首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High dose rate brachytherapy (HDR) using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future.  相似文献   

2.
For the small animal radiation research platform (SARRP) with X-ray beams in the medium energy range (tube operating voltage at 220 kVp), reference dosimetry is based on the AAPM TG-61 recommendations following the in-phantom method. The objective of this study was to evaluate the feasibility of the Fricke solution as a dosimeter to determine the absorbed dose to water. Feasibility studies at this X-ray energy range are not widely available. We evaluated the accuracy, dose linearity and dose rate dependence in a comparison with an NE 2571 Farmer ionization chamber (IC) and measurements in water. The G(Fe3+) factor was calculated from the curve fitting of the chemical yields for two radioactive sources (192Ir and 60Co) and one X-ray system with a tube operating at 150 and 250 kVp. The same methodology was followed for the dependence of the G(Fe3+) value on the energy and the dose agreement assessment for 180 and 200 kVp in the SARRP. The Fricke system exhibits a good linear response over the range of 5–70 Gy and an accuracy better than 2% for a 2 Gy/min dose rate. The dose rate dependence is smaller than 1% for dose rates greater than 1 Gy/min. The dependence of the G(Fe3+) value on the energy is smaller than 0.41%, with dose agreements better than 2%. The feasibility of the dosimeter for measurements at high doses and high dose rates makes it a suitable tool for dosimetric verifications in several preclinical irradiation configurations.  相似文献   

3.
PurposeThe purpose of the present study was to perform an independent calculation of dosimetric parameters associated with a new 192Ir brachytherapy source model, IRAsource.Materials and methodsThe parameters of air kerma strength (AKS), dose rate constant (DRC), geometry function (GF), radial dose function (RDF), as well as two-dimensional (2D) anisotropy function (AF) of IRAsource 192Ir source model were calculated in this study. The MC n-particle extended (MCNPX) code was also employed for simulating high dose rate (HDR), IRAsource and 192Ir source; and formalism was used for calculating dosimetry parameters based on task group number 43 updated report (TG-43 U1).ResultsThe results of this study were consistent with the ones reported about the IRAsource source by Sarabiasl et al. The AKS per 1 mCi activity and the DRC values were also equal to 3.65 cGycm2 h–1 mCi–1 and 1.094 cGyh–1U–1; respectively. The comparison of the results of the DRC and the RDF reported by Sarabiasl et al. also validated the 192Ir IRAsource simulation in this study. Moreover, the AFs of IRAsource source model were in a good agreement with those of Sarabiasl et al. at different distances, which could be attributed to identical geometries.ConclusionIn line with those reported by Sarabiasl et al., the results of this study confirmed the IRAsource 192Ir source for clinical uses. The calculated dosimetric parameters of the IRAsource source could be utilized in clinical practices as input data sets or for validation of treatment planning system calculations.  相似文献   

4.
IntroductionAccurate activity quantification is applied in radiation dosimetry. Planar images are important for quantification of whole-body images, enabling assessment of biodistribution from radionuclide administrations. We evaluated the effect of tumour geometry on quantification accuracy of 123I planar phantom studies, including various tumour sizes, tumour-liver distances and two tumour-background ratios.Methods and materialsAn in-house manufactured abdominal phantom was equipped with a liver, different size cylindrical tumours, and a rod for tumour-liver distance variation. The geometric mean method with scatter and attenuation corrections was used for image processing. Scatter and attenuation corrections were made using the triple energy window scatter correction technique and a printed transmission sheet source, respectively. Region definitions for tumour activity distribution compensated for the partial volume effect (PVE). Activity measured in the dose calibrator served as reference for determining quantification accuracy.ResultsThe smallest tumour had the largest percentage deviation with an average activity underestimation of 34.6 ± 1.2%. Activity values for the largest tumour were overestimated by 3.1 ± 3.0%. PVE compensation improved quantification accuracy for all tumour sizes yielding accuracies of <12.4%. Scatter contribution to the tumours from the liver had minimal effect on quantification accuracy at tumour-liver distances >3 cm. With PVE compensation, increased tumour-background ratio resulted in a percentage increase of up to 26.3%.ConclusionWhen applying relevant corrections for scatter, attenuation and PVE without background activity, quantification accuracy of <13% was obtained. We demonstrated the successful implementation of a practical technique to obtain quantitative information from 123I planar images.  相似文献   

5.
PurposeTo investigate dose perturbations created by high-atomic number (Z) materials in high dose rate (HDR) Iridium-192 (192Ir) treatment region.Methods and materialsA specially designed parallel plate ion chamber with 5 μm thick window was used to measure the dose rates from 192Ir source downstream of the high-Z materials. A Monte Carlo (MC) code was employed to calculate the dose rates in both upstream and downstream of the high-Z interfaces at distances ranging from 0.01 to 2 mm. The dose perturbation factor (DPF) was defined as the ratio of dose rate with and without high-Z material in a water phantom. For verifying the Z dependence, both 0.1- and 1.0 mm-thick sheets of Pb, Au, Ta, Sn, Cu, Fe, Ti and Al were used.Results/conclusionsThe DPF depends on the Z and thickness of layer. At the downstream of a 0.1 mm layer of Pb, Au, Ta, Sn, Cu, Fe, Ti and Al, the DPF by MC were 3.73, 3.42, 3.04, 1.71, 1.04, 0.98, 0.92, or 0.94 respectively. When Z is greater than or equal to 50, the MC and experimental results disagree significantly (>20%) due to large DPF gradient but are in agreement for Z less than or equal to 29. Thin layers of Z greater than or equal to 50 near a 192Ir source in water produce significant dose perturbations (i.e. increases) in the vicinity of the medium-high-Z interfaces and may thus cause local over-dose in 192Ir brachytherapy. Conversely, this effect may potentially be used to deliver locally higher doses to targeted tissue.  相似文献   

6.
Cobalt-60 irradiators and soft X-ray machines are frequently used for research purposes, but the dosimetry is not always performed using the recommended protocols. This may lead to confusing and untrustworthy results within the conducted research. Postal dosimetry systems have already been approved by the IAEA, with thermoluminescence dosimeters (TLD) and optically stimulated luminescence (OSL) as the most commonly used dosimeter systems in these cases. The present study tests the Fricke dosimeter properties as a potential system to be used in postal dosimetry for a project using research irradiators. The Fricke solution was prepared according to the literature, and the linearity and fading tests were performed accordingly. All calculated doses were measured using a NE2571 Farmer ionization chamber as a reference. Doses ranging from 25 to 300 Gy were delivered by a research irradiator, with 150 kV and 22 mA to the Fricke solutions inside polyethylene (PE) bags (4 × 4 × 0.2 cm3). The results compared with the ionization chamber showed a linear response to the range of doses used. Fading tests showed no significant difference for the absorbed doses over 9 days, with a maximum difference of 1.5% found between days 0 and 3. The Fricke dosimeter presented good linearity, for low and high doses, and low uncertainties for the fading even for 9 days after irradiation. These preliminary results are motivating, and as the next step, we intend to design a postal dosimetry system using the PE bags of Fricke solution.  相似文献   

7.
PurposeTo characterize the dose distribution in water of a novel beta-emitting brachytherapy source for use in a Conformal Superficial Brachytherapy (CSBT) device.Methods and materialsYttrium-90 (90Y) sources were designed for use with a uniquely designed CSBT device. Depth dose and planar dose measurements were performed for bare sources and sources housed within a 3D printed source holder. Monte Carlo simulated dose rate distributions were compared to film-based measurements. Gamma analysis was performed to compare simulated and measured dose rates from seven 90Y sources placed simultaneously using the CSBT device.ResultsThe film-based maximum measured surface dose rate for a bare source in contact with the surface was 3.35 × 10–7 cGy s−1 Bq−1. When placed in the source holder, the maximum measured dose rate was 1.41 × 10–7 cGy s−1 Bq−1. The Monte Carlo simulated depth dose rates were within 10% or 0.02 cm of the measured dose rates for each depth of measurement. The maximum film surface dose rate measured using a seven-source configuration within the CSBT device was 1.78 × 10−7 cGy s−1 Bq−1. Measured and simulated dose rate distribution of the seven-source configuration were compared by gamma analysis and yielded a passing rate of 94.08%. The gamma criteria were 3% for dose-difference and 0.07056 cm for distance-to-agreement. The estimated measured dose rate uncertainty was 5.34%.Conclusions90Y is a unique source that can be optimally designed for a customized CSBT device. The rapid dose falloff provided a high dose gradient, ideal for treatment of superficial lesions. The dose rate uncertainty of the 90Y-based CSBT device was within acceptable brachytherapy standards and warrants further investigation.  相似文献   

8.
AimThe purpose of this study is to calculate radiation dose around a brachytherapy source in a water phantom for different seed locations or rotation the sources by the matrix summation method.BackgroundMonte Carlo based codes like MCNP are widely used for performing radiation transport calculations and dose evaluation in brachytherapy. But for complicated situations, like using more than one source, moving or rotating the source, the routine Monte Carlo method for dose calculation needs a long time running.Materials and methodsThe MCNPX code has been used to calculate radiation dose around a 192Ir brachytherapy source and saved in a 3D matrix. Then, we used this matrix to evaluate the absorbed dose in any point due to some sources or a source which shifted or rotated in some places by the matrix summation method.ResultsThree dimensional (3D) dose results and isodose curves were presented for 192Ir source in a water cube phantom shifted for 10 steps and rotated for 45 and 90° based on the matrix summation method. Also, we applied this method for some arrays of sources.ConclusionThe matrix summation method can be used for 3D dose calculations for any brachytherapy source which has moved or rotated. This simple method is very fast compared to routine Monte Carlo based methods. In addition, it can be applied for dose optimization study.  相似文献   

9.
PurposeTo investigate within phantoms the minimum CT dose allowed for accurate attenuation correction of PET data and to quantify the effective dose reduction when a CT for this purpose is incorporated in the clinical setting.MethodsThe NEMA image quality phantom was scanned within a large parallelepiped container. Twenty-one different CT images were acquired to correct attenuation of PET raw data. Radiation dose and image quality were evaluated.Thirty-one patients with proven multiple myeloma who underwent a dual tracer PET/CT scan were retrospectively reviewed. 18F-fluorodeoxyglucose PET/CT included a diagnostic whole-body low dose CT (WBLDCT: 120 kV-80mAs) and 11C-Methionine PET/CT included a whole-body ultra-low dose CT (WBULDCT) for attenuation correction (100 kV-40mAs). Effective dose and image quality were analysed.ResultsOnly the two lowest radiation dose conditions (80 kV-20mAs and 80 kV-10mAs) produced artifacts in CT images that degraded corrected PET images. For all the other conditions (CTDIvol ≥ 0.43 mGy), PET contrast recovery coefficients varied less than ± 1.2%.Patients received a median dose of 6.4 mSv from diagnostic CT and 2.1 mSv from the attenuation correction CT. Despite the worse image quality of this CT, 94.8% of bone lesions were identifiable.ConclusionPhantom experiments showed that an ultra-low dose CT can be implemented in PET/CT procedures without any noticeable degradation in the attenuation corrected PET scan. The replacement of the standard CT for this ultra-low dose CT in clinical PET/CT scans involves a significant radiation dose reduction.  相似文献   

10.
PurposeTo assess the radiation dose to the fetus of a pregnant patient undergoing high-dose-rate (HDR) 192Ir interstitial breast brachytherapy, and to design a new patient setup and lead shielding technique that minimizes the fetal dose.MethodsRadiochromic films were placed between the slices of an anthropomorphic phantom modeling the patient. The pregnant woman was seated in a chair with the breast over a table and inside a leaded box. Dose variation as a function of distance from the implant volume as well as dose homogeneity within a representative slice of the fetal position was evaluated without and with shielding.ResultsWith shielding, the peripheral dose after a complete treatment ranged from 50 cGy at 5 cm from the caudal edge of the breast to <0.1 cGy at 30 cm. The shielding reduces absorbed dose by a factor of two near the breast and more than an order of magnitude beyond 20 cm. The dose is heterogeneous within a given axial plane, with variations from the central region within 50%. Interstitial HDR 192Ir brachytherapy with breast shielding can be more advantageous than external-beam radiotherapy (EBRT) from a radiation protection point of view, as long as the distance to the uterine fundus is higher than about 10 cm. Furthermore, the weight of the shielding here proposed is notably lower than that needed in EBRT.ConclusionsShielded breast brachytherapy may benefit pregnant patients needing localized radiotherapy, especially during the early gestational ages when the fetus is more sensitive to ionizing radiation.  相似文献   

11.
Purpose: To explore the feasibility of 169Yb (γ, 93 keV) as a new radionuclide for intravascular brachytherapy (IVBT) in terms of dose distribution, penetration power, and radiation safety features as compared with 125I and 192Ir. Methods: The dose distributions for catheter-based sources, 169Yb, 125I, and 192Ir, in homogeneous water and in the presence of calcium and a steel stent have been determined and compared using the Monte Carlo method (MCNP4B2 code). The dose rates of the sources were evaluated from 0.02 to 100 cm. Results: In the short distance range (0.02<r<1.0 cm), the dose distributions in homogeneous water are very similar for the three radionuclides when the dose rates are normalized at 2 mm. Between 1 and 20 cm, the relative dose rates fall off similarly for 169Yb and 192Ir, whereas for 125I, it decreases much more rapidly. At a distance further away (r∼100 cm), the dose rate of 169Yb is about 10 times lower than that of 192Ir, indicating the cathlab radiation shielding requirement for 169Yb is substantially reduced as compared with 192Ir. Calcified plaques and stents cause a drastic dose reduction in the arterial wall for 125I, but have no effect for 192Ir γ-rays. Only slight dose reductions were detected for 169Yb beyond a layer of 1.0-mm calcium (2–3%), and behind a steel stent strut (5%). Conclusion: 169Yb is a promising new radionuclide for IVBT. It has a much better penetrating power through calcified plaques and stents compared with the low-energy source 125I. It also provides easier radiation protection measures for cardiac cathlab personnel than the high-energy source 192Ir, while preserving a favorable dose distribution in tissues surrounding an arterial vessel.  相似文献   

12.
Radiochromic film dosimetry is increasingly used in brachytherapy applications for its higher resolution ability as compared to other experimental methods. The present study was aimed to assess the accuracy and suitability of use of the improved radiochromic film model, Gafchromic EBT2, to evaluate the dose distribution in the transverse plane of microselectron HDR 192Ir source.A specially designed and locally fabricated Polymethyl methacrylate (PMMA) phantom was used in this work for the experimental measurement of dose distribution around the source in its transverse plane. The AAPM TG-43U1 recommended radial dose function, g (r), and dose rate constant, Λ, for the source were measured using Gafchromic EBT2 film and thermoluminescent dosimeters (TLD). The EBT2 film measured dosimetric quantities were validated against their values obtained from the TLD measurements and previously published values for the same source available in literature.The dose rate constant and radial dose function for microselectron HDR 192Ir source obtained from Gafchromic EBT2 film measurements are in agreement with their TLD measured results within 3.9% and 2.8% respectively. They also agree within the accepted range of uncertainty with their experimental and Monte Carlo calculated results reported in literature.This work demonstrates the suitability of using Gafchromic EBT2 film dosimetry in characterization of dose distribution in the transverse plane of HDR Ir-192 source. This is a more efficient method than TLD dosimetry at discrete and distant positions. Relative to TLD dosimetry, it is found to be better reproducible, easy to use and a less expensive method of dosimetry.  相似文献   

13.
A new γ-ray-radiation dosimetric system (TDS-HMTA), comprising a 'total dissolved solids (TDS)' meter and 0.02 M aqueous hexamethylenetetramine (HMTA) solution, is introduced for medical and biological applications. Gamma-ray radiolysis of aqueous HTMA solutions increases the concentrations (ppm) of TDS, which is measured by the TDS meter. The effects of HMTA concentration, absorbed radiation dose, absorbed dose rate, and storage time on the TDS concentration of irradiated HMTA solutions were studied. It was found that 0.02 M aqueous HMTA solution yields the highest sensitivity to γ-ray-radiation according to TDS concentration measurements. The effect of absorbed radiation dose was studied in the range 1.64–435.5 kGy. The TDS concentration increases linearly up to the maximum of the studied absorbed radiation dose range (R2 = 0.9965). The overall coefficient of variation (CV %) associated with TDS concentration measurements of 0.02 M HMTA solution as a function of absorbed dose was found to be 0.732%. The effect of dose rate on the TDS concentration was studied in the range 0.33–3.31 kGy/h. It was found, also, that the TDS concentration is relatively stable over a storage period of 144 h after irradiation with different doses. The tissue equivalency of 0.02 M aqueous HMTA solutions allow it to be used for radiation dose measurement during sterilization in human tissue banks. Therefore, this system (TDS–HMTA) could be considered as a promising candidate for γ-ray radiation dosimetry in technical, medical and research fields.  相似文献   

14.

Aim

The aim of this work was to assess the suitability of the use of a Gafchromic EBT2 film for the measurement of anisotropy function for microSelectron HDR 192Ir (classic) source with a comparative dosimetry method using a Gafchromic EBT2 film and thermoluminescence dosimeters (TLDs).

Background

Sealed linear radiation sources are commonly used for high dose rate (HDR) brachytherapy treatments. Due to self-absorption and oblique filtration of radiation in the source capsule material, an inherent anisotropy is present in the dose distribution around the source which can be described by a measurable two-dimensional anisotropy function, F(r, θ).

Materials and methods

Measurements were carried out in a specially designed and locally fabricated PMMA phantom with provisions to accommodate miniature LiF TLD rods and EBT2 film dosimeters at identical radial distances with respect to the 192Ir source.

Results

The data of anisotropy function generated by the use of the Gafchromic EBT2 film method are in agreement with their TLD measured values within 4%. The produced data are also consistent with their experimental and Monte Carlo calculated results for this source available in the literature.

Conclusion

Gafchromic EBT2 film was found to be a feasible dosimeter in determining anisotropy in the dose distribution of 192Ir source. It offers high resolution and is a viable alternative to TLD dosimetry at discrete points. The method described in this paper is useful for comparing the performances of detectors and can be applied for other brachytherapy sources as well.  相似文献   

15.

Aim

The aim of this study is to evaluate the dose distribution of the Flexisource 192Ir source.

Background

Dosimetric evaluation of brachytherapy sources is recommended by task group number 43 (TG. 43) of American Association of Physicists in Medicine (AAPM).

Materials and methods

MCNPX code was used to simulate Flexisource 192Ir source. Dose rate constant and radial dose function were obtained for water and soft tissue phantoms and compared with previous data on this source. Furthermore, dose rate along the transverse axis was obtained by simulation of the Flexisource and a point source and the obtained data were compared with those from Flexiplan treatment planning system (TPS).

Results

The values of dose rate constant obtained for water and soft tissue phantoms were equal to 1.108 and 1.106, respectively. The values of the radial dose function are listed in the form of tabulated data. The values of dose rate (cGy/s) obtained are shown in the form of tabulated data and figures. The maximum difference between TPS and Monte Carlo (MC) dose rate values was 11% in a water phantom at 6.0 cm from the source.

Conclusion

Based on dosimetric parameter comparisons with values previously published, the accuracy of our simulation of Flexisource 192Ir was verified. The results of dose rate constant and radial dose function in water and soft tissue phantoms were the same for Flexisource and point sources. For Flexisource 192Ir source, the results of TPS calculations in a water phantom were in agreement with the simulations within the calculation uncertainties. Furthermore, the results from the TPS calculation for Flexisource and MC calculation for a point source were practically equal within the calculation uncertainties.  相似文献   

16.
Retrospective investigations using carbon and nitrogen stable isotope composition of archived material have a great potential for describing past effects of anthropogenic ecosystem alterations or natural shifts in ecosystems. In this study, we examined the effects of two commonly used preservation substances of freshwater invertebrates, ethanol and lugol, on δ13C and δ15N of various planktonic and benthic taxa. For both isotopes, the average effect of fixation in ethanol was stronger than in lugol, and the effects on δ13C were stronger than on δ15N (average ± SD: 1.18 ± 0.94 and −0.47 ± 0.99 for δ13C ethanol and lugol fixed samples, respectively, and 0.39 ± 0.68 and 0.17 ± 0.77 for δ15N, respectively). The changes in the isotopic composition were not dependent on the initial isotopic composition of each taxon, but were related with concomitant changes in the carbon or nitrogen content. Application of a mass balance correction equation to the fixed samples resulted in a significantly lower average effect of fixation in ethanol (0.01 ± 0.59 and 0.44 ± 0.65 for δ15N and δ13C, respectively), while corrections had little effect for lugol fixed samples (0.24 ± 0.53 and −0.39 ± 0.85, respectively). For both isotopes and fixatives, corrections resulted in linear relationships between fixed vs. control samples, with slopes and intercepts not significantly different from 1 and 0, respectively. Therefore, mass balance correction of stable isotopes in fixed invertebrates is recommended for minimising the effects of fixation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: M. Power  相似文献   

17.
In the treatment of lung cancer using the radiotherapy technique of intracavitary brachytherapy with an192Ir source, the lung is normally assumed to be entirely composed of a homogenous mass of soft tissue. The aim of this study is to investigate whether there is the possibility that the air cavities in the lung influence the dose delivered to the lung at a prescribed distance from the source. The Monte Carlo code MCNP-4A was used to model the dose delivered by both192Ir and198Au as a function of treatment medium, density and composition, photon energy, and distance from the source. The suitability of MCNP-4A for this study was tested by producing depth-dose profiles for photons in water and comparing these to calculated profiles produced using well-documented methods.  相似文献   

18.
60Co sources are being used as an alternative to 192Ir sources in high dose rate brachytherapy treatments. In a recent document from AAPM and ESTRO, a consensus dataset for the 60Co BEBIG (model Co0.A86) high dose rate source was prepared by using results taken from different publications due to discrepancies observed among them. The aim of the present work is to provide a new calculation of the dosimetric characteristics of that 60Co source according to the recommendations of the AAPM and ESTRO report. Radial dose function, anisotropy function, air-kerma strength, dose rate constant and absorbed dose rate in water have been calculated and compared to the results of previous works. Simulations using the two different geometries considered by other authors have been carried out and the effect of the cable density and length has been studied.  相似文献   

19.
PurposeIn previous studies, methylthymol-blue and benzoic acid have been introduced as a diffuser limiter and sensitivity enhancer in the gel dosimeter composition, respectively. This work focused on analyzing a formulation of the Fricke gel dosimeter consisting of methylthymol-blue and benzoic acid through magnetic resonance imaging.MethodsThe gel dosimeter samples were irradiated using 6, 10, and 15 MV photons with different levels of doses and read using a 1.5 T scanner in order to evaluate the dose–response sensitivity and to study the effect of benzoic acid concentration, diffusion coefficient and temperature and to determine the temporal stability of the gel dosimeter.ResultsInspection of radiological properties revealed that this gel dosimeter can be considered as a tissue equivalent medium. Within the dose range 0 to 1000 cGy, the R1 sensitivity and R2 sensitivity of the gel dosimeter equaled 0.058 ± 0.003 and 0.092 ± 0.004 s−1Gy−1, respectively. The diffusion coefficient was less than 0.85 ± 0.02mm2h−1 for doses higher than 200 cGy. In addition, by changing the temperature from 15C to 25, the R1 sensitivity and R2 sensitivity decreased about 5 and 11%, respectively. Further, no significant energy and dose rate dependence were observed over photon energies of 6, 10, and 15 MV and over the range 65 to 525 cGy min−1.ConclusionsBased on our observation, the ferrous benzoic acid methylthymol-blue gel dosimeter can be suggested to measure the dose distribution. Further analysis is required to clarify its performance in clinical situations.  相似文献   

20.
PurposeCurrent quality assurance of radiotherapy involving bony regions generally utilises homogeneous phantoms and dose calculations, ignoring the challenges of heterogeneities with dosimetry problems likely occurring around bone. Anthropomorphic phantoms with synthetic bony materials enable realistic end-to-end testing in clinical scenarios. This work reports on measurements and calculated corrections required to directly report dose in bony materials in the context of comprehensive end-to-end dosimetry audit measurements (63 plans, 6 planning systems).Materials and methodsRadiochromic film and microDiamond measurements were performed in an anthropomorphic spine phantom containing bone equivalent materials. Medium dependent correction factors, kmed, were established using 6 MV and 10 MV Linear Accelerator Monte Carlo simulations to account for the detectors being calibrated in water, but measuring in regions of bony material. Both cortical and trabecular bony material were investigated for verification of dose calculations in dose-to-medium (Dm,m) and dose-to-water (Dw,w) scenarios.ResultsFor Dm,m calculations, modelled correction factors for cortical and trabecular bone in film measurements, and for trabecular bone in microDiamond measurements were 0.875(±0.1%), 0.953(±0.3%) and 0.962(±0.4%), respectively. For Dw,w calculations, the corrections were 0.920(±0.1%), 0.982(±0.3%) and 0.993(±0.4%), respectively. In the audit, application of the correction factors improves the mean agreement between treatment plans and measured microDiamond dose from −2.4%(±3.9%) to 0.4%(±3.7%).ConclusionMonte Carlo simulations provide a method for correcting the dose measured in bony materials allowing more accurate comparison with treatment planning system doses. In verification measurements, algorithm specific correction factors should be applied to account for variations in bony material for calculations based on Dm,m and Dw,w.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号