首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibrosis or scarring of diverse organs and tissues is considered as a pathologic consequence of a chronically altered wound healing response which is tightly linked to inflammation and angiogenesis. The recruitment of immune cells, local proliferation of fibroblasts and the consecutive accumulation of extracellular matrix proteins are common pathophysiological hallmarks of tissue fibrosis, irrespective of the organ involved. Chemokines, a family of chemotactic cytokines, appear to be central mediators of the initiation as well as progression of these biological processes. Traditionally chemokines have only been considered to play a critical role in orchestrating the influx of immune cells to sites of tissue injury. However, within the last years, further aspects of chemokine biology including fibroblast activation and angiogenesis have been deciphered in tissue fibrosis of many different organs. Interestingly, certain chemokines appear to mediate common effects in liver, kidney, lung, and skin of various animal models, while others mediate tissue specific effects. These aspects have to be kept in mind when extrapolating data of animal studies to early human trials. Nevertheless, the further understanding of chemokine effects in tissue fibrosis might be an attractive approach for identifying novel therapeutic targets in chronic organ damage associated with high morbidity and mortality. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

2.
3.
Fibrosis is a major cause of morbidity and mortality worldwide. Currently, therapeutic options for tissue fibrosis are severely limited, and organ transplantation is the only effective treatment for end-stage fibrotic disease. However, demand for donor organs greatly outstrips supply, and so effective anti-fibrotic treatments are urgently required. In recent years, the integrin family of cell adhesion receptors has gained prominence as key regulators of chronic inflammation and fibrosis. Fibrosis models in multiple organs have demonstrated that integrins have profound effects on the fibrotic process. There is now abundant in vivo data demonstrating critical regulatory roles for integrins expressed on different cell types during tissue fibrogenesis. In this review, we will examine the ways in which integrins regulate these processes and discuss how the manipulation of integrins using function blocking antibodies and small molecule inhibitors may have clinical utility in the treatment of patients with a broad range of fibrotic diseases. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

4.
Mechanisms of fibrosis: therapeutic translation for fibrotic disease   总被引:2,自引:0,他引:2  
Fibrosis is a pathological feature of most chronic inflammatory diseases. Fibrosis, or scarring, is defined by the accumulation of excess extracellular matrix components. If highly progressive, the fibrotic process eventually leads to organ malfunction and death. Fibrosis affects nearly every tissue in the body. Here we discuss how key components of the innate and adaptive immune response contribute to the pathogenesis of fibrosis. We also describe how cell-intrinsic changes in important structural cells can perpetuate the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. Finally, we highlight some of the key mechanisms and pathways of fibrosis that are being targeted as potential therapies for a variety of important human diseases.  相似文献   

5.
Fibrosis is characterized by excessive deposition of extracellular matrix components such as collagen in tissues or organs. Fibrosis can develop in the heart, kidneys, liver, skin or any other body organ in response to injury or maladaptive reparative processes, reducing overall function and leading eventually to organ failure. A variety of cellular and molecular signaling mechanisms are involved in the pathogenesis of fibrosis. The renin-angiotensin-aldosterone system (RAAS) interacts with the potent Transforming Growth Factor β (TGFβ) pro-fibrotic pathway to mediate fibrosis in many cell and tissue types. RAAS consists of both classical and alternative pathways, which act to potentiate or antagonize fibrotic signaling mechanisms, respectively. This review provides an overview of recent literature describing the roles of RAAS in the pathogenesis of fibrosis, particularly in the liver, heart, kidney and skin, and with a focus on RAAS interactions with TGFβ signaling. Targeting RAAS to combat fibrosis represents a promising therapeutic approach, particularly given the lack of strategies for treating fibrosis as its own entity, thus animal and clinical studies to examine the impact of natural and synthetic substances to alter RAAS signaling as a means to treat fibrosis are reviewed as well.  相似文献   

6.
Fibrosis is the hallmark of pathologic tissue remodelling in most chronic diseases. Despite advances in our understanding of the mechanisms of fibrosis, it remains uncured. Fibrogenic processes share conserved core cellular and molecular pathways across organs. In this study, we aimed to elucidate shared and organ-specific features of fibrosis using murine precision-cut tissue slices (PCTS) prepared from small intestine, liver and kidneys. PCTS displayed substantial differences in their baseline gene expression profiles: 70% of the extracellular matrix (ECM)-related genes were differentially expressed across the organs. Culture for 48 h induced significant changes in ECM regulation and triggered the onset of fibrogenesis in all PCTS in organ-specific manner. TGFβ signalling was activated during 48 h culture in all PCTS. However, the degree of its involvement varied: both canonical and non-canonical TGFβ pathways were activated in liver and kidney slices, while only canonical, Smad-dependent, cascade was involved in intestinal slices. The treatment with galunisertib blocked the TGFβRI/SMAD2 signalling in all PCTS, but attenuated culture-induced dysregulation of ECM homeostasis and mitigated the onset of fibrogenesis with organ-specificity. In conclusion, regardless the many common features in pathophysiology of organ fibrosis, PCTS displayed diversity in culture-induced responses and in response to the treatment with TGFβRI kinase inhibitor galunisertib, even though it targets a core fibrosis pathway. A clear understanding of the common and organ-specific features of fibrosis is the basis for developing novel antifibrotic therapies.  相似文献   

7.
Fibrosis is defined as an excessive deposition of extracellular matrix (ECM), which leads to the destruction of organ structure and impairment of organ function. Fibrosis occurs not only in kidney but also in lung, liver, heart, and skin. Common pathways of fibrosis are thought to exist. Renal interstitial fibrosis is a complex process that involves multiple molecular signaling and multiple cellular components, in which B cells appear to be one of the emerging important players. B cells may affect fibrosis through cytokine production and through interaction with other cells including fibroblasts, macrophages and T cells. This review summarizes recent research findings of B cells in fibrosis and provides an insight of how the future therapeutics of fibrosis could be developed from a B-cell point of view.  相似文献   

8.
Fibrosis arises as part of a would-healing response that maintains organ structure and integrity following tissue damage but also contributes to a variety of human pathologies such as liver fibrosis. Liver fibrosis is an abnormal response of the liver to persistent injury with the excessive accumulation of collagenous extracellular matrices. Currently there is no effective treatment, and many patients end up with a progressive form of the disease, eventually requiring a liver transplant. The clarification of mechanisms underlying pathogenesis of liver fibrosis and the development of effective therapy are of clinical importance. Experimental animal models, in particular targeted gene knockouts (loss of function) in mice, have become a powerful resource to address the molecular mechanisms or significance of the targeted gene in hepatic functions and diseases. This review will focus on the recent advances in knowledge obtained from genetically engineered mice that provide novel insights into the pathophysiology of liver fibrosis.  相似文献   

9.
Cardiac fibrosis represents an enormous health concern as it is prevalent in nearly every form of cardiovascular disease, the leading cause of death worldwide. Fibrosis is characterized by the activation of fibroblasts into myofibroblasts, a contractile cell type that secretes significant amounts of extracellular matrix components; however, the onset of this condition is also due to persistent inflammation and the cellular responses to a changing mechanical environment. In this review, we provide an overview of the pro-fibrotic, pro-inflammatory, and biomechanical mechanisms that lead to cardiac fibrosis in cardiovascular diseases. We then discuss cadherin-11, an intercellular adhesion protein present on both myofibroblasts and inflammatory cells, as a potential link for all three of the fibrotic mechanisms. Since experimentally blocking cadherin-11 dimerization prevents fibrotic diseases including cardiac fibrosis, understanding how this protein can be targeted for therapeutic use could lead to better treatments for patients with heart disease.  相似文献   

10.
11.
Fibrosis is the endpoint of pathological remodeling involving different expressions of non-coding RNA(ncRNA) including long non-coding RNA growth arrest-specific 5 (lncRNA Gas5). Up to now, many studies have demonstrated that lncRNA Gas5 may play a vital regulatory role in the occurrence and development of organ fibrosis including liver, renal and cardiac fibrosis et al. Furthermore, Gas5 may also serve as a biomarker in diagnostic settings for fibrosis diseases. Structurally, IncRNA Gas5 impacts fibrosis via its distinct structural modules. In response to various external stresses, distinct functional complexes on different parts of Gas5 sequence influence cell proliferation and survival, thus affecting the inflammatory process and deposition of extracellular matrix(ECM) in organ fibrosis. However, there is no consensus on the role of Gas5 in fibrosis and its changed expression under various circumstances. In this review, we present an overview of what is known about the effect of Gas5 in organ fibrosis so far and for the first time explain its mechanism in the progression of fibrosis based on its unique structure.  相似文献   

12.
Cystic fibrosis (CF) lung disease is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene and is characterized by a perpetuated feedback loop of bacterial infection and inflammation. Both intrinsic (CFTR-dependent) and extrinsic (CFTR-independent) mechanisms contribute to the inflammatory phenotype of CF lung disease. Innate immune cells, initially recruited to combat bacterial pathogens, are acting in a dysregulated and non-resolving fashion in CF airways and cause harm to the host by releasing proteases and oxidants. Targeting harmful immune pathways, while preserving protective ones, remains the challenge for the future. This review highlights current concepts of innate immune dysregulation in CF lung disease.This article is part of a Directed Issue entitled: Cystic Fibrosis: From o-mics to cell biology, physiology, and therapeutic advances.  相似文献   

13.
14.
Acute inflammation is a recognised part of normal wound healing. However, when inflammation fails to resolve and a chronic inflammatory response is established this process can become dysregulated resulting in pathological wound repair, accumulation of permanent fibrotic scar tissue at the site of injury and the failure to return the tissue to normal function. Fibrosis can affect any organ including the lung, skin, heart, kidney and liver and it is estimated that 45% of deaths in the western world can now be attributed to diseases where fibrosis plays a major aetiological role. In this review we examine the evidence that cytokines play a vital role in the acute and chronic inflammatory responses that drive fibrosis in injured tissues. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

15.
Fibrosis describes a dysregulated tissue remodelling response to persistent cellular injury and is the final pathological consequence of many chronic diseases that affect the liver, kidney and lung. Nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase (NOX) enzymes produce reactive oxygen species (ROS) as their primary function. ROS derived from NOX1 and NOX4 are key mediators of liver, kidney and lung fibrosis. Setanaxib (GKT137831) is a first-in-class, dual inhibitor of NOX1/4 and is the first NOX inhibitor to progress to clinical trial investigation. The anti-fibrotic effects of setanaxib in liver, kidney and lung fibrosis are supported by multiple lines of pre-clinical evidence. However, despite advances in our understanding, the precise roles of NOX1/4 in fibrosis require further investigation. Additionally, there is a translational gap between the pre-clinical observations of setanaxib to date and the applicability of these to human patients within a clinical setting. This narrative review critically examines the role of NOX1/4 in liver, kidney and lung fibrosis, alongside the available evidence investigating setanaxib as a therapeutic agent in pre-clinical models of disease. We discuss the potential clinical translatability of this pre-clinical evidence, which provides rationale to explore NOX1/4 inhibition by setanaxib across various fibrotic pathologies in clinical trials involving human patients.  相似文献   

16.
Tubulo-interstitial fibrosis is a common, destructive endpoint for a variety of kidney diseases. Fibrosis is well correlated with the loss of kidney function in both humans and rodents. The identification of modulators of fibrosis could provide novel therapeutic approaches to reducing disease progression or severity. Here, we show that the peptidyl-prolyl isomerase Pin1 is an important molecular contributor that facilitates renal fibrosis in a well-characterized animal model. While wild-type mice fed a high phosphate diet (HPD) for 8–12 weeks developed calcium deposition, macrophage infiltration and extracellular matrix (ECM) accumulation in the kidney interstitium, Pin1 null mice showed significantly less pathology. The serum Pi in both WT and KO mice were significantly increased by the HPD, but the serum Ca was slightly decreased in KO compared to WT. In addition, both WT and KO HPD mice had less weight gain but exhibited normal organ mass (kidney, lung, spleen, liver and heart). Unexpectedly, renal function was not initially impaired in either genotype irrespective of the HPD. Our results suggest that diet containing high Pi induces rapid renal fibrosis before a significant impact on renal function and that Pin1 plays an important role in the fibrotic process.  相似文献   

17.
18.
Cystic fibrosis is a lethal genetic disorder characterized by viscous mucus and bacterial colonization of the airways. Airway surface liquid represents a first line of pulmonary defense. Studies in humans and animal models of cystic fibrosis indicate that the pH of airway surface liquid is reduced in the absence of cystic fibrosis transmembrane conductance regulator function. Many aspects of the innate host defense system of the airways are pH sensitive, including antimicrobial peptide/protein activity, the rheological properties of secreted mucins, mucociliary clearance, and the activity of proteases. This review will focus on how changes in airway surface liquid pH may contribute to the host defense defect in cystic fibrosis soon after birth. Understanding how changes in pH impact mucosal immunity may lead to new therapies that can modify the airway surface liquid environment, improve airway defenses, and alter the disease course.This article is part of a Directed Issue entitled: Cystic Fibrosis: From o-mics to cell biology, physiology, and therapeutic advances.  相似文献   

19.
Fibrosis is a highly conserved wound healing response and represents the final common pathway of virtually all chronic inflammatory injuries. Over the past 3 decades detailed analysis of hepatic extracellular matrix synthesis and degradation using approaches incorporating human disease, experimental animal models and cell culture have highlighted the extraordinarily dynamic nature of tissue repair and remodelling in this solid organ. Furthermore emerging studies of fibrosis in other organs demonstrate that basic common mechanisms exist, suggesting that bidirectionality of the fibrotic process may not solely be the preserve of the liver. In this review we will examine the cellular and molecular mechanisms that govern extracellular matrix degradation and fibrosis resolution, and highlight how manipulation of these processes may result in the development of effective anti-fibrotic therapies. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

20.
Chronic injury often triggers maladaptive wound healing responses leading to the development of tissue fibrosis and subsequent organ malfunction. Inflammation is a key component of the wound healing process and promotes the development of organ fibrosis. Here, we review the contribution of Toll-like receptors (TLRs) to wound healing with a particular focus on their role in liver, lung, kidney, skin and myocardial fibrosis. We discuss the role of TLRs on distinct cell populations that participate in the repair process following tissue injury, and the contribution of exogenous and endogenous TLR ligands to the wound healing response. Systemic review of the literature shows that TLRs promote tissue repair and fibrosis in many settings, albeit with profound differences between organs. In particular, TLRs exert a pronounced effect on fibrosis in organs with higher exposure to bacterial TLR ligands, such as the liver. Targeting TLR signaling at the ligand or receptor level may represent a novel strategy for the prevention of maladaptive wound healing and fibrosis in chronically injured organs. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号