首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to clarify the difference in the onset of EMG activity between eight trunk muscles, including the anterior (QL-a) and posterior (QL-p) layers of the quadratus lumborum during rapid shoulder joint abduction. Thirteen healthy men participated in this study. Electromyography of the QL-a, QL-p, transversus abdominis (TrA), internal oblique (IO), external oblique (EO), rectus abdominis (RA), lumbar multifidus (LMF), lumbar erector spinae (LES) on non-movement side, and middle deltoid (MD) on the movement side were measured. Subjects who were standing in a relaxed position performed rapid shoulder abduction with the dominant hand after light stimulus with or without a 3 kg wrist weight. Two-way ANOVA (muscles × weight conditions) was used to compare the onset of trunk muscles relative to that of MD. There was a significant main effect of the muscles. The onset of the QL-a, QL-p, and TrA was significantly earlier than that of the IO, EO, LMF, and LES (P < 0.01). This result suggests that the activities of the QL-a, QL-p, and TrA have a crucial role in controlling the center of mass within the base of support and stabilizing the lumbar spine in the coronal plane during shoulder abduction.  相似文献   

2.
Psoas major (PM) and quadratus lumborum (QL) muscles have anatomically discrete regions. Redistribution of activity between these regions has been observed in people with low back pain (LBP). We hypothesised that the bias of activity of specific regions of PM and QL towards trunk extension may change depending on whether LBP individuals have more or less erector spinae (ES) activity in an extended/upright lumbar posture. Ten volunteers with recurring episodes of LBP and nine pain-free controls performed isometric trunk efforts in upright sitting. LBP individuals were subgrouped into those with high and low ES electromyographic activity (EMG) when sitting with a lumbar lordosis. Fine-wire electrodes were inserted into fascicles of PM arising from the transverse process (PM-t) and vertebral body (PM-v) and anterior (QL-a) and posterior layers (QL-p) of QL. The LBP group with low ES EMG had greater bias of PM-t, PM-v and QL-p towards trunk extension. The LBP group with high ES activity showed less PM activity towards extension. These findings suggest redistribution of activity within and/or between these muscles with extensor moments. This is likely to be important to consider for effective clinical interventions for individuals with LBP.  相似文献   

3.
Walking is a motor task requiring coordination of many muscles. Previous biomechanical studies, based primarily on analyses of the net ankle moment during stance, have concluded different functional roles for the plantar flexors. We hypothesize that some of the disparities in interpretation arise because of the effects of the uniarticular and biarticular muscles that comprise the plantar flexor group have not been separated. Furthermore, we believe that an accurate determination of muscle function requires quantification of the contributions of individual plantar flexor muscles to the energetics of individual body segments. In this study, we examined the individual contributions of the ankle plantar flexors (gastrocnemius (GAS); soleus (SOL)) to the body segment energetics using a musculoskeletal model and optimization framework to generate a forward dynamics simulation of normal walking at 1.5 m/s. At any instant in the gait cycle, the contribution of a muscle to support and forward progression was defined by its contribution to trunk vertical and horizontal acceleration, respectively, and its contribution to swing initiation by the mechanical energy it delivers to the leg in pre-swing (i.e., double-leg stance prior to toe-off). GAS and SOL were both found to provide trunk support during single-leg stance and pre-swing. In early single-leg stance, undergoing eccentric and isometric activity, they accelerate the trunk vertically but decelerate forward trunk progression. In mid single-leg stance, while isometric, GAS delivers energy to the leg while SOL decelerates it, and SOL delivers energy to the trunk while GAS decelerates it. In late single-leg stance through pre-swing, though GAS and SOL both undergo concentric activity and accelerate the trunk forward while decelerating the downward motion of the trunk (i.e., providing forward progression and support), they execute different energetic functions. The energy produced from SOL accelerates the trunk forward, whereas GAS delivers almost all its energy to accelerate the leg to initiate swing. Although GAS and SOL maintain or accelerate forward motion in mid single-leg stance through pre-swing, other muscles acting at the beginning of stance contribute comparably to forward progression. In summary, throughout single-leg stance both SOL and GAS provide vertical support, in mid single-leg stance SOL and GAS have opposite energetic effects on the leg and trunk to ensure support and forward progression of both the leg and trunk, and in pre-swing only GAS contributes to swing initiation.  相似文献   

4.
During jumping or falling in humans and various other mammals, limb muscles are activated before landing, and the intensity and timing of this pre-landing activity are scaled to the expected impact. In this study, we test whether similarly tuned anticipatory muscle activity is present in hopping cane toads. Toads use their forelimbs for landing, and we analysed pre-landing electromyographic (EMG) timing and intensity in relation to hop distance for the m. coracoradialis and m. anconeus, which act antagonistically at the elbow, and are presumably important in stabilizing the forelimb during landing. In most cases, a significant, positive relationship between hop distance and pre-landing EMG intensity was found. Moreover, pre-landing activation timing of m. anconeus was tightly linked to when the forelimbs touched down at landing. Thus, like mammals, toads appear to gauge the timing and magnitude of their impending impact and activate elbow muscles accordingly. To our knowledge these data represent the first demonstration of tuned pre-landing muscle recruitment in anurans and raise questions about how important the visual, vestibular and/or proprioceptive systems are in mediating this response.  相似文献   

5.
Inertial Measurement Units (IMUs) are promising alternatives to laboratory-based motion capture methods in biomechanical assessment of athletic movements. The aim of this study was to investigate the validity of an IMU system for determining knee and trunk kinematics during landing and cutting tasks for clinical and research applications in sporting populations. Twenty-seven participants performed five cutting and landing tasks while being recorded using a gold-standard optoelectronic motion capture system and an IMU system. Intra-class coefficients, Pearson’s r, root-mean-square error (RMSE), bias, and Bland-Altman limits of agreements between the motion capture and IMU systems were quantified for knee and trunk sagittal- and frontal-plane range-of-motion (ROM) and peak angles. Our results indicate that IMU validity was task-, joint-, and plane-dependent. Based on good-to-excellent (ICC) correlation, reasonable accuracy (RMSE < 5°), bias within 2°, and limits of agreements within 10°, we recommend the use of this IMU system for knee sagittal-plane ROM estimations during cutting, trunk sagittal-plane peak angle estimation during the double-leg landing task, trunk sagittal-plane ROM estimation for almost all tasks, and trunk frontal-plane peak angle estimation for the right single-leg landing task. Due to poor comparisons with the optoelectronic system, we do not recommend this IMU system for knee frontal-plane kinematic estimations.  相似文献   

6.
Repetitive trunk flexion elicits passive tissue creep, which has been hypothesized to compromise spine stability. The current investigation determined if increased spine flexion angle at the onset of flexion relaxation (FR) in the lumbar extensor musculature was associated with altered dynamic stability of spine kinematics. Twelve male participants performed 125 consecutive cycles of full forward trunk flexion. Spine kinematics and lumbar erector spinae (LES) electromyographic (EMG) activity were obtained throughout the repetitive trunk flexion trial. Dynamic stability was evaluated with maximum finite-time Lyapunov exponents over five sequential blocks of 25 cycles. Spine flexion angle at FR onset, and peak LES EMG activity were determined at baseline and every 25th cycle. Spine flexion angle at FR increased on average by 1.7° after baseline with significant increases of 1.7° and 2.4° at the 50th and 100th cycles. Maximum finite-time Lyapunov exponents demonstrated a transient, non-statistically significant, increase between cycles 26 and 50 followed by a recovery to baseline over the remainder of the repetitive trunk flexion cycles. Recovery of dynamic stability may be the consequence of increased active spine stiffness demonstrated by the non-significant increase in peak LES EMG that occurred as the repetitive trunk flexion progressed.  相似文献   

7.
Asymmetry in the alignment of the lower limbs during weight-bearing activities is associated with patellofemoral pain syndrome (PFPS), caused by an increase in patellofemoral (PF) joint stress. High neuromuscular demands are placed on the lower limb during the propulsion phase of the single leg triple hop test (SLTHT), which may influence biomechanical behavior. The aim of the present cross-sectional study was to compare kinematic, kinetic and muscle activity in the trunk and lower limb during propulsion in the SLTHT using women with PFPS and pain free controls. The following measurements were made using 20 women with PFPS and 20 controls during propulsion in the SLTHT: kinematics of the trunk, pelvis, hip, and knee; kinetics of the hip, knee and ankle; and muscle activation of the gluteus maximus (GM), gluteus medius (GMed), biceps femoris (BF) and vastus lateralis (VL). Differences between groups were calculated using three separate sets of multivariate analysis of variance for kinematics, kinetics, and electromyographic data. Women with PFPS exhibited ipsilateral trunk lean; greater trunk flexion; greater contralateral pelvic drop; greater hip adduction and internal rotation; greater ankle pronation; greater internal hip abductor and ankle supinator moments; lower internal hip, knee and ankle extensor moments; and greater GM, GMed, BL, and VL muscle activity. The results of the present study are related to abnormal movement patterns in women with PFPS. We speculated that these findings constitute strategies to control a deficient dynamic alignment of the trunk and lower limb and to avoid PF pain. However, the greater BF and VL activity and the extensor pattern found for the hip, knee, and ankle of women with PFPS may contribute to increased PF stress.  相似文献   

8.
The aim of this study was to analyze trunk muscle activity during bridge style stabilization exercises, when combined with single and double leg support strategies. Twenty-nine healthy volunteers performed bridge exercises in 3 different positions (back, front and side bridges), with and without an elevated leg, and a quadruped exercise with contralateral arm and leg raise ("bird-dog"). Surface EMG was bilaterally recorded from rectus abdominis (RA), external and internal oblique (EO, IO), and erector spinae (ES). Back, front and side bridges primarily activated the ES (approximately 17% MVC), RA (approximately 30% MVC) and muscles required to support the lateral moment (mostly obliques), respectively. Compared with conventional bridge exercises, single leg support produced higher levels of trunk activation, predominantly in the oblique muscles. The bird-dog exercise produced greatest activity in IO on the side of the elevated arm and in the contralateral ES. In conclusion, during a common bridge with double leg support, the antigravity muscles were the most active. When performed with an elevated leg, however, rotation torques increased the activation of the trunk rotators, especially IO. This information may be useful for clinicians and rehabilitation specialists in determining appropriate exercise progression for the trunk stabilizers.  相似文献   

9.
Female athletes are more prone to anterior cruciate ligament (ACL) injury. A neuromuscular imbalance called leg dominance may provide a biomechanical explanation. Therefore, the purpose of this study was to compare the side-to-side lower limb differences in movement patterns, muscle forces and ACL forces during a single-leg drop-landing task from two different heights. We hypothesized that there will be significant differences in lower limb movement patterns (kinematics), muscle forces and ACL loading between the dominant and non-dominant limbs. Further, we hypothesized that significant differences between limbs will be present when participants land from a greater drop-landing height. Eight recreational female participants performed dominant and non-dominant single-leg drop landings from 30 to 60 cm. OpenSim software was used to develop participant-specific musculoskeletal models and to calculate muscle forces. We also predicted ACL loading using our previously established method. There were no significant differences between dominant and non-dominant leg landing except in ankle dorsiflexion and GMED muscle forces at peak GRF. Landing from a greater height resulted in significant differences among most kinetics and kinematics variables and ACL forces. Minimal differences in lower-limb muscle forces and ACL loading between the dominant and non-dominant legs during single-leg landing may suggest similar risk of injury across limbs in this cohort. Further research is required to confirm whether limb dominance may play an important role in the higher incidence of ACL injury in female athletes with larger and sport-specific cohorts.  相似文献   

10.
The objective of this study was to measure adaptations in landing strategy during single-leg hops following thigh muscle fatigue. Kinetic, kinematic, and electromyographic data were recorded as thirteen healthy male subjects performed a single-leg hop in both the unfatigued and fatigued states. To sufficiently fatigue the thigh muscles, subjects performed at least two sets of 50 step-ups. Fatigue was assessed by measuring horizontal hopping ability following the protocol. Joint motion and loading, as well as muscle activation patterns, were compared between fatigued and unfatigued conditions. Fatigue significantly increased knee motion (p = 0.012) and shifted the ankle into a more dorsiflexed position (p = 0.029). Hip flexion was also reduced following fatigue (p = 0.042). Peak extension moment tended to decrease at the knee and increase at the ankle and hip (p = 0.014). Ankle plantar flexion moment at the time of peak total support moment increased from 0.8 (N x m)/kg (SD, 0.6 [N x m]/kg) to 1.5 (N x m)/kg (SD, 0.8 [N x m]/kg) (p = 0.006). Decreased knee moment and increased knee flexion during landings following fatigue indicated that the control of knee motion was compromised despite increased activation of the vastus medialis, vastus lateralis, and rectus femoris (p = 0.014, p = 0.014, and p = 0.017, respectively). Performance at the ankle increased to compensate for weakness in the knee musculature and to maintain lower extremity stability during landing. Investigating the biomechanical adaptations that occur in healthy subjects as a result of muscle fatigue may give insight into the compensatory mechanisms and loading patterns occurring in patients with knee pathology. Changes in single-leg hop landing performance could be used to demonstrate functional improvement in patients due to training or physical therapy.  相似文献   

11.
Although leg spring stiffness represents active muscular recruitment of the lower extremity during dynamic tasks such as hopping and running, the joint-specific characteristics comprising the damping portion of this measure, leg impedance, are uncertain. The purpose of this investigation was to assess the relationship between leg impedance and energy absorption at the ankle, knee, and hip during early (impact) and late (stabilization) phases of landing. Twenty highly trained female dancers (age = 20.3 +/- 1.4 years, height = 163.7 +/- 6.0 cm, mass = 62.1 +/- 8.1 kg) were instrumented for biomechanical analysis. Subjects performed three sets of double-leg landings from under preferred, stiff, and soft landing conditions. A stepwise linear regression analysis revealed that ankle and knee energy absorption at impact, and knee and hip energy absorption during the stabilization phases of landing explained 75.5% of the variance in leg impedance. The primary predictor of leg impedance was knee energy absorption during the stabilization phase, independently accounting for 55% of the variance. Future validation studies applying this regression model to other groups of individuals are warranted.  相似文献   

12.
The aims of this study were: (a) to examine the effect of falling height on the kinematics of the tibiotalar, talonavicular and calcaneocuboid joints and (b) to study the influence of falling height on the muscle activity of the leg during landings. Six female gymnasts (height: 1.63±0.04 m, weight: 58.21±3.46 kg) participated in this study. All six gymnasts carried out barefoot landings, falling from 1.0, 1.5 and 2.0 m height onto a mat. Three genlocked digital high speed video cameras (250 Hz) captured the motion of the left shank and foot. Surface electromyography (EMG) was used to measure muscle activity (1000 Hz) from five muscles (gastrocnemius medialis, tibialis anterior, peroneus longus, vastus lateralis and hamstrings) of the left leg. The kinematics of the tibiotalar, talonavicular and calcaneocuboid joints were studied. The lower-leg and the foot were modelled by means of a multi-body system, comprising seven rigid bodies. The falling height does not show any influence on the kinematics neither of the tibiotalar nor of the talonavicular joints during landing. The eversion at the calcaneocuboid joint increases with increasing falling height. When augmenting falling height, the myoelectric activity of the muscles of the lower limb increases as well during the pre-activation phase as during the landing itself. The muscles of the lower extremities are capable of stabilizing the tibiotalar and the talonavicular joints actively, restricting their maximal motion by means of a higher activation before and after touchdown. Maximal eversion at the calcaneocuboid joint increases about 52% when landing from 2.0 m.  相似文献   

13.
During sporting events, injured athletes often return to competition after icing because of the reduction in pain. Although some controversy exists, several studies suggest that cryotherapy causes a decrease in muscle activity, which may lead to a higher risk of injury upon return to play. The purpose of this study was to investigate the effect of a 20-min knee joint cryotherapy application on the electromyographic activity of leg muscles during a single-leg drop jump in twenty healthy subjects, randomly assigned to an experimental and a control group. After the pre-tests, a crushed-ice bag was applied to the knee joint of the experimental group subjects for 20 min, while the control group subjects rested for 20 min. All subjects were retested immediately after this period and retested again after another 20 min of rest. Average electromyographic activity and ground contact time were calculated for the pre- and post-test sessions. Decreases in electromyographic activity of the lower extremity musculature were found in pre-activation, eccentric (braking), and concentric (push-off) phases immediately after the icing, and after 20 min of rest. The results lend support to the suggestion that cryotherapy during sporting events may place the individuals in a vulnerable position.  相似文献   

14.
Compliant foams can be used to mitigate ground reaction forces. However, it is unknown how foam surfaces influence the modulation of leg muscle activity. Thus, the current study aimed to investigate how the neuromuscular system managed changes in expected loading due to various thickness of foam placed on the landing surface during a step down task. The surface electromyographic signal (sEMG) pre-activation duration and the root mean square (RMS) amplitude of tibialis anterior (TA), lateral gastrocnemius (LG), and vastus medialis (VM) of 10 active females were measured as they stepped-down with a single leg onto polyurethane foam slabs of varying thickness (0–50 mm). Pre-activation duration was not affected by the thickness of the foam padding. LG RMS amplitude was less in the foam conditions than the control (no– foam) condition, with the greatest reduction observed for the 50 mm foam condition. In some trials, the muscles remained active throughout the step-down task. In such instances, a sEMG onset time and thus a pre-activation duration could not be determined. All foam conditions significantly increased the odds of continuous muscle activity above that of the no-foam condition. The results indicate that foam surfaces may alter the modulation of muscle activity during step-down tasks.  相似文献   

15.
Flexion relaxation (FR) is characterized by the lumbar erector spinae (LES) becoming myoelectrically silent near full trunk flexion. This study was designed to: (1) determine if decreasing the lumbar moment during flexion would induce FR to occur earlier; (2) characterize thoracic and abdominal muscle activity during FR. Ten male participants performed four trunk flexion/extension movement conditions; lumbar moment was altered by attaching 0, 5, 10, or 15 lb counterweights to the torso. Electromyography (EMG) was recorded from eight trunk muscles. Lumbar moment, lumbar flexion and trunk inclination angles were calculated at the critical point of LES inactivation (CPLES). Results demonstrated that counterweights decreased the lumbar moment and lumbar flexion angle at CPLES (p < 0.0001 and p = 0.0029, respectively); the hypothesis that FR occurs earlier when lumbar moment is reduced was accepted. The counterweights did not alter trunk inclination at CPLES (p = 0.1987); this is believed to result from an altered hip to spine flexion ratio when counterweights were attached. Lumbar multifidus demonstrated FR, similar to LES, while thoracic muscles remained active throughout flexion. Abdominal muscles activated at the same instant as CPLES, except in the 15 lb condition where abdominal muscles activated before CPLES resulting in a period of increased co-contraction.  相似文献   

16.
The present study examined the effect of continuous vision and its occlusion in timing of pre-landing actions during free falls. When vision is occluded, muscle activation is hypothesized to start relative to onset of the fall. However, when continuous vision is available onset of action is hypothesized to be relative to the moment of touchdown. Six subjects performed 6 randomized sets of 6 trials after becoming familiar with the task. The 36 trials were divided in 2 visual conditions (vision and blindfold) and 3 heights of fall (15, 45 and 75 cm). EMG activity was recorded from the gastrocnemius and rectus femoris muscles during the falls. The latency of onset (L(o)) and the lapse from EMG onset to touchdown (T(c)) were obtained from these muscles. Vertical forces were recorded to assess the effects of pre-landing activity on the impacts at collision with and without continuous vision. Peak amplitude (F(max)), time to peak (T(max)) and peak impulse normalized to momentum (I(norm)) were used as outcome measures. Within flight time ranges of approximately 50-400 ms, the results showed that L(o) and T(c) follow a similar linear trend whether continuous vision was available or occluded. However, the variability of T(c) for each of the muscles was larger in the vision occluded condition. Analyses of variance showed that the rectus femoris muscle started consistently earlier in no vision trials. Finally, impact forces were not different in vision or blindfold conditions, and thus, they were not affected by minor differences in the timing of muscles prior to landing. Thus, it appears that knowing the surroundings before falling may help to reduce the need for a continuous visual input. The relevance of such input cannot be ruled out for falls from high landing heights, but cognitive factors (e.g., attention to specific cues and anticipation of a fall) may play a dominant role in timing actions during short duration falls encountered daily.  相似文献   

17.
Expectations may be for both legs to function identically during single- and double-leg vertical jumps. However, several reasons might prevent this from occurring. The goals of this investigation were twofold: assess the presence of side-to-side jump height differences during single-leg jumps in a homogenous group of healthy subjects and determine if those with a jump height asymmetry possessed consistent biomechanical differences during single-and double-leg jumps. Thirteen men and 12 women with competitive volleyball experience volunteered for the study. Significance was assessed at p < 0.05. The men jumped significantly higher than the women in all conditions and possessed differences in several anthropometric, kinematic, and kinetic parameters. Based on a three-jump average, all subjects had one leg that they could jump higher with (the dominant leg, DL). The men generated significantly greater maximum ground reaction forces and ankle joint powers on their DL whereas the women had no differences during the single-leg jumps. The only side-to-side differences that existed during the double-leg jumps were in the average ground reaction forces during propulsion. These findings suggest that equality of single-leg jump performance is the exception rather than the norm, with identification of consistent biomechanical attributes difficult within a group.  相似文献   

18.
The purpose of this study was to investigate the effects of imposing different degrees of forward trunk flexion during sitting pivot transfers on electromyographic activity at the leading and trailing upper limb muscles and on dynamic stability requirements. Thirty-two individuals with a spinal cord injury performed three types of sitting pivot transfers: natural technique, exaggerated forward trunk flexion and upright trunk position. Ground reaction forces, trunk kinematics, and bilateral electromyographic activity of eight upper limb muscles were recorded. Electromyographic data were analyzed using the area under the curve of the muscular utilization ratio. Dynamic stability requirements of sitting pivot transfers were assess using a dynamic equilibrium model. Compared to the natural strategy, significantly greater muscle activities were found for the forward trunk flexion condition at the anterior deltoid and both heads of the pectorialis major, whereas the upright trunk strategy yielded greater muscle activity at the latissimus dorsii and the triceps. The forward flexed condition was found to be more dynamically stable, with a lower stabilizing force, increased area of base of support and greater distance traveled. Thus, transferring with a more forward trunk inclination, even though it increases work of few muscles, may be a beneficial trade-off because increased dynamic stability of this technique and versatility in terms of potential distance of the transfer.  相似文献   

19.
The purpose of the study was to investigate the effects of two fatigue protocols on landing performance. A repeated measures design was used to examine the effects of fatigue and fatigue protocol on neuromuscular and biomechanical performance variables. Ten volunteers performed non-fatigued and fatigued landings on two days using different fatigue protocols. Repeated maximum isometric squats were used to induce fatigue on day one. Sub-maximum cycling was used to induce fatigue on day two. Isometric squat maximum voluntary contraction (MVC) was measured before and after fatigued landings on each day. During the landings, ground reaction force (GRF), knee kinematics, and electromyographic (EMG) data were recorded. Isometric MVC, GRF peaks, loading rates, impulse, knee flexion at contact, range of motion, max angular velocity, and EMG root mean square (RMS) values were compared pre- and post-fatiguing exercise and between fatigue protocols using repeated ANOVA. Fatigue decreased MVC strength (p ? 0.05), GRF second peak, and initial impulse (p ? 0.01), but increased quadriceps medium latency stretch reflex EMG activity (p ? 0.012). Knee flexion at contact was 5.2° greater (p ? 0.05) during fatigued landings following the squat exercise compared to cycling. Several variables exhibited non-significant but large effect sizes when comparing the effects of fatigue and fatigue protocol. In conclusion, fatigue alters landing performance and different fatigue protocols result in different performance changes.  相似文献   

20.
Background: Muscle fatigue is associated with biomechanical changes that may lead to anterior cruciate ligament (ACL) injuries. Alterations in trunk and pelvis kinematics may also be involved in ACL injury. Although some studies have compared the effects of muscle fatigue on lower limb kinematics between men and women, little is known about its effects on pelvis and trunk kinematics. The aim of the study was to compare the effects of fatigue on lower limb, pelvis and trunk kinematics and muscle activation between men and women during landing. Methods: The participants included forty healthy subjects. We performed kinematic analysis of the trunk, pelvis, hip and knee and muscle activation analysis of the gluteal muscles, vastus lateralis and biceps femoris, during a single-leg landing before and after fatigue. Results: Men had greater trunk flexion than women after fatigue. After fatigue, a decrease in peak knee flexion and an increase in Gmax and BF activation were observed. Conclusion: The increase in the trunk flexion can decrease the anterior tibiofemoral shear force resulted from the lower knee flexion angle, thereby decreasing the stress on the ACL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号