首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Native chemical ligation has enabled the chemical synthesis of proteins for a wide variety of applications (e.g., mirror-image proteins). However, inefficiencies of this chemoselective ligation in the context of large or otherwise challenging protein targets can limit the practical scope of chemical protein synthesis. In this review, we focus on recent developments aimed at enhancing and expanding native chemical ligation for challenging protein syntheses. Chemical auxiliaries, use of selenium chemistry, and templating all enable ligations at otherwise suboptimal junctions. The continuing development of these tools is making the chemical synthesis of large proteins increasingly accessible.  相似文献   

2.
Protein ubiquitination regulates almost all eukaryotic cellular processes, and is of very high complexity due to the diversity of ubiquitin (Ub) modifications including mono-, multiply mono-, homotypic poly-, and even heterotypic poly-ubiquitination. To accurately elucidate the role of each specific Ub signal in different cells with spatiotemporal resolutions, a variety of chemical biology tools have been developed. In this review, we summarize some recently developed chemical biology tools for ubiquitination studies and their applications in molecular and cellular biology.  相似文献   

3.
Transition metal ions play key structural and functional roles, affecting structures of biomolecules and enzyme function. The importance of transition metal ions in chemical biology is, thus, undisputed. However, the aqueous chemistry of metal ions is complicated because they form species in several protonation and redox states. In the presence of metabolites, metal ions can also form coordination complexes. The existence of several species is relevant because enzymes and membrane receptors can distinguish between species even when they are rapidly equilibrating. Thus, metal ions, enzyme cofactors, and therapeutic agents are sensitive to the metal ion speciation chemistry because it affects their interaction with enzymes and other biomolecules. Speciation is also crucial for metal-containing bioorthogonal reactions, since water and metabolites stabilize active catalysts, affect chemoselectivity and reaction yields.  相似文献   

4.
Polyketides and nonribosomal peptides are an important class of natural products with useful bioactivities. These compounds are similarly biosynthesized using enzymes with modular structures despite having different physicochemical properties. These enzymes are attractive targets for bioengineering to produce “unnatural” natural products owing to their modular structures. Therefore, their structures have been studied for a long time; however, the main focus was on truncated-single domains. Surprisingly, there is an increasing number of the structures of whole modules reported, most of which have been enabled through the recent advances in cryogenic electron microscopy technology. In this review, we have summarized the recent advances in the structural elucidation of whole modules.  相似文献   

5.
Hydrogen sulfide and related/derived persulfides (RSnH, RSSnR, n > 1) have been the subject of recent research interest because of their reported physiological signaling roles. In spite of their described actions, the chemical/biochemical mechanisms of activity have not been established. From a chemical perspective, it is likely that metals and metalloproteins are possible biological targets for the actions of these species. Thus, the chemical biology of hydrogen sulfide and persulfides with metals and metalloproteins will be discussed as a prelude to future speculation regarding their physiological function and utility.  相似文献   

6.
7.
Amyloid diseases are characterized by the aggregation of various proteins to form insoluble β-sheet–rich fibrils leading to cell death. Vibrational spectroscopies have emerged as attractive methods to study this process because of the rich structural information that can be extracted without large, perturbative probes. Importantly, specific vibrations such as the amide-I band directly report on secondary structure changes, which are key features of amyloid formation. Beyond intrinsic vibrations, the incorporation of unnatural vibrational probes can improve sensitivity for secondary structure determination (e.g. isotopic labeling), can provide residue-specific information of the surrounding polarity (e.g. unnatural amino acid), and are translatable into cellular studies. Here, we review the latest studies that have leveraged tools from chemical biology for the incorporation of novel vibrational probes into amyloidogenic proteins for both mechanistic and cellular studies.  相似文献   

8.
Structural plasticity and dynamic protein–protein interactions are critical determinants of protein function within living systems. Quantitative chemical cross-linking with mass spectrometry (qXL-MS) is an emerging technology able to provide information on changes in protein conformations and interactions. Importantly, qXL-MS is applicable to complex biological systems, including living cells and tissues, thereby providing insights into proteins within their native environments. Here, we present an overview of recent technological developments and applications involving qXL-MS, including design and synthesis of isotope-labeled cross-linkers, development of new liquid chromatography–MS methodologies, and computational developments enabling interpretation of the data.  相似文献   

9.
Development of the methods to examine the molecular targets of biologically active compounds is one of the most important subjects in experimental biology/biochemistry. To evaluate the usability of the (7-nitro-2,1,3-benzoxadiazole)-thioether (NBD-S) probe for this purpose, bioactive chemical probe (1) as the cellulose biosynthesis (CB) inhibitor was synthesized and tested. As a result, a variety of fluorescently-labeled particles and organelles were found in the columella root cap cells of radish plants. Of note, well-defined cellular organelles were clearly recognized in the detaching root cap cells (border-like cells). These results imply that the bioactive NBD-S chemical probe could be a valuable direct-labeling reagent. Analysis of these fluorescent substances would be helpful in providing new information on defined molecular targets and events.  相似文献   

10.
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses mediates host cell entry and is S-acylated on multiple phylogenetically conserved cysteine residues. Multiple protein acyltransferase enzymes have been reported to post-translationally modify spike proteins; however, strategies to exploit this modification are lacking. Using resin-assisted capture MS, we demonstrate that the spike protein is S-acylated in SARS-CoV-2-infected human and monkey epithelial cells. We further show that increased abundance of the acyltransferase ZDHHC5 associates with increased S-acylation of the spike protein, whereas ZDHHC5 knockout cells had a 40% reduction in the incorporation of an alkynyl-palmitate using click chemistry detection. We also found that the S-acylation of the spike protein is not limited to palmitate, as clickable versions of myristate and stearate were also labelled the protein. Yet, we observed that ZDHHC5 was only modified when incubated with alkyne-palmitate, suggesting it has specificity for this acyl-CoA, and that other ZDHHC enzymes may use additional fatty acids to modify the spike protein. Since multiple ZDHHC isoforms may modify the spike protein, we also examined the ability of the FASN inhibitor TVB-3166 to prevent S-acylation of the spike proteins of SARS-CoV-2 and human CoV-229E. We show that treating cells with TVB-3166 inhibited S-acylation of expressed spike proteins and attenuated the ability of SARS-CoV-2 and human CoV-229E to spread in vitro. Our findings further substantiate the necessity of CoV spike protein S-acylation and demonstrate that de novo fatty acid synthesis is critical for the proper S-acylation of the spike protein.  相似文献   

11.
UDP-glucose 4-epimerase (GalE) catalyzes the interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) and/or the interconversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) in sugar metabolism. GalEs belong to the short-chain dehydrogenase/reductase superfamily, use a conserved ‘transient keto intermediate’ mechanism and have variable substrate specificity. GalEs have been classified into three groups based on substrate specificity: group 1 prefers UDP-Glc/Gal, group 3 prefers UDP-GlcNAc/GalNAc, and group 2 has comparable activities for both types of the substrates. The phylogenetic relationship and structural basis for the specificities of GalEs revealed possible molecular evolution of UDP-hexose 4-epimerases in various organisms. Based on the recent advances in studies on GalEs and related enzymes, an updated view of their evolutional diversification is presented.  相似文献   

12.
Liquid–liquid phase separation (LLPS) and phase transitions (PT) of proteins, which include the formation of gel- and solid-like species, have been characterized as physical processes related to the pathology of conformational diseases. Nucleic acid (NA)-binding proteins related to neurodegenerative disorders and cancer were shown by us and others to experience PT modulated by different NAs. Herein, we discuss recent work on phase separation and phase transitions of two amyloidogenic proteins, i.e. the prion protein (PrP) and p53, which undergo conformational changes and aggregate upon NA interaction. The role of different NAs in these processes is discussed to shed light on the relevance of PSs and PTs for both the functional and pathological roles of these mammalian proteins.  相似文献   

13.
Methylglyoxal (MG) is a metabolite derived from glycolysis whose levels in the blood and tissues of patients with diabetes are higher than those of healthy individuals, suggesting that MG is associated with the development of diabetic complications. However, it remains unknown whether high levels of MG are a cause or consequence of diabetes. Here, we show that MG negatively affects the expression of uncoupling protein 1 (UCP1), which is involved in thermogenesis and the regulation of systemic metabolism. Decreased Ucp1 expression is associated with obesity and type 2 diabetes. We found that MG attenuated the increase in Ucp1 expression following treatment with isoproterenol in beige adipocytes. However, MG did not affect protein kinase A signaling, the core coordinator of isoproterenol-induced Ucp1 expression. Instead, MG activated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases. We found that JNK inhibition, but not p38, recovered isoproterenol-stimulated Ucp1 expression under MG treatment. Altogether, these results suggest an inhibitory role of MG on the thermogenic function of beige adipocytes through the JNK signaling pathway.  相似文献   

14.
The clathrin adaptor protein complex-1 (AP-1) is a central player in cell physiology and human health. It is best known for its role in linking clathrin to its cargo at the trans-Golgi network and endosomes. It participates in traffic important for the correct function of a large number of organelles, including the trans-Golgi network, endosomes, lysosomes, lysosome-related organelles, and plasma membrane. Although it was one of the first clathrin adaptors identified, new discoveries about cargo and pathways that depend on AP-1 continue to emerge. This review summarizes new research into AP-1 that further illuminates its roles in the traffic of plasma membrane proteins, in maintaining TGN content, and in human disease.  相似文献   

15.
16.
Serum amyloid A (SAA) is predictive of CVD in humans and causes atherosclerosis in mice. SAA has many proatherogenic effects in vitro. However, HDL, the major carrier of SAA in the circulation, masks these effects. The remodeling of HDL by cholesteryl ester transfer protein (CETP) liberates SAA restoring its proinflammatory activity. Here, we investigated whether deficiency of SAA suppresses the previously described proatherogenic effect of CETP. ApoE−/− mice and apoE−/− mice deficient in the three acute-phase isoforms of SAA (SAA1.1, SAA2.1, and SAA3; “apoE−/− SAA-TKO”) with and without adeno-associated virus-mediated expression of CETP were studied. There was no effect of CETP expression or SAA genotype on plasma lipids or inflammatory markers. Atherosclerotic lesion area in the aortic arch of apoE−/− mice was 5.9 ± 1.2%; CETP expression significantly increased atherosclerosis in apoE−/− mice (13.1 ± 2.2%). However, atherosclerotic lesion area in the aortic arch of apoE−/− SAA-TKO mice (5.1 ± 1.1%) was not significantly increased by CETP expression (6.2 ± 0.9%). The increased atherosclerosis in apoE−/− mice expressing CETP was associated with markedly increased SAA immunostaining in aortic root sections. Thus, SAA augments the atherogenic effects of CETP, which suggests that inhibiting CETP may be of particular benefit in patients with high SAA.  相似文献   

17.
Therapeutic proteins alleviate disease pathology by supplementing missing or defective native proteins, sequestering superfluous proteins, or by acting through designed non-natural mechanisms. Although therapeutic proteins often have the same amino acid sequence as their native counterpart, their maturation paths from expression to the site of physiological activity are inherently different, and optimizing protein sequences for properties that 100s of millions of years of evolution did not need to address presents an opportunity to develop better biological treatments. Because therapeutic proteins are inherently non-natural entities, optimization for their desired function should be considered analogous to that of small molecule drug candidates, which are optimized through expansive combinatorial variation by the medicinal chemist. Here, we review recent successes and challenges of protein engineering for optimized therapeutic efficacy.  相似文献   

18.
  1. Download : Download high-res image (100KB)
  2. Download : Download full-size image
  相似文献   

19.
Sortilin is a post-Golgi trafficking receptor homologous to the yeast vacuolar protein sorting receptor 10 (VPS10). The VPS10 motif on sortilin is a 10-bladed β-propeller structure capable of binding more than 50 proteins, covering a wide range of biological functions including lipid and lipoprotein metabolism, neuronal growth and death, inflammation, and lysosomal degradation. Sortilin has a complex cellular trafficking itinerary, where it functions as a receptor in the trans-Golgi network, endosomes, secretory vesicles, multivesicular bodies, and at the cell surface. In addition, sortilin is associated with hypercholesterolemia, Alzheimer’s disease, prion diseases, Parkinson’s disease, and inflammation syndromes. The 1p13.3 locus containing SORT1, the gene encoding sortilin, carries the strongest association with LDL-C of all loci in human genome-wide association studies. However, the mechanism by which sortilin influences LDL-C is unclear. Here, we review the role sortilin plays in cardiovascular and metabolic diseases and describe in detail the large and often contradictory literature on the role of sortilin in the regulation of LDL-C levels.  相似文献   

20.
Bruton's tyrosine kinase (BTK) and Janus kinase 3 (JAK3) are very promising targets for hematological malignancies and autoimmune diseases. In recent years, a few compounds have been approved as a marketed medicine, and several are undergoing clinical trials. By recombining the dominant backbone of known active compounds, constructing a foused library, and screening a broad panel of kinases, we found a class of compounds with dual activities of anti-BTK and anti-JAK3. Some of the compounds have shown 10-folds more active in the enzyme and cell-based assays than a known active compound. Furthermore, liver microsome stability experiments show that these compounds have better stability than ibrutinib. These explorations offered new clues to discover benzoxaborole fragment and pyrimidine scaffold as more effective BTK and JAK3 dual inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号