首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tree-ring (TR) chronologies are important instruments for the dating and provenance analyses of historical wood, as well as for climate reconstructions. However, radial growth patterns differ between tree species and growing environments. Therefore chronologies are more or less specific for a certain tree species, region and elevation. Chronologies that are restricted to more confined regions could extend the possibilities for dating, dendroprovenancing and regional climate reconstructions.In Southern Germany, the transport of wood by raft – for the supply of towns and cities with timber – has been documented since early mediaeval times. Consequently, not only local timber from the lowlands was used for construction purposes, but also alpine wood originating from sites up to the timberline. Since pronounced altitudinal gradients cause distinct climate differences, elevation-specific chronologies have the potential to improve dating precision in this region.In this contribution, a model is presented and applied in order to separate elevation-specific provenances of Norway spruce (Picea abies L. Karst) and Silver fir (Abies alba Mill.) in Southern Germany. The model is derived from more than 2100 living TR series originating from sites between 200 and 1710 m above see level. Absolute (mean, maximum) ring-width values and the variation of ring-widths (mean sensitivity) show distinct correlations with their altitudinal provenance, reflecting improvements in growth conditions as well as the increase of their yearly variation from high over intermediate to low elevation sites. Mean ring widths and mean sensitivity values were used as independent parameters in an exponential regression model which exhibits a coefficient of determination (r2) of 77% for spruce and 74% for fir. The prediction accuracy of the elevation amounts ±300 m for spruce and ±200 m for fir within the 95% confidence interval.The model was used to estimate the elevation origin of around 5000 historical spruce and 800 historical fir series from buildings located in Southern Germany. The historical TR series covering the AD 990–1800 period were allocated by the model to elevations between 120 and 2090 m. In a second step the individual TR series were combined to elevation-specific chronologies representing low, intermediate, and high altitudinal belts. The chronologies show distinct differences among the altitudinal belts in terms of signatures and pointer years, especially for spruce. Elevation-specific chronologies are assumed to amplify the dating possibilities of ancient timber, to provide valuable evidences for the origin of historical wood, and to offer more specific proxy data for regional climate reconstructions.  相似文献   

2.
This paper explores the temporal stability of growth/climate relationships in ring-width chronologies of Norway spruce [ Picea abies (L.) Karst] and silver fir ( Abies alba Mill) in the Lower Bavarian Forest region in southern Germany. These chronologies were compiled, using both historic and living tree-ring data, with the main aim of developing a dendroclimatic reconstruction for the region covering the last 500 years. Moving window correlation analysis shows that prior to the twentieth century, both species co-vary in a similar way (1480–1899 mean r =0.66). There is no significant correlation between the species chronologies since ca. 1930, which partly reflects anomalous growth trends in the fir chronology since ca. 1960. Multiple regression analysis was utilised to assess the ability of both species chronologies to model March–August precipitation. The precipitation signal of the spruce data was found to be both stronger than the fir data (1872–1930 calibration: r 2=0.45 vs 0.25) and more time stable. After ca. 1930, the fir chronology loses it ability to model March–August precipitation until there is no climate signal at all in the fir data in recent decades. The spruce data also express a later weakening in their climate signal in the mid 1970s. We present compelling evidence indicating that the anomalous trends observed in the fir data, since the mid 1960s, appear to be predominantly related to local SO2 emissions from power plants and refineries. It is also likely that this local anthropogenic forcing is the cause of the weakening of the climate signal in the spruce data since the mid 1970s. The conclusions from this study are: (1) The fir tree-ring data cannot be used for traditional dendroclimatic calibration, although prior to the twentieth century the decadal variability in the fir data is very similar to spruce and so these data could be used to extend potential reconstructions in the future; (2) The recent decline and recovery event in the fir data appears to be unique to the twentieth century and is not part of a natural episodic phenomenon; (3) Traditional dendroclimatic calibration of March–August precipitation will be made using solely the spruce ring-width data. However, due to SO2 forcing in recent decades, the calibration period will be shortened to the 1871–1978 period.  相似文献   

3.
Few Southern Hemisphere tree-ring chronologies exceed 1000 years in length. We present a ca. 1700 years of indexed values for the long-lived conifer Athrotaxis selaginoides at Cradle Mt in southeastern Australia and compare it with the only other published millennial-plus length tree-ring chronology for Australia: the nearby Mt Read Lagarostrobos franklinii. We use simple correlation function and pointer year analyses to compare the climate responses of the two species (temperature, precipitation and growing degree days). Both chronologies show accelerated growth at their modern ends, but this growth acceleration is not synchronous, beginning approximately a quarter of a century earlier at the Cradle Mt site. This discrepancy may highlight the relevance of chronology composition and/or physiological differences in the species. Although the seasonality of the climatic responses of the two species is similar, that of A. selaginoides is generally weaker than that of L. franklinii. Somewhat paradoxically, the only pointer years in common between the chronologies are 1898 and 1908 CE. The periods from 600 to 900 CE and ∼1200–1450 CE are conspicuous for their absence of positive pointer years while no negative pointer years occur for either site from ∼1200–1350 CE. It is possible that differing patterns of pointer years can be partially explained by a peak in establishment from ∼1150–1850 CE at the Mt Read L. franklinii site compared to continuous establishment at Cradle Mt. Although statistically significant and time-stable climate responses for the A. selaginoides chronology are too weak to base a single-chronology climate reconstruction on, the long chronology will likely make an important contribution to future multi-proxy temperature reconstructions for southeastern Australia.  相似文献   

4.
Compared to the alpine regions of Austria, the eastern part of the country is overall warmer and drier with some tree species growing at the dry limit within their ecological range. This suggests that tree rings may be a valuable proxy for hydroclimatic variability. In this study, we develop ring-width, earlywood-width and latewood-width chronologies obtained from drought sensitive living trees and historical timber from one of the driest and warmest regions of Austria, the Weinviertel. For this, samples of four different tree species − fir (Abies alba Mill.), spruce (Picea abies (L.) Karst.), oak (Quercus petraea Liebl., Q. robur L., Q. cerris L.), and pine (Pinus sylvestris L., P. nigra Arnold) were collected from 88 sites (23 forest stands and 65 historical constructions). 1589 samples (oak: 592 samples, pine: 577, spruce: 212, fir: 208) were dated. Dendro-provenancing was required to ensure that only regional material has entered the chronologies. According to the analyses, historical pine and oak wood were nearly 100% regional, while spruce and fir wood were imported to a great extent with only 44% spruce and 35% fir confirmed to be regional. Because site conditions of historical wood samples are unknown but can have a significant influence on tree growth, changes to site replication over time were important in the assessment of chronology reliability. We also controlled for potential artificial increases in sample depth when more than one construction element is made from a single trunk.We assessed the pine (1584-2011 AD) and oak (1244-2011 AD) chronologies’ potential for reconstructing past hydroclimatic variability by means of response functions in a 17-months window from previous June to current October with climate data from three weather stations (Vienna, Retz, Brno) from 1897 to 2010 AD. The highest seasonal response coefficients are for oak and pine ring width (∼0.43) with respect to aggregated March to July precipitation totals and Thornthwaite climatic water balance. These chronologies reveal a high potential for estimating past changes in regional-scale moisture availability during the earlier growing season.  相似文献   

5.
Growth/climate response shift in a long subalpine spruce chronology   总被引:10,自引:3,他引:7  
A new Norway spruce (Picea abies (L.) Karst.) tree-ring width chronology based on living and historic wood spanning the AD 1108–2003 period is developed. This composite record combines 208 high elevation samples from 3 Swiss subalpine valleys, i.e., Lötschental, Goms, and Engadine. To retain potential high- to low-frequency information in this dataset, individual spline detrending and the regional curve standardization are applied. For comparison, 22 high elevation and 6 low-elevation instrumental station records covering the greater Alpine area are used. Previous year August–September precipitation and current year May–July temperatures control spruce ring width back to ~1930. Decreasing (increasing) moving correlations with monthly mean temperatures (precipitation) indicate instable growth/climate response during the 1760–2002 period. Crucial June–August temperatures before ~1900 shift towards May-July temperature plus August precipitation sensitivity after ~1900. Numerous of comparable subalpine spruce chronologies confirm increased late-summer drought stress, coincidently with the recent warming trend. Comparison with regional-, and large-scale millennial-long temperature reconstructions reveal significant similarities prior to ~1900 (1300–1900 mean r=0.51); however, this study does not fully capture the commonly reported 20th century warming (1900–1980 mean r=?0.17). Due to instable growth/climate response of the new spruce chronology, further dendroclimatic reconstruction is not performed.  相似文献   

6.
Variations in mountain snowpack in the western Canadian Cordillera have widespread and important impacts on ecosystems, environmental processes and socio-economic activities (e.g. water availability downstream). Historical records of snowpack generally span only the latter half of the 20th century offering a limited perspective on the causes and uniqueness of recently observed changes across the region. This paper explores the potential utility of a network of low elevation Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) tree ring-width chronologies to reconstruct past snowpack variations. Correlation coefficients between the tree-ring chronologies and a set of snow water equivalent (SWE) records are calculated and mapped. Separate analyses were carried out for total ring- width (TRW) and partial-ring measurements (earlywood and latewood; EW and LW). A set of Adjusted LW chronologies was also developed; in these, the relationship between LW and the preceding EW width has been removed. The ring-width chronologies exhibit moderately strong relationships with SWE records from the western Canadian Cordillera and these relationships vary in sign across the region. Distinctive regional groups are identified where chronologies exhibit same-sign correlations with SWE, in possible accordance with the elevation and characteristics of the tree-ring chronology sample sites. The EW chronologies correlate more strongly and consistently with SWE records in regions where the growth relationship with SWE is negative. The LW chronologies, and particularly the Adjusted LW chronologies, exhibit a greater number of positive correlations with the set of SWE records. Collectively these results offer valuable insights for developing a targeted sampling and/or reconstruction strategy that can exploit these different relationships with SWE to generate more robust estimates of pre-instrumental snowpack for the region.  相似文献   

7.
The recent warming trend, and associated shifts in growing season length, challenge the principle of uniformitarianism, i.e., that current relations are persistent over time, and complicates the uncritical inferences of past climate from tree-ring data. Here we conduct a comparison between tree-ring width chronologies of Pinus sylvestris L. (Scots pine), Picea abies (L.) Karst. (Norway spruce) and Betula pubescens Ehrh. (Downy birch) and phenological observations (budburst and leaf senescence) of Fagus sylvatica L. (European beech), Quercus robur L. (European oak), Betula sp. (Birch), Norway spruce and Scots pine) in Sweden to assess to what extent the tree-ring width–temperature relationship and the timing of phenological phases are affected by increased temperature. Daily meteorological observations confirm a prolongation of the thermal growing season, most consistently observed as an earlier onset of around 1–2 weeks since the beginning of the 20th century. Observations of budburst closely mimic this pattern, with budburst of the deciduous trees occurring 1–2.5 weeks earlier. In contrast to the changes seen in phenology and observational temperature data, the tree-ring width–temperature relationships remain surprisingly stable throughout the 20th century. Norway spruce, Scots pine and Downy birch all show consistently significant correlations with at least one 30 day-long window of temperature starting in late June–early July season. Norway spruce displays the largest degree of stability, with a consistent 60 day-long temperature window with significant correlation starting around Julian calendar day 150. Thus, our results suggest that the principle of uniformitarianism is not violated during the period covered by modern meteorological observations. Further research is needed to determine at what thresholds the temperature sensitivity of these species may alter or deteriorate as a consequence of the ongoing climate change.  相似文献   

8.
《Dendrochronologia》2014,32(2):120-126
The early settlement history of Canada's National Capital Region, including Ottawa (Ontario) and Gatineau (Québec), was shaped in large part by the towering eastern white pine (Pinus strobus) forests that once covered the Ottawa Valley and fuelled a lucrative lumber export industry spanning the 19th and much of the 20th century. Some of the first dwellings and farmsteads of this era are still standing and serve as reminders of this history. A crucial piece of information in the assessment of a structure's heritage value is its date of construction. Unfortunately, this information is not always known and is approximated based on construction styles and other sources of information. In this study, dendroarchaeology methods are applied to constrain the construction dates of six historic structures in the National Capital Region of 19th century vintage. A multi-century (AD 1670–2009) eastern white pine ring-width chronology was developed for dating the study structures using cross sections from sunken logs recovered from the Ottawa River and cores from live trees from the Petawawa Research Forest. The tree-ring inferred construction dates for the six structures ranged from 1830 to 1878. For most structures, historical records about the property or first inhabitants were available to corroborate the results. The ring-width chronologies of the individual structures were well correlated with the regional chronology (ravg = 0.63, p  0.01), and this regional coherence clearly demonstrates the value of tree-rings for heritage structure assessments and reconstructing the settlement history of this region.  相似文献   

9.
Aotearoa New Zealand has a rich cultural heritage but dating wooden objects using classic dendrochronology is challenging due to a paucity of master tree-ring width chronologies for species commonly identified in the archaeological record. This paper explores the potential for using a stable isotopic approach to dendrochronology for matai (Prumnopitys taxifolia (D.Don) Laub.). A total of six annual stable oxygen isotope (δ18O) series for matai growing in the Pureora Forest Reserve, were analysed and their oxygen isotopes found to exhibit a level of coherence that enabled cross-dating. A provisional chronology covering the period 1930–2018 CE was developed and tested against a sample of matai from the Kauaeranga Valley (200 km to the north of Pureora) and a sample of miro (Prumnopitys ferruginea (D.Don) Laub.). Miro is another species common in the cultural archive, but also difficult to date using ring-width dendrochronology. Both the Kaueranga matai and Pureora miro samples cross matched against the site chronology at the correct position, but with weaker dating statistics (Student’s t: 4.26 and 4.11 respectively) compared to the results obtained for two (non-2019) sampled Pureora matai analysed in this study (Student's t: 6.80 and 5.66). These results nevertheless demonstrate the presence of a regional-scale dating signal which may be developed for future use as a precision dating tool.  相似文献   

10.
Anthropogenic and climatic stressors have affected the forests of northern Pakistan in recent decades. Several studies have been conducted to understand forest growth and its relation to the changing climate in this region, but more work needs to be done to understand this complex environment. In this study, we have collected tree core samples of three conifer species (Pinus wallichiana, Picea smithiana, and Abies pindrow) from three different sites in northern Pakistan to understand their radial growth pattern with the goal of finding a relationship between ring-width and climatic parameters (temperature, precipitation, and drought). A 610-year (AD 1406–2015), a 538-year (AD 1478–2015), and a 306-year (AD 1710–2015) long tree-ring width chronology of Pinus wallichiana, Picea smithiana, and Abies pindrow were developed, respectively, using living trees. The ring-width chronologies of these three species showed a strong positive link with the self-calibrated Palmer Drought Severity Index (scPDSI) rather than precipitation or temperature alone, indicating that soil moisture is the primary limiting climatic factor for the growth of these species in the sampling locations. The chronologies of Pinus wallichiana and Picea smithiana exhibited growth suppressions during AD 1570–1610 and the second half of 17th century while their growth was heightened from AD 1540–1560. We have found the lowest growth in Abies pindrow and Picea smithiana from AD 1900–1920, suggesting dry conditions. All three chronologies have exhibited the most rapid increase in growth during the recent decades, suggesting that this region is experiencing climate change with a strong trend towards wetter conditions.  相似文献   

11.

Key message

Growth ring study of Pinus kesiya (khasi pine) growing in sub-tropical forest in Manipur, northeast India was performed to understand climate signatures in ring widths and intra-annual density fluctuations.

Abstract

The growth rings in khasi pine (Pinus kesiya Royle ex Gordon) growing in sub-tropical Reserve Forest in Imphal, Manipur, northeast India were analysed to understand environmental signals present in ring-width series and intra-annual density fluctuations (IADFs). For this the growth ring sequences in increment core samples collected from 28 trees were precisely dated and a ring-width chronology spanning AD 1958–2014 developed. The correlation analyses between ring-width chronology and weather data of Imphal revealed that a cool April–May–June favour tree growth. The wood anatomical features of growth rings revealed the occurrence of IADFs in early- and latewoods. The IADFs in earlywood were found to be associated with reduced precipitation in months from April to July. However, the wetter conditions in late growing season, especially August/September triggered the formation of IADFs in latewood. Our findings endorse that the IADF chronologies of khasi pine could emerge as an important proxy of summer monsoon rainfall in long-term perspective in data scarce region of northeast India.
  相似文献   

12.
We present a network of thirteen annual ring-width chronologies from high elevation whitebark pine (Pinus albicaulis Engelm.) sites in the western Canadian Cordillera in order to assess the dendroclimatic potential of this long-lived tree species. The temperature signal within the chronologies is complex and strongly influenced by diverging trends in the summer temperature and ring-width records from across the region. A first differences transformation of the tree-ring and temperature records illustrates a loss of frequency coherence in growth response to summer temperatures following reduced radial growth in the 1950s. Prior to reduced growth, we note a positive association with summer temperatures for both first differenced (rd = 0.60) and traditional (r = 0.50) records. Following reduced growth, the association at first differences is maintained (rd = 0.49) whereas there is a change in the lower frequency component of tree growth response to summer temperatures (r = ?0.34). We suggest the cause of this reduced temperature sensitivity is related to the interaction between diurnal temperature and cloud cover patterns, the hydrological regime of snowpack, and site conditions which have been amenable to the initiation of moisture stress during the latter half of the 20th century. Reduced radial growth is coincident with the arrival of white pine blister rust (Cronatium ribicola J.C. Fisch. ex Raben) into the study region which suggests this infestation may be related to the observed reduction in radial growth. Whitebark pine has considerable potential for the field of dendroclimatology. Unfortunately, the decline of the species due to the combined effects of climate change, white pine blister rust, mountain pine beetle (Dendroctonus ponderosae Hopk.), and forest fire exclusion practices indicate this potential may remain unfulfilled.  相似文献   

13.
We utilize a large dendrochronological dataset for Sequoia sempervirens of 1.29 million rings from 5952 series for 278 trees to generate location and regional ring-width chronologies and to investigate constraints on crossdating. Increment cores were collected at regular height intervals along the trunk via free-hanging ropes with some terrestrial deadwood sampled. Inter-annual chronologies span 86–1687 yr for 47 locations in primary and secondary forests across the native Sequoia range. Shared signals based on declining strength of paired correlations with distance, strong correlations within regions, and groupings of principal components guide chronology creation for northern (1032 yr, 108 trees) and southern (865 yr, 52 trees) regions and four sub-regions. The suite of chronologies provides location-specific references as well as more robust regional indices that reflect distinct signals along a climatically-integrative latitudinal gradient. Secondary forests date to near completion, and we use a subset of data to assess crossdating for trees in primary forests. Among tree and landscape attributes, old age is the most important predictor of undated and missing rings, and undated rings align with periods of reduced biomass production distributed across centuries-long lifespans. Crossdating metrics vary by height above the ground with breast height (BH) and 10 m samples having more undated rings than upper samples. At 10 m, samples have the most missing rings. Buttressing affects the lower trunk as BH series have higher ring widths and lower interseries correlations compared to those up to 70 m. Whole-trunk sampling maximizes success for crossdating old, structurally-complex Sequoia and enables dating of crown damage and assessment of biomass dynamics related to environmental change. Reference chronologies, regional assessments, and crossdating insights collectively guide future study of Sequoia for applications including climatology, fire ecology, and seismology.  相似文献   

14.
Few annually dated stable isotope records exist across Oceania. Stable carbon and oxygen isotope ratios have the potential to enhance climate reconstructions currently reliant on tree ring width chronologies. The purpose of this study is to explore the sources of variability in a stable oxygen isotope chronology derived from A. selaginoides from Mount Read, Tasmania. This high elevation site receives abundant rainfall throughout the year and is ∼130 km from the Global Network of Isotopes in Precipitation (GNIP) site at Cape Grim. We crossdated 10 new tree core samples against an existing ring width chronology (954–2011 CE) and analyzed the δ18O from the individual rings for the period 1960–2018. Using high resolution (0.25 degrees) climate data and ECMWF ERA5 reanalysis data, we disentangled the effects of local climate and source region on the isotopic signatures recorded in the annual rings. In addition, we used HYSPLIT backward trajectory analysis to characterize the source region of precipitation to Mount Read and whether the source region has influence over the δ18OTR series. Median δ18OTR (n = 10) is correlated with local temperature and vapor pressure deficit in the early growing season. In addition, spatial correlations reveal that median δ18OTR is positively correlated with temperature and negatively correlated with precipitation in the source region. However, measurements of δ18OTR exhibit high inter-tree variation, particularly between 1960 and 1990. Our results indicate that this δ18OTR proxy may provide additional information about past moisture conditions during the growing season, potentially contributing to more robust reconstructions of the Southern Hemisphere climate dynamics; however, additional sampling may be necessary to resolve inter-tree variation in δ18OTR.  相似文献   

15.
Growth divergence – i.e. the expression of divergent growth trends of neighboring trees – has certain implications for dendrochronological research, for instance in the context of climate reconstructions but also in terms of estimating net ecosystem productivity. Thus, understanding the underlying mechanisms is essential to extend our fundamental dendroecological knowledge. In this context, the Picea genus plays an important role since several of its species were reported to exhibit growth divergence. Here, we investigate a well sampled Norway spruce (Picea abies (L.) Karst) data set for growth divergence comprising ring-width and Blue Intensity measurements from seven sites on Babia Góra Mountain, at the border between Poland and Slovakia. By means of Principal Component Gradient Analysis, inter-series correlations, and climate growth relationships, we are able to show that I) Norway spruce on Babia Góra expressed growth divergence since the 1970s, II) the definition of groups increased the strength of population signals and the stability of climate-growth relationships, and III) Blue Intensity appeared as a more robust proxy for environmental conditions. We discuss soil heterogeneity, genetics, and air pollution as possible underlying mechanisms, thereby indicating further research avenues to obtain a better understanding of growth divergence.  相似文献   

16.
We examine the climate significance in tree-ring chronologies retrieved from Sabina tibetica Kom. (Tibetan juniper) at two sites ranging in elevation from 4124 to 4693 m above sea level (a.s.l.) in the Namling region, south Tibet. The study region is under the control of semi-arid plateau temperate climate. The samples were grouped into high- and low-elevation classes and standard ring-width chronologies for both classes were developed. Statistical analysis revealed a decreasing growth rate yet increasing chronology reliability with increasing elevation. Overall, correlation analyses showed that radial growth in S. tibetica at the study sites was controlled by similar climatic factors, regardless of elevation; these factors comprised early winter (November) and early summer (May–June) temperatures as well as annual precipitation (July–June). Slight differences in the correlation between tree growth along the elevation gradient and climate variables were examined. The correlations with early winter temperature varied from significantly positive at the low-elevation site to weakly positive at the high-elevation site, whereas the correlations between radial growth and early summer temperature increased from weakly negative at the low-elevation sites to strongly negative at the high-elevation sites. The abundant precipitation through the year may have masked variations in tree growth on different elevation aspects. Our results will aid future dendroclimatological studies of Namling tree rings in south Tibet and demonstrate the potential of S. tibetica Kom. for improving our understanding of environmental impacts on tree growth.  相似文献   

17.
Tree core samples of larch (Larix sibirica Ledeb.), spruce (Picea obovata Ledeb.) and pine (Pinus sibirica Du-Tour.) from the northern taiga of West Siberia were collected to assess their potential for summer temperature reconstructions in the Ob River region. Bootstrapped response functions showed that annual growth was mainly influenced by May to June temperatures in pine and by June to July temperatures in spruce and larch. Spruce and pine chronologies showed high positive correlations with previous October temperature. June–July temperatures were reconstructed based on spruce (1795–1996) and larch (1615–1999) tree ring chronologies. The pine chronology could not be used for a reliable temperature reconstruction, due to low values of explained May–June temperature variance (11–15%) but the species has a high potential to help clarify the May–June and October climatic influence on ring width observed in all three species. We explained the effect of the early vegetation period (May–July) and the differences in the temperature signals between spruce and larch tree ring chronologies with the influence of previous September and October temperature on tree growth with the warming effect of the Ob River and differences of the species’ photosynthetic possibilities and the activity of chloroplasts and bud meristem tissues.  相似文献   

18.
Clanwilliam cedar (Widdringtonia cedarbergensis; WICE), a long-lived conifer with distinct tree rings in Cape Province, South Africa, has potential to provide a unique high-resolution climate proxy for southern Africa. However, the climate signal in WICE tree-ring width (TRW) is weak and the dendroclimatic potential of other WICE tree-ring parameters therefore needs to be explored. Here, we investigate the climatic signal in various tree-ring parameters, including TRW, Minimum Density (MND), Maximum Latewood Density (MXD), Maximum Latewood Blue Intensity (MXBI), and stable carbon and oxygen isotopes (δ18O and δ13C) measured in WICE samples collected in 1978. MND was negatively influenced by early spring (October-November) precipitation whereas TRW was positively influenced by spring November-December precipitation. MXD was negatively influenced by autumn (April-May) temperature whereas MXBI was not influenced by temperature. Both MXD and MXBI were negatively influenced by January-March and January-May precipitation respectively. We did not find a significant climate signal in either of the stable isotope time series, which were measured on a limited number of samples. WICE can live to be at least 356 years old and the current TRW chronology extends back to 1564 CE. The development of full-length chronologies of alternative tree-ring parameters, particularly MND, would allow for an annually resolved, multi-century spring precipitation reconstruction for this region in southern Africa, where vulnerability to future climate change is high.  相似文献   

19.
Searching for a robust tree-ring parameter useful for paleoclimatic purposes is one of the most demanding topics in the modern paleoscience. Since Blue Intensity has already expressed itself in different geographical locations all over the world as a possible replacement for maximum density, close attention is paid to investigate features of the inferred signal. The Solovki Islands is a unique location in Northern Russia where two important factors that make this territory attractive for developing a long tree-ring chronology have been met: modern long-living trees and building activities using old trees that were started by monks in the middle of the 16th century. The main goal of the research is to develop pine and spruce chronologies based on tree-ring width (TRW) and delta Blue Intensity (dBI) and to assess the ability of these parameters to be used as climate predictors. As a result, 14 conifer chronologies from 7 sites (4 for pine and 3 for spruce) were developed. The composite pine and spruce chronologies span a period of 474 and 378 years each. Cross-correlation of dBI-based chronologies of both conifers is high (r = up to 0.71 while for TRW-based chronologies it is lower on average (−0.18 to 0.63). Intra-species correlation of TRW chronologies in some cases achieved even negative values (r = −0.18. Discrepancies found between TRW chronologies of pine and spruce could be explained by differences in climatic signals. Response function analysis with monthly temperatures revealed that growth of pine depends on the previous August, while spruce has a temporally stable and strong relation to June temperatures. Compared to TRW, dBI-based chronologies have a high correlation with summer temperatures (r = 0.64 and 0.66 for spruce and pine, respectively). Presented research points out the importance of the response function analysis suggesting that depending on goals of the study several tree-ring parameters could be used, e.g., tree-ring width of spruce responses to June temperatures, while dBI to the whole summer.  相似文献   

20.
Larch budmoth (LBM, Zeiraphera diniana Gn.) outbreaks cause discernable physical alteration of cell growth in tree rings of host subalpine larch (Larix decidua Mill.) in the European Alps. However, it is not clear if these outbreaks also impact isotopic signatures in tree-ring cellulose, thereby masking climatic signals. We compared LBM outbreak events in stable carbon and oxygen isotope chronologies of larch and their corresponding tree-ring widths from two high-elevation sites (1800–2200 m a.s.l.) in the Swiss Alps for the period AD 1900–2004 against isotope data obtained from non-host spruce (Picea abies). At each site, two age classes of tree individuals (150–250 and 450–550 years old) were sampled. Inclusion of the latter age class enabled one chronology to be extended back to AD 1650, and a comparison with long-term monthly resolved temperature data. Within the constraints of this local study, we found that: (1) isotopic ratios in tree rings of larch provide a strong and consistent climatic signal of temperature; (2) at all sites the isotope signatures were not disturbed by LBM outbreaks, as shown, for example, by exceptionally high significant correlations between non-host spruce and host larch chronologies; (3) below-average July to August temperatures and LBM defoliation events have been coupled for more than three centuries. Dampening of Alps-wide LBM cyclicity since the 1980s and the coincidence of recently absent cool summers in the European Alps reinforce the assumption of a strong coherence between summer temperatures and LBM defoliation events. Our results demonstrate that stable isotopes in tree-ring cellulose of larch are an excellent climate proxy enabling the analysis of climate-driven changes of LBM cycles in the long term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号