concepts are suitable methods that easily allow a good approximation of the additional CBCT imaging doses during a typical lung cancer IGRT treatment.

  相似文献   

18.
PurposeThe purpose of this study was to design and develop a new range optimization for target and organs at risk (OARs) in dynamic adaptive proton beam therapy (PBT).MethodsThe new range optimization for target and OARs (RO-TO) was optimized to maintain target dose coverage but not to increase the dose exposure of OARs, while the other procedure, range optimization for target (RO-T), only focused on target dose coverage. A retrospective analysis of a patient who received PBT for abdominal lymph node metastases was performed to show the effectiveness of our new approach. The original plan (OP), which had a total dose of 60 Gy (relative biological effectiveness; RBE), was generated using six treatment fields. Bone-based registration (BR) and tumor-based registration (TR) were performed on each pretreatment daily CT image dataset acquired once every four fractions, to align the isocenter.ResultsBoth range adaptive approaches achieved better coverage (D95%) and homogeneity (D5%−D95%) than BR and TR only. However, RO-T showed the greatest increases in D2cc and Dmean values of the small intestine and stomach and exceeded the limitations of dose exposure for those OARs. RO-TO showed comparable or superior dose sparing compared with the OP for all OARs.ConclusionsOur results suggest that BR and TR alone may reduce target dose coverage, and that RO-T may increase the dose exposure to the OARs. RO-TO may achieve the planned dose delivery to the target and OARs more efficiently than the OP. The technique requires testing on a large clinical dataset.  相似文献   

19.
AimTo evaluate dose differences in lung metastases treated with stereotactic body radiotherapy (SBRT), and the correlation with local control, regarding the dose algorithm, target volume and tissue density.BackgroundSeveral studies showed excellent local control rates in SBRT for lung metastases, with different fractionation schemes depending on the tumour location or size. These results depend on the dose distributions received by the lesions in terms of the tissue heterogeneity corrections performed by the dose algorithms.Materials and methodsForty-seven lung metastases treated with SBRT, using intrafraction control and respiratory gating with internal fiducial markers as surrogates (ExacTrac, BrainLAB AG), were calculated using Pencil Beam (PB) and Monte Carlo (MC) (iPlan, BrainLAB AG).Dose differences between both algorithms were obtained for the dose received by 99% (D99%) and 50% (D50%) of the planning treatment volume (PTV). The biologically effective dose delivered to 99% (BED99%) and 50% (BED50%) of the PTV were estimated from the MC results. Local control was evaluated after 24 months of median follow-up (range: 3–52 months).ResultsThe greatest variations (40.0% in ΔD99% and 38.4% in ΔD50%) were found for the lower volume and density cases. The BED99% and BED50% were strongly correlated with observed local control rates: 100% and 61.5% for BED99% > 85 Gy and <85 Gy (p < 0.0001), respectively, and 100% and 58.3% for BED50% > 100 Gy and <100 Gy (p < 0.0001), respectively.ConclusionsLung metastases treated with SBRT, with delivered BED99% > 85 Gy and BED50% > 100 Gy, present better local control rates than those treated with lower BED values (p = 0.001).  相似文献   

20.
PurposeTo implement a daily CBCT based dose accumulation technique in order to assess ideal robust optimization (RO) parameters for IMPT treatment of prostate cancer.MethodsTen prostate cancer patients previously treated with VMAT and having daily CBCT were included. First, RO-IMPT plans were created with ± 3 mm and ± 5 mm patient setup and ± 3% proton range uncertainties, respectively. Second, the planning CT (pCT) was deformably registered to the CBCT to create a synthetic CT (sCT). Both daily and weekly sampling strategies were employed to determine optimal dose accumulation frequency. Doses were recalculated on sCTs for both ± 3 mm/±3% and ± 5 mm/±3% uncertainties and were accumulated back to the pCT. Accumulated doses generated from ± 3 mm/±3% and ± 5 mm/±3% RO-IMPT plans were evaluated using the clinical dose volume constraints for CTV, bladder, and rectum.ResultsDaily accumulated dose based on both ± 3mm/±3% and ±5 mm/±3% uncertainties for RO-IMPT plans resulted in satisfactory CTV coverage (RO-IMPT3mm/3% CTVV95 = 99.01 ± 0.87% vs. RO-IMPT5mm/3% CTVV95 = 99.81 ± 0.2%, P = 0.002). However, the accumulated dose based on ± 3 mm/3% RO-IMPT plans consistently provided greater OAR sparing than ±5 mm/±3% RO-IMPT plans (RO-IMPT3mm/3% rectumV65Gy = 2.93 ± 2.39% vs. RO-IMPT5mm/3% rectumV65Gy = 4.38 ± 3%, P < 0.01; RO-IMPT3mm/3% bladderV65Gy = 5.2 ± 7.12% vs. RO-IMPT5mm/3% bladderV65Gy = 7.12 ± 9.59%, P < 0.01). The gamma analysis showed high dosimetric agreement between weekly and daily accumulated dose distributions.ConclusionsThis study demonstrated that for RO-IMPT optimization, ±3mm/±3% uncertainty is sufficient to create plans that meet desired CTV coverage while achieving superior sparing to OARs when compared with ± 5 mm/±3% uncertainty. Furthermore, weekly dose accumulation can accurately estimate the overall dose delivered to prostate cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号