首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
EPR spin trapping has been employed to directly detect radical production in isolated rat nuclei on exposure to a variety of hydroperoxides and related compounds which are known, or suspect, tumour promoters. The hydroperoxides, in the absence of reducing equivalents, undergo oxidative cleavage, generating peroxyl radicals. In the presence of NADPH (and to a lesser extent NADH) reductive cleavage of the OO bond generates alkoxyl radicals. These radicals undergo subsequent rearrangements and reactions (dependent on the structure of the alkoxyl radical), generating carbon-centred radicals. Acyl peroxides and peracids appear to undergo only reductive cleavage of the OO bond. With peracids this cleavage can generate aryl carboxyl (RCO2·) or hydroxyl radicals (HO·); with acyl peroxides, aryl carboxyl radicals are formed and, in the case of t-butyl peroxybenzoate, alkoxyl radicals (RO·). The radicals detected with each peroxide are similar in type to those detected in the rat liver microsomal fraction, although the extent of radical production is lower. The subsequent reactions of the initially generated radicals are similar to those determined in homogenous chemical systems, suggesting that they are in free solution. Experiments with NADPH/NADH, heat denaturation of the nuclei and various inhibitors suggest that radical generation is an enzymatic process catalysed by haemproteins, in particular cytochrome P-450, and that NADPH/cytochrome P-450 reductase is involved in the reductive cleavage of the OO bond. The generation of these radicals by the rat liver nuclear fraction is potentially highly damaging for the cell due to the proximity of the generating source to DNA. Several previous studies have shown that some of the radicals detected in this study, such as aryl carboxyl and aryl radicals, can damage DNA, via various reactions which results in the generation of strand breaks and adducts to DNA bases: these processes are suggested to play an important role in the tumour promoting activity of these hydroperoxides and related compounds.  相似文献   

2.
Hemopexin, a heme-binding serum glycoprotein, is thought to play an important role in the prevention of oxidative damage that may be catalysed by free heme. Through the use of EPR techniques, the generation of free radicals from organic hydroperoxides by heme and heme-hemopexin complexes, and the concomitant formation of high oxidation-state iron species has been studied; these species are implicated as causative agents in processes such as cardiovascular disease and carcinogenesis. From the rates of production of these species from both n-alkyl and branched hydroperoxides, it has been inferred that the dramatic reduction in the yield of oxidising species generated by heme upon its complexation with hemopexin arises from steric hindrance of the access of hydroperoxide to the bound heme.  相似文献   

3.
《Free radical research》2013,47(12):1473-1484
Abstract

A series hydroxycinnamic and gallic acids and their derivatives were studied with the aim of evaluating their in vitro antioxidant properties both in homogeneous and in cellular systems. It was concluded from the oxygen radical absorbance capacity-fluorescein (ORAC-FL), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and cyclic voltammetry data that some compounds exhibit remarkable antioxidant properties. In general, in homogeneous media (DPPH assay), galloyl-based cinnamic and benzoic systems (compounds 7–11) were the most active, exhibiting the lowest oxidation potentials in both dimethyl sulfoxide (DMSO) and phosphate buffer. Yet, p-coumaric acid and its derivatives (compounds 1–3) disclosed the highest scavenging activity toward peroxyl radicals (ORAC-FL assay). Interesting structure–property– activity relationships between ORAC-FL, or DPPH radical, and redox potentials have been attained, showing that the latter parameter can be a valuable antioxidant measure. It was evidenced that redox potentials are related to the structural features of cinnamic and benzoic systems and that their activities are also dependent on the radical generated in the assay. Electron spin resonance data of the phenoxyl radicals generated both in DMSO and phosphate buffer support the assumption that radical stability is related to the type of phenolic system. Galloyl-based cinnamic and benzoic ester-type systems (compounds 9 and 11) were the most active and effective compounds in cell-based assays (51.13 ± 1.27% and 54.90 ± 3.65%, respectively). In cellular systems, hydroxycinnamic and hydroxybenzoic systems operate based on their intrinsic antioxidant outline and lipophilic properties, so the balance between these two properties is considered of the utmost importance to ensure their performance in the prevention or minimization of the effects due to free radical overproduction.  相似文献   

4.
Approaching living systems, aqueous solutions are appropriate to characterize antioxidants, whereas the frequently used standard 1,1-diphenyl-2-picrylhydrazyl (DPPH) is insoluble in water. Therefore, mixed water-ethanol solvents were investigated using the electron paramagnetic resonance (EPR) spectroscopy. Two forms of DPPH were identified: at higher ethanol ratios a quintet spectrum characteristic of solutions, and at lower ratios, a singlet spectrum typical for solid DPPH, were found. Mixed solvents with 0-50% (v/v) water reproduced the same antioxidant equivalent points well and the reaction rate between DPPH and the antioxidant may increase considerably with increasing water ratios, as demonstrated using vitamin E as an antioxidant. But at still higher water ratios (70-90% (v/v)) the antioxidant activities dropped, since a part of the DPPH in the aggregated form does not react sufficiently with the antioxidants. Characteristics of the most common antioxidants were determined in ethanol or its 50% (v/v) aqueous solution.  相似文献   

5.
The proligands PicMe-AaR (PicMe = methoxipicolyl-5-amide, where the amide substituent is an amino acid AaR = HisH, HisMe, IleH, IleMe, TrpH, TrpMe, HTyrEt, tBuTyrMe, HThrMe, tBuThrMe) and the complexes [VO(Pic-AaR)2] have been synthesised and characterised. A detailed EPR study of the VO2+/Pic-His systems in water revealed the predominance of the complex [VO(Pic-His)H2O] in the pH range 2-6, with tridentate coordination of Pic-His via the picolinate moiety and imidazole-Nδ. Speciation analyses of the binary systems VO2+/Pic-Aa (Aa = His, Ile, Trp) and the ternary systems VO2+/Pic-Aa/B (Aa = His, Ile; B = citrate (cit), lactate (lac), phosphate) showed a predominance of the ternary complexes [VO(Pic-Aa)(cit/lac)] and [VO(Pic-Aa)(cit/lac)OH] in the physiological pH regime. If, in addition, human serum albumin (HAS) and apotransferrin (Tf) are present, with all of the low and high molecular mass constituents in their blood serum concentrations, about two thirds of VO2+ is bound to the protein, while there is still a sizable amount of ternary complex [VO(Pic-Aa)(cit/lac)] present (about 1/4 for Pic-His and 1/3 for Pic-Ile) when the vanadium(IV) concentration is relatively high; at lower concentrations Tf is the predominant binder. Insulin-mimetic studies for VO2+/Pic-Aa (Aa = His, Ile, Tyr and Trp), based on a lipolysis assay with rat adipocytes, provided IC50 values of 0.41(1) for VO2+/Pic-His and VO2+/Pic-Ile, which compares with 0.87(17) for VOSO4.  相似文献   

6.
EPR imaging with modulated field gradients provides the possibility for obtaining an EPR spectrum in a selected volume We demonstrate the feasibility of X-band (9.5GHz) electron paramagnetic resonance (EPR) imaging in skin biopsies of hairless mice. One- (ID) and two-dimensional (2D) EPR images of the persistent free radical di-tertiary-butyl-nitroxide are measured. At a microwave frequency of 9.5 GHz (X-band), 2D images are obtained in skin biopsies with an actual point distinction resolution of 25 μm. In a biological model system. 2D images are measured at L-band frequency (2.0 GHz) with a pixel resolution of 61 μm. and a theoretical spatial resolution of 12.5 μm. In combination with the spin labeling and spin trapping technique. EPR imaging is the most direct approach to analyzing spatial distribution of physico-chemical properties in skin, such as membrane fluidity and polarity. as well as detection of free radicals.  相似文献   

7.
《Free radical research》2013,47(5):245-253
EPR imaging with modulated field gradients provides the possibility for obtaining an EPR spectrum in a selected volume We demonstrate the feasibility of X-band (9.5GHz) electron paramagnetic resonance (EPR) imaging in skin biopsies of hairless mice. One- (ID) and two-dimensional (2D) EPR images of the persistent free radical di-tertiary-butyl-nitroxide are measured. At a microwave frequency of 9.5 GHz (X-band), 2D images are obtained in skin biopsies with an actual point distinction resolution of 25 μm. In a biological model system. 2D images are measured at L-band frequency (2.0 GHz) with a pixel resolution of 61 μm. and a theoretical spatial resolution of 12.5 μm. In combination with the spin labeling and spin trapping technique. EPR imaging is the most direct approach to analyzing spatial distribution of physico-chemical properties in skin, such as membrane fluidity and polarity. as well as detection of free radicals.  相似文献   

8.
Lipid-protein interactions are known to play a crucial role in structure and physiological activity of integral membrane proteins. However, current technology for membrane protein purification necessitates extraction from the membrane into detergent micelles. Also, due to experimental protocols, most of the data available for membrane proteins is obtained using detergent-solubilized samples. Stable solubilization of membrane proteins is therefore an important issue in biotechnology as well as in biochemistry and structural biology. An understanding of solubilization effects on structural and functional properties of specific proteins is of utmost relevance for the evaluation and interpretation of experimental results. In this study, a comparison of structural and kinetic data obtained for the archaebacterial photoreceptor/transducer complex from Natronomonas pharaonis (NpSRII/NpHtrII) in detergent-solubilized and lipid-reconstituted states is presented. Laser flash photolysis, fluorescence spectroscopy, and electron paramagnetic resonance spectroscopy data reveal considerable influence of solubilization on the photocycle kinetics of the receptor protein and on the structure of the transducer protein. Especially the protein-membrane proximal region and the protein-protein interfacial domains are sensitive towards non-native conditions. These data demonstrate that relevance of biochemical and structural information obtained from solubilized membrane proteins or membrane protein complexes has to be evaluated carefully.  相似文献   

9.
X-band EPR spectroscopy has been employed to study the dynamic properties of magnetically aligned phospholipid bilayers (bicelles) utilizing a variety of phosphocholine spin labels (n-PCSL) as a function of cholesterol content. The utilization of both perpendicular and parallel aligned bicelles in EPR spectroscopy provides a more detailed structural and orientational picture of the phospholipid bilayers. The magnetically aligned EPR spectra of the bicelles and the hyperfine splitting values reveal that the addition of cholesterol increases the phase transition temperature and alignment temperature of the DMPC/DHPC bicelles. The corresponding molecular order parameter, Smol, of the DMPC/DHPC bicelles increased upon addition of cholesterol. Cholesterol also decreased the rotational motion and increased the degree of anisotropy in the interior region of the bicelles. This report reveals that the dynamic properties of DMPC/DHPC bicelles agree well with other model membrane systems and that the magnetically aligned bicelles are an excellent model membrane system.  相似文献   

10.
Reactive nitrogen/oxygen species (ROS/RNS) at low concentrations play an important role in regulating cell function, signaling, and immune response but in unregulated concentrations are detrimental to cell viability1, 2. While living systems have evolved with endogenous and dietary antioxidant defense mechanisms to regulate ROS generation, ROS are produced continuously as natural by-products of normal metabolism of oxygen and can cause oxidative damage to biomolecules resulting in loss of protein function, DNA cleavage, or lipid peroxidation3, and ultimately to oxidative stress leading to cell injury or death4. Superoxide radical anion (O2•-) is the major precursor of some of the most highly oxidizing species known to exist in biological systems such as peroxynitrite and hydroxyl radical. The generation of O2•- signals the first sign of oxidative burst, and therefore, its detection and/or sequestration in biological systems is important. In this demonstration, O2•- was generated from polymorphonuclear neutrophils (PMNs). Through chemotactic stimulation with phorbol-12-myristate-13-acetate (PMA), PMN generates O2•- via activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase5. Nitric oxide (NO) synthase which comes in three isoforms, as inducible-, neuronal- and endothelial-NOS, or iNOS, nNOS or eNOS, respectively, catalyzes the conversion of L- arginine to L-citrulline, using NADPH to produce NO6. Here, we generated NO from endothelial cells. Under oxidative stress conditions, eNOS for example can switch from producing NO to O2•- in a process called uncoupling, which is believed to be caused by oxidation of heme7 or the co-factor, tetrahydrobiopterin (BH4)8.There are only few reliable methods for the detection of free radicals in biological systems but are limited by specificity and sensitivity. Spin trapping is commonly used for the identification of free radicals and involves the addition reaction of a radical to a spin trap forming a persistent spin adduct which can be detected by electron paramagnetic resonance (EPR) spectroscopy. The various radical adducts exhibit distinctive spectrum which can be used to identify the radicals being generated and can provide a wealth of information about the nature and kinetics of radical production9.The cyclic nitrones, 5,5-dimethyl-pyrroline-N-oxide, DMPO10, the phosphoryl-substituted DEPMPO11, and the ester-substituted, EMPO12 and BMPO13, have been widely employed as spin traps--the latter spin traps exhibiting longer half-lives for O2•- adduct. Iron (II)-N-methyl-D-glucamine dithiocarbamate, Fe(MGD)2 is commonly used to trap NO due to high rate of adduct formation and the high stability of the spin adduct14.  相似文献   

11.
Free radicals and other paramagnetic species, play an important role in cellular injury and pathophysiology. EPR spectroscopy and imaging has emerged as an important tool for non-invasive in vivo measurement and spatial mapping of free radicals in biological tissues. Extensive applications have been performed in small animals such as mice and recently applications in humans have been performed. Spatial EPR imaging enables 3D mapping of the distribution of a given free radical while spectral-spatial EPR imaging enables mapping of the spectral information at each spatial position, and, from the observed line width, the localized tissue oxygenation can be determined. A variety of spatial, and spectral-spatial EPR imaging applications have been performed. These techniques, along with the use of biocompatible paramagnetic probes including particulate suspensions and soluble nitroxide radicals, enable spatial imaging of the redox state and oxygenation in a variety of biomedical applications. With spectral-spatial EPR imaging, oxygenation was mapped within the gastrointestinal (GI) tract of living mice, enabling measurement of the oxygen gradient from the proximal to the distal GI tract. Using spatial EPR imaging, the distribution and metabolism of nitroxide radicals within the major organs of the body of living mice was visualized and anatomically co-registered by proton MRI enabling in vivo mapping of the redox state and radical clearance. EPR imaging techniques have also been applied to non-invasively measure the distribution and metabolism of topically applied nitroxide redox probes in humans, providing information regarding the penetration of the label through the skin and measurement of its redox clearance. Thus, EPR spectroscopy and imaging has provided important information in a variety of applications ranging from small animal models of disease to topical measurement of redox state in humans.  相似文献   

12.
Proteins play a central role in a systems view of biologic processes. This review provides an overview of proteomics from a systems perspective. We survey the key tools and methodologies used, present examples of how these are currently being used in the systems biology context, and discuss future directions.  相似文献   

13.
食欲素因其在调节能量代谢、睡眠和唤醒等生理功能中的作用而备受关注.近年来研究逐渐发现,食欲素参与应激和奖赏过程的调节,特别是其在药物成瘾过程中的作用是目前的研究热点.主要介绍食欲素系统与应激相关系统之间的神经联系,阐述了其在应激相关的生理、神经内分泌与行为反应中的作用.并进一步介绍了食欲素系统在应激诱发药物成瘾复吸过程中的作用.食欲素对应激反应的调控作用具有相对特异性,受应激的种类、其他应激相关神经递质系统及食欲素神经元的投射通路等多种因素影响.  相似文献   

14.
In this paper we report an investigation on coordination compounds of vanadyl ion with citric, D(+)-threo-isocitric, cis- and trans-aconitic acids in aqueous solution. The different binary systems have been studied by potentiometric and spectroscopic techniques (t = 25 °C, I = 0.1 mol dm−3). Electronic paramagnetic resonance spectroscopy (EPR) at room temperature and molecular absorption spectrophotometry were employed in order to obtain a structural characterization of complexes. A speciation model was proposed for all the metal-ligand systems from potentiometric data. For all the systems studied the chemical model assumes the formation of complexes with stoichiometry MLHr and binuclear species M2L1Hr. Citric and D(+)-threo-isocitric acids also form stable dimeric species M2L2Hr. The EPR investigation reveals that the dimeric complexes of hydroxyacids present magnetic interaction supporting the hypothesis of an alcoholate-bridged dinuclear structure. For each system investigated we recorded visible absorption spectra and estimated the individual spectrum of species in solution. A particular spectrophotometric behaviour of citrate system was recognized and the joint examination of our spectroscopic results and the literature data leads us to suppose that the trans position of vanadyl is occupied by the bridged alcoholate group.  相似文献   

15.
The molecular architecture of the NH(2) and COOH termini of the prokaryotic potassium channel KcsA has been determined using site-directed spin-labeling methods and paramagnetic resonance EPR spectroscopy. Cysteine mutants were generated (residues 5-24 and 121-160) and spin labeled, and the X-band CW EPR spectra were obtained from liposome-reconstituted channels at room temperature. Data on probe mobility (DeltaHo(-1)), accessibility parameters (PiO(2) and PiNiEdda), and inter-subunit spin-spin interaction (Omega) were used as structural constraints to build a three-dimensional folding model of these cytoplasmic domains from a set of simulated annealing and restrained molecular dynamics runs. 32 backbone structures were generated and averaged using fourfold symmetry, and a final mean structure was obtained from the eight lowest energy runs. Based on the present data, together with information from the KcsA crystal structure, a model for the three-dimensional fold of full-length KcsA was constructed. In this model, the NH(2) terminus of KcsA forms an alpha-helix anchored at the membrane-water interface, while the COOH terminus forms a right-handed four-helix bundle that extend some 40-50 A towards the cytoplasm. Functional analysis of COOH-terminal deletion constructs suggest that, while the COOH terminus does not play a substantial role in determining ion permeation properties, it exerts a modulatory role in the pH-dependent gating mechanism.  相似文献   

16.
Metformin (N,N-dimethylbiguanide), buformin (1-butylbiguanide), and phenformin (1-phenethylbiguanide) are anti-diabetic biguanide drugs, expected to having anti-cancer effect. The mechanism of anti-cancer effect by these drugs is not completely understood. In this study, we demonstrated that these drugs dramatically enhanced oxidative DNA damage under oxidative condition. Metformin, buformin, and phenformin enhanced generation of 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) in isolated DNA reacted with hydrogen peroxide (H2O2) and Cu(II), although these drugs did not form 8-oxodG in the absence of H2O2 or Cu(II). An electron paramagnetic resonance (EPR) study, utilizing alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone and 3,3,5,5-tetramethyl-1-pyrroline-N-oxide as spin trapping agents, showed that nitrogen-centered radicals were generated from biguanides in the presence of Cu(II) and H2O2, and that these radicals were decreased by the addition of DNA. These results suggest that biguanides enhance Cu(II)/H2O2-mediated 8-oxodG generation via nitrogen-centered radical formation. The enhancing effect on oxidative DNA damage may play a role on anti-cancer activity.  相似文献   

17.
The autophosphorylation reaction of purified cGMP-dependent protein kinase has been studied. Apparent initial rates of autophosphorylation in the absence of cyclic nucleotides and in the presence of cGMP and cAMP are 0.006, 0.04, 0.4 mol Pi incorp./min-1. mol cGMP-kinase subunit-1. In the presence of cGMP and cAMP approximately 1 and 2 mol Pi are incorporated/mol enzyme subunit. These values are independent of the enzyme concentration. Stimulation of autophosphorylation by cAMP is not due to activation of a contaminating cAMP-dependent protein kinase since: (a) addition of the heatstable inhibitor protein of cAMP-kinase does not inhibit autophosphorylation; and (b) catalytic subunit of cAMP-kinase added at a 10-fold excess over cGMP-kinase does not phosphorylate cGMP-kinase.  相似文献   

18.
We investigated the antioxidant activities and locations of stable paramagnetic species in dry (or drying) shiitake mushroom (Lentinus edodes) using continuous wave (CW) electron paramagnetic resonance (EPR) and 9?GHz EPR imaging. CW 9?GHz EPR detected paramagnetic species (peak-to-peak linewidth (ΔHpp)?=?0.57?mT) in the mushroom. Two-dimensional imaging of the sharp line using a 9?GHz EPR imager showed that the species were located in the cap and shortened stem portions of the mushroom. No other location of the species was found in the mushroom. However, radical locations and concentrations varied along the cap of the mushroom. The 9?GHz EPR imaging determined the exact location of stable paramagnetic species in the shiitake mushroom. Distilled water extracts of the pigmented cap surface and the inner cap of the mushroom showed similar antioxidant activities that reduced an aqueous solution of 0.1?mM 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl. The present results suggest that the antioxidant activities of the edible mushroom extracts are much weaker than those of ascorbic acid. Thus, CW EPR and EPR imaging revealed the location and distribution of stable paramagnetic species and the antioxidant activities in the shiitake mushroom for the first time.  相似文献   

19.
The protective effects of (-)-epigallocatechin-3-gallate (EGCg) or the C-2 epimer, (-)-gallocatechin-3-gallate (GCg), afforded by their antioxidative activity among green tea catechins were investigated in perfused guinea-pig Langendorff hearts subjected to ischemia and reperfusion. The recovery (%) of the left ventricular developed pressure from ischemia by reperfusion was 34.4% in the control, while in the presence of EGCg (3x10(-5) M) or GCg (3x10(-6) M, a more diluted concentration than that of EGCg), it led to a maximal increase of 78.4% or 76.2%, consistent with a significant preservative effect on the tissue level of ATP at the end of ischemia or reperfusion. In the perfused preparation of mitochondria, EGCg (10(-5) M) inhibited mitochondrial Ca(2+) elevation by changes in the Ca(2+) content or the acidification of perfusate, similarly to findings with cyclosporin A, a well known inhibitor of the mitochondrial permeability transition pore. By in vitro electron paramagnetic resonance (EPR), EGCg or GCg was found to directly quench the activity of active oxygen radicals, with the strongest activity in tea catechins. EGCg or GCg decreased the caspase-3 activity induced apoptosis. Therefore, it is concluded that the beneficial effects of EGCg or GCg play an important role in ischemia-reperfusion hearts in close relation with nitric oxide (NO), active oxygen radicals and biological redox systems in mitochondria.  相似文献   

20.
Chromium (VI) compounds are widely recognized as human carcinogens. Extensive studies in vitro and in model systems indicate that the reactive intermediate, Cr (V), generated by cellular reduction of Cr (VI), is likely the candidate for the ultimate carcinogenic form of chromium compounds. Here we review our current understanding of the in vivo reduction of Cr (VI) and its related free radical generation. Our results demonstrate that Cr (V) is indeed generated from the reduction of Cr (VI) in vivo, and that Cr (V) thus formed can mediate the generation of free radicals. Cr (V) and its related free radicals are very likely to be involved in the mechanism of Cr (VI)induced toxicity and carcinogenesis. These studies also illustrate that in vivo EPR spectroscopy and magnetic resonance imaging can be very useful and powerful tools for studying paramagnetic metal ions in chemical and biochemical reactions occurring in intact animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号