首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundThis study aimed to verify the dosimetric impact of Acuros XB (AXB) (AXB, Varian Medical Systems Palo Alto CA, USA), a two model-based algorithm, in comparison with Anisotropic Analytical Algorithm (AAA ) calculations for prostate, head and neck and lung cancer treatment by volumetric modulated arc therapy (VMAT ), without primary modification to AA. At present, the well-known and validated AA algorithm is clinically used in our department for VMAT treatments of different pathologies. AXB could replace it without extra measurements. The treatment result and accuracy of the dose delivered depend on the dose calculation algorithm.Materials and methodNinety-five complex VMAT plans for different pathologies were generated using the Eclipse version 15.0.4 treatment planning system (TPS). The dose distributions were calculated using AA and AXB (dose-to-water, AXBw and dose-to-medium, AXBm), with the same plan parameters for all VMAT plans. The dosimetric parameters were calculated for each planning target volume (PTV) and involved organs at risk (OA R). The patient specific quality assurance of all VMAT plans has been verified by Octavius®-4D phantom for different algorithms.ResultsThe relative differences among AA, AXBw and AXBm, with respect to prostate, head and neck were less than 1% for PTV D95%. However, PTV D95% calculated by AA tended to be overestimated, with a relative dose difference of 3.23% in the case of lung treatment. The absolute mean values of the relative differences were 1.1 ± 1.2% and 2.0 ± 1.2%, when comparing between AXBw and AA, AXBm and AA, respectively. The gamma pass rate was observed to exceed 97.4% and 99.4% for the measured and calculated doses in most cases of the volumetric 3D analysis for AA and AXBm, respectively.ConclusionThis study suggests that the dose calculated to medium using AXBm algorithm is better than AAA and it could be used clinically. Switching the dose calculation algorithm from AA to AXB does not require extra measurements.  相似文献   

2.
PurposeTo verify lung stereotactic body radiotherapy (SBRT) plans using a secondary treatment planning system (TPS) as an independent method of verification and to define tolerance levels (TLs) in lung SBRT between the primary and secondary TPSs.MethodsA total of 147 lung SBRT plans calculated using X-ray voxel Monte Carlo (XVMC) were exported from iPlan to Eclipse in DICOM format. Dose distributions were recalculated using the Acuros XB (AXB) and the anisotropic analytical algorithm (AAA), while maintaining monitor units (MUs) and the beam arrangement. Dose to isocenter and dose-volumetric parameters, such as D2, D50, D95 and D98, were evaluated for each patient. The TLs of all parameters between XVMC and AXB (TLAXB) and between XVMC and AAA (TLAAA) were calculated as the mean ± 1.96 standard deviations.ResultsAXB values agreed with XVMC values within 3.5% for all dosimetric parameters in all patients. By contrast, AAA sometimes calculated a 10% higher dose in PTV D95 and D98 than XVMC. The TLAXB and TLAAA of the dose to isocenter were −0.3 ± 1.4% and 0.6 ± 2.9%, respectively. Those of D95 were 1.3 ± 1.8% and 1.7 ± 3.6%, respectively.ConclusionsThis study quantitatively demonstrated that the dosimetric performance of AXB is almost equal to that of XVMC, compared with that of AAA. Therefore, AXB is a more appropriate algorithm for an independent verification method for XVMC.  相似文献   

3.
BackgroundAcuros XB (AXB) may predict better rectal toxicities and treatment outcomes in cervix carcinoma. The aim of the study was to quantify the potential impact of AXB computations on the cervix radiotherapy using the RapidArc (RA ) technique as compared to anisotropic analytical algorithm (AA) computations.Materials and methodsA cohort of 30 patients previously cared for cervix carcinoma (stages II–IIIB) was selected for the present analysis. The RA plans were computed using AA and AXB dose computation engines under identical beam setup and MLC pattern.ResultsThere was no significant (p > 0.05) difference in D95% and D98% to the planning target volume (PTV); moreover, a significant (p < 0.05) rise was noticed for mean dose to the PTV (0.26%), D50% (0.26%), D2% (0.80%) and V110% (44.24%) for AXB computation as compared to AA computations. Further, AXB estimated a significantly (p < 0.05) lower value for maximum and minimum dose to the PTV. Additionally, there was a significant (p < 0.05) reduction observed in mean dose to organs at risk (OARs) for AXB computation as compared to AA, though the reduction in mean dose was non-significant (p > 0.05) for the rectum. The maximum difference observed was 4.78% for the rectum V50Gy, 1.72%, 1.15% in mean dose and 2.22%, 1.48% in D2% of the left femur and right femur, respectively, between AA and AXB dose estimations.ConclusionFor similar target coverage, there were significant differences observed between the AAA and AXB computations. AA underestimates the V50Gy of the rectum and overestimates the mean dose and D2% for femoral heads as compared to AXB. Therefore, the use of AXB in the case of cervix carcinoma may predict better rectal toxicities and treatment outcomes in cervix carcinoma using the RA technique.  相似文献   

4.
PurposeTo evaluate the planning feasibility of dose-escalated total marrow irradiation (TMI) with simultaneous integrated boost (SIB) to the active bone marrow (ABM) using volumetric modulated arc therapy (VMAT), and to assess the impact of using planning organs at risk (OAR) volumes (PRV) accounting for breathing motion in the optimization.MethodsFive patients underwent whole-body CT and thoraco-abdominal 4DCT. A planning target volume (PTV) including all bones and ABM was contoured on each whole-body CT. PRV of selected OAR (liver, heart, kidneys, lungs, spleen, stomach) were determined with 4DCT. Planning consisted of 9–10 full 6 MV photon VMAT arcs. Four plans were created for each patient with 12 Gy prescribed to the PTV, with or without an additional 4 Gy SIB to the ABM. Planning dose constraints were set on the OAR or on the PRV. Planning objective was a PTV Dmean < 110% of the prescribed dose, a PTV V110% < 50%, and OAR Dmean ≤ 50–60%.ResultsPTV Dmean < 110% was accomplished for most plans (n = 18/20), while all achieved V110%<50%. SIB plans succeeded to optimally cover the boost volume (median ABM Dmean = 16.3 Gy) and resulted in similar OAR sparing compared to plans without SIB (median OAR Dmean = 40–54% of the ABM prescribed dose). No statistically significant differences between plans optimized with constraints on OAR or PRV were found.ConclusionsAdding a 4 Gy SIB to the ABM for TMI is feasible with VMAT technique, and results in OAR sparing similar to plans without SIB. Setting dose constraints on PRV does not impair PTV dosimetric parameters.  相似文献   

5.
6.
7.
PurposeTo demonstrate the strength of an innovative knowledge-based model-building method for radiotherapy planning using hypofractionated, multi-target prostate patients.Material and methodsAn initial RapidPlan model was trained using 48 patients who received 60 Gy to prostate (PTV60) and 44 Gy to pelvic nodes (PTV44) in 20 fractions. To improve the model's goodness-of-fit, an intermediate model was generated using the dose-volume histograms of best-spared organs-at-risk (OARs) of the initial model. Using the intermediate model and manual tweaking, all 48 cases were re-planned. The final model, trained using these re-plans, was validated on 50 additional patients. The validated final model was used to determine any planning advantage of using three arcs instead of two on 16 VMAT cases and tested on 25 additional cases to determine efficacy for single-PTV (PTV60-only) treatment planning.ResultsFor model validation, PTV V95% of 99.9% was obtained by both clinical and knowledge-based planning. D1% was lower for model plans: by 1.23 Gy (PTV60, CI = [1.00, 1.45]), and by 2.44 Gy (PTV44, CI = [1.72, 3.16]). OAR sparing was superior for knowledge-based planning: ΔDmean = 3.70 Gy (bladder, CI = [2.83, 4.57]), and 3.22 Gy (rectum, CI = [2.48, 3.95]); ΔD2% = 1.17 Gy (bowel bag, CI = [0.64, 1.69]), and 4.78 Gy (femoral heads, CI = [3.90, 5.66]). Using three arcs instead of two, improvements in OAR sparing and PTV coverage were statistically significant, but of magnitudes < 1 Gy. The model failed at reliable DVH predictions for single PTV plans.ConclusionsOur knowledge-based model delivers efficient, consistent plans with excellent PTV coverage and improved OAR sparing compared to clinical plans.  相似文献   

8.
AimTo investigate the impact of Acuros XB (AXB) algorithm in the deep-inspiration breath-hold (DIBH) technique used for treatment of left sided breast cancer.BackgroundAXB may estimate better lung toxicities and treatment outcome in DIBH.Materials and MethodsTreatment plans were computed using the field-in-field technique for a 6 MV beam in two respiratory phases - free breathing (FB) and DIBH. The AXB-calculations were performed under identical beam setup and the same numbers of monitor units as used for AAA-calculation.ResultsMean Hounsfield units (HU), mass density (g/cc) and relative electron density were -782.1 ± 24.8 and -883.5 ± 24.9; 0.196 ± 0.025 and 0.083 ± 0.032; 0.218 ± 0.025 and 0.117 ± 0.025 for the lung in the FB and DIBH respiratory phase, respectively. For a similar target coverage (p > 0.05) in the DIBH respiratory phase between the AXB and AAA algorithm, there was a slight increase in organ at risk (OAR) dose for AXB in comparison to AAA, except for mean dose to the ipsilateral lung. AAA predicts higher mean dose to the ipsilateral lung and lesser V20Gy for the ipsilateral and common lung in comparison to AXB. The differences in mean dose to the ipsilateral lung were 0.87 ± 2.66 % (p > 0.05) in FB, and 1.01 ± 1.07% (p < 0.05) in DIBH, in V20Gy the differences were 1.76 ± 0.83% and 1.71 ± 0.82% in FB (p < 0.05), 3.34 ± 1.15 % and 3.24 ± 1.17 % in DIBH (p < 0.05), for the ipsilateral and common lung, respectively.ConclusionFor a similar target volume coverage, there were important differences between the AXB and AAA algorithm for low-density inhomogeneity medium present in the DIBH respiratory phase for left sided breast cancer patients. DIBH treatment in conjunction with AXB may result in better estimation of lung toxicities and treatment outcome.  相似文献   

9.
ObjectiveTo investigate the potential of Particle Swarm Optimization (PSO) for fully automatic VMAT radiotherapy (RT) treatment planning.Material and MethodsIn PSO a solution space of planning constraints is searched for the best possible RT plan in an iterative, statistical method, optimizing a population of candidate solutions. To identify the best candidate solution and for final evaluation a plan quality score (PQS), based on dose volume histogram (DVH) parameters, was introduced.Automatic PSO-based RT planning was used for N = 10 postoperative prostate cancer cases, retrospectively taken from our clinical database, with a prescribed dose of EUD = 66 Gy in addition to two constraints for rectum and one for bladder. Resulting PSO-based plans were compared dosimetrically to manually generated VMAT plans.ResultsPSO successfully proposed treatment plans comparable to manually optimized ones in 9/10 cases. The median (range) PTV EUD was 65.4 Gy (64.7–66.0) for manual and 65.3 Gy (62.5–65.5) for PSO plans, respectively. However PSO plans achieved significantly lower doses in rectum D2% 67.0 Gy (66.5–67.5) vs. 66.1 Gy (64.7–66.5, p = 0.016). All other evaluated parameters (PTV D98% and D2%, rectum V40Gy and V60Gy, bladder D2% and V60Gy) were comparable in both plans. Manual plans had lower PQS compared to PSO plans with −0.82 (−16.43–1.08) vs. 0.91 (−5.98–6.25).ConclusionPSO allows for fully automatic generation of VMAT plans with plan quality comparable to manually optimized plans. However, before clinical implementation further research is needed concerning further adaptation of PSO-specific parameters and the refinement of the PQS.  相似文献   

10.
PurposeTo investigate the dosimetric impact between the anisotropic analytical algorithm (AAA) and the Acuros XB (AXB) algorithm in volumetric-modulated arc therapy (VMAT) plans for high-grade glioma (HGG).MethodsWe used a heterogeneous phantom to quantify the agreement between the measured and calculated doses from the AAA and from the AXB. We then analyzed 14 patients with HGG treated by VMAT, using the AAA. We newly created AXB plans for each corresponding AAA plan under the following conditions: (1) re-calculation for the same number of monitor units with an identical beam and leaf setup, and (2) re-optimization under the same conditions of dose constraints. The dose coverage for the planning target volume (PTV) was evaluated by dividing the coverage into the skull, air, and soft-tissue regions.ResultsCompared to the results obtained with the AAA, the AXB results were in good agreement with the measured profiles. The dose differences in the PTV between the AAA and re-calculated AXB plans were large in the skull region contained in the target. The dose difference in the PTV in both types of plan was significantly correlated with the volume of the skull contained in the target (r = 0.71, p = 0.0042). A re-optimized AXB plan's dose difference was lower vs. the re-calculated AXB plan's.ConclusionsWe observed dose differences between the AAA and AXB plans, in particular in the cases in which the skull region of the target was large. Considering the phantom measurement results, the AXB algorithm should be used in VMAT plans for HGG.  相似文献   

11.
PurposeAdaptive Stereotactic Body Radiotherapy (SBRT) of prostate cancer (PC) by online 1.5 T MRi-guidance prolongs session-time, due to contouring and planning tasks, thus increasing the risk of prostate motion. Hence, the interest to verify the adequacy of the delivered dose.Material and methodsFor twenty PC patients treated by 35 Gy (Dp) in five fractions, daily pre- and post- delivery MRi scans were respectively used for adapt-to-shape (ATS) optimization, and re-computation of the delivered irradiation (Drec). Two expansion recipes, from Clinical (CTV) to Planning target volume (PTV), which slightly differed in the posterior margin were used for groups I and II, of ten patients each. Plans had to assure D95% ≥ 95%Dp to PTV, and D1cc ≤ Dp to rectum, bladder, penile bulb, and urethral planning-risk-volume (urethral-PRV). The adequacy of the delivered dose was estimated by inter-fraction average (ifa) of dose-volume metrics computed from Drec. A cumulative dose (Dsum) was calculated from the five daily Drec deformed onto the simulation MRi.ResultsFor each patient, CTV coverage resulted in D95% > 95%Dp when estimated as ifa by Drec. No significant difference for D95% and D99% metrics to CTV resulted between groups I and II. D1cc was < Dp for rectum, urethral-PRV, and penile bulb, whereas < 103.5%Dp for the bladder.Significant correlations resulted between metrics computed by Dsum and as ifa by Drec, by both linear-correlation analysis, and Receiver-Operating-Characteristic curve analysis.ConclusionsOur results for PC-SBRT confirm the adequacy of the delivered dose by ATS with 1.5 T MR-linac, and the consistency between dose-volume metrics computed by Drec and Dsum.  相似文献   

12.

Background

Intensity-modulated radiotherapy (IMRT) improves dose distribution in head and neck (HN) radiation therapy. Volumetric-modulated arc therapy (VMAT), a new form of IMRT, delivers radiation in single or multiple arcs, varying dose rates (VDR-VMAT) and gantry speeds, has gained considerable attention. Constant dose rate VMAT (CDR-VMAT) associated with a fixed gantry speed does not require a dedicated linear accelerator like VDR-VMAT. The present study explored the feasibility, efficiency and delivery accuracy of CDR-VMAT, by comparing it with IMRT and VDR-VMAT in treatment planning for HN cancer.

Methods and materials

Step and shoot IMRT (SS-IMRT), CDR-VMAT and VDR-VMAT plans were created for 15 HN cancer patients and were generated by Pinnacle3 TPS (v 9.8) using 6 MV photon energy. Three PTVs were defined to receive respectively prescribed doses of 66 Gy, 60 Gy and 54 Gy, in 30 fractions. Organs at risk (OARs) included the mandible, spinal cord, brain stem, parotids, salivary glands, esophagus, larynx and thyroid. SS-IMRT plans were based on 7 co-planar beams at fixed gantry angles. CDR-VMAT and VDR-VMAT plans, generated by the SmartArc module, used a 2-arc technique: one clockwise from 182° to 178° and the other one anti-clockwise from 178° to 182°. Comparison parameters included dose distribution to PTVs (Dmean, D2%, D50%, D95%, D98% and Homogeneity Index), maximum or mean doses to OARs, specific dose-volume data, the monitor units and treatment delivery times.

Results

Compared with SS-IMRT, CDR-VMAT significantly reduced the maximum doses to PTV1 and PTV2 and significantly improved all PTV3 parameters, except D98% and D95%. It significantly spared parotid and submandibular glands and was associated with a lower Dmean to the larynx. Compared with VDR-VMAT, CDR-VMAT was linked to a significantly better Dmean, to the PTV3 but results were worse for the parotids, left submandibular gland, esophagus and mandible. Furthermore, the Dmean to the larynx was also worse. Compared with SS-IMRT and VDR-VMAT, CDR-VMAT was associated with higher average monitor unit values and significantly shorter average delivery times.

Conclusions

CDR-VMAT appeared to be a valid option in Radiation Therapy Centers that lack a dedicated linear accelerator for volumetric arc therapy with variable dose-rates and gantry velocities, and are unwilling or unable to sanction major expenditure at present but want to adopt volumetric techniques.  相似文献   

13.
14.
PurposeTo evaluate the feasibility of the use of iterative cone-beam computed tomography (CBCT) for dose calculation in the head and neck region.MethodsThis study includes phantom and clinical studies. All acquired CBCT images were reconstructed with Feldkamp–Davis–Kress algorithm-based CBCT (FDK-CBCT) and iterative CBCT (iCBCT) algorithm. The Hounsfield unit (HU) consistency between the head and body phantoms was determined in both reconstruction techniques. Volumetric modulated arc therapy (VMAT) plans were generated for 16 head and neck patients on a planning CT scan, and the doses were recalculated on FDK-CBCT and iCBCT with Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB). As a comparison of the accuracy of dose calculations, the absolute dosimetric difference and 1%/1 mm gamma passing rate analysis were analyzed.ResultsThe difference in the mean HU values between the head and body phantoms was larger for FDK-CBCT (max value: 449.1 HU) than iCBCT (260.0 HU). The median dosimetric difference from the planning CT were <1.0% for both FDK-CBCT and iCBCT but smaller differences were found with iCBCT (planning target volume D50%: 0.38% (0.15–0.59%) for FDK-CBCT, 0.28% (0.13–0.49%) for iCBCT, AAA; 0.14% (0.04–0.19%) for FDK-CBCT, 0.07% (0.02–0.20%) for iCBCT). The mean gamma passing rate was significantly better in iCBCT than FDK-CBCT (AAA: 98.7% for FDK-CBCT, 99.4% for iCBCT; AXB: 96.8% for FDK_CBCT, 97.5% for iCBCT).ConclusionThe iCBCT-based dose calculation in VMAT for head and neck cancer was accurate compared to FDK-CBCT.  相似文献   

15.
The impact of a rectal spacer and an increased near maximum target dose in VMAT prostate SBRT is studied.For a group of 11 patients (35 Gy-in-five-fractions VMAT prostate SBRT) a set of 4 plans were generated, namely two VMAT plans, with D2%  37.5 Gy (Hom) and with D2%  40.2 Gy (Het), were created for each of two CT scans taken before (NoSpc) and after (Spc) transperineal spacer insertion. Consequently the methodology for parameter invariant TCP (tumor control probability) plan ranking was applied for comparison of the plans in terms of tumor control. NTCPs (normal tissue complication probabilities) were calculated for rectum and bladder using Lyman’s model.For all 11 patients the TCP plan ranking has shown that the Het plans would perform considerably better in TCP terms than the Hom ones. The plans without rectal spacer were ranked worse compared to those with rectal spacer except for one set of Hom plans. The calculated NTCPs for rectum produced by the Het plans were quite similar to the NTCPs of the Hom ones. The rectal NTCPs of the Hom Spc plans were always lower than the NTCPs of the Hom NoSpc plans. The NTCP values for bladder were extremely low in all cases.The use of rectal spacer leads in general to lower risk of rectal complications, as expected, and even to better tumor control. Plans with increased near maximum target dose (D2%  40.2 Gy) are expected to perform much better in terms of tumor control than those with D2%  37.5 Gy.  相似文献   

16.
PurposeRadiation treatment planning inherently involves multiple conflicting planning goals, which makes it a suitable application for multicriteria optimization (MCO). This study investigates a MCO algorithm for VMAT planning (VMAT–MCO) for prostate cancer treatments including pelvic lymph nodes and uses standard inverse VMAT optimization (sVMAT) and Tomotherapy planning as benchmarks.MethodsFor each of ten prostate cancer patients, a two stage plan was generated, consisting of a stage 1 plan delivering 22 Gy to the prostate, and a stage 2 plan delivering 50.4 Gy to the lymph nodes and 56 Gy to the prostate with a simultaneous integrated boost. The single plans were generated by three planning techniques (VMAT–MCO, sVMAT, Tomotherapy) and subsequently compared with respect to plan quality and planning time efficiency.ResultsPlan quality was similar for all techniques, but sVMAT showed slightly better rectum (on average Dmean −7%) and bowel sparing (Dmean −17%) compared to VMAT–MCO in the whole pelvic treatments. Tomotherapy plans exhibited higher bladder dose (Dmean +42%) in stage 1 and lower rectum dose (Dmean −6%) in stage 2 than VMAT–MCO. Compared to manual planning, the planning time with MCO was reduced up to 12 and 38 min for stage 1 and 2 plans, respectively.ConclusionMCO can generate highly conformal prostate VMAT plans with minimal workload in the settings of prostate-only treatments and prostate plus lymph nodes irradiation. In the whole pelvic plan manual VMAT optimization led to slightly improved OAR sparing over VMAT–MCO, whereas for the primary prostate treatment plan quality was equal.  相似文献   

17.
AimThis study compared volumetric-modulated arc therapy (VMAT) plans for head and neck cancers with and without an external body contour extended technique (EBCT).BackgroundDose calculation algorisms for VMAT have limitations in the buildup region.Materials and methodsThree VMAT plans were enrolled, with one case having a metal artifact from an artificial tooth. The proper dose was calculated using Eclipse version 11.0. The body contours were extended 2 cm outward from the skin surface in three-dimensional space, and the dose was recalculated with an anisotropic analytical algorithm (AAA) and Acuros XB (AXB). Monitor units (MUs) were set, and the dose distributions in the planning target volume (PTV), clinical target volume, and organ at risk (OAR) and conformity index (CI) with and without an EBCT were compared. The influence of a metal artifact outside of the thermoplastic head mask was also compared.ResultsThe coverage of PTV by the 95% dose line near the patient’s skin was increased drastically by using an EBCT. Plan renormalization had a negligible impact on MUs and doses delivered to OARs. CI of PTV with a 6-MV photon beam was closer to 1 than that with a 10-MV photon beam when both AAA and AXB were used in all cases. Metal artifacts outside the head mask had no effect on dose distribution.ConclusionsAn EBCT is needed to estimate the proper dose at object volumes near the patient’s skin and can improve the accuracy of the calculated dose at target volumes.  相似文献   

18.
AimTo evaluate dose differences in lung metastases treated with stereotactic body radiotherapy (SBRT), and the correlation with local control, regarding the dose algorithm, target volume and tissue density.BackgroundSeveral studies showed excellent local control rates in SBRT for lung metastases, with different fractionation schemes depending on the tumour location or size. These results depend on the dose distributions received by the lesions in terms of the tissue heterogeneity corrections performed by the dose algorithms.Materials and methodsForty-seven lung metastases treated with SBRT, using intrafraction control and respiratory gating with internal fiducial markers as surrogates (ExacTrac, BrainLAB AG), were calculated using Pencil Beam (PB) and Monte Carlo (MC) (iPlan, BrainLAB AG).Dose differences between both algorithms were obtained for the dose received by 99% (D99%) and 50% (D50%) of the planning treatment volume (PTV). The biologically effective dose delivered to 99% (BED99%) and 50% (BED50%) of the PTV were estimated from the MC results. Local control was evaluated after 24 months of median follow-up (range: 3–52 months).ResultsThe greatest variations (40.0% in ΔD99% and 38.4% in ΔD50%) were found for the lower volume and density cases. The BED99% and BED50% were strongly correlated with observed local control rates: 100% and 61.5% for BED99% > 85 Gy and <85 Gy (p < 0.0001), respectively, and 100% and 58.3% for BED50% > 100 Gy and <100 Gy (p < 0.0001), respectively.ConclusionsLung metastases treated with SBRT, with delivered BED99% > 85 Gy and BED50% > 100 Gy, present better local control rates than those treated with lower BED values (p = 0.001).  相似文献   

19.
PurposeTo propose a “staggered overlap” technique in volumetric modulated arc therapy (VMAT) for craniospinal irradiation (CSI) and compare the dose distribution and plan robustness with “overlap” technique and “gradient optimization” approach.Methods and Materials6 patients previously treated in our clinic were retrospectively selected. 9 VMAT plans of each patient were optimized with “staggered overlap”, “overlap” and “gradient optimization” in overlapping region of 3 cm, 6 cm, and 9 cm separately. For the “staggered overlap” plan, adjacent field sets were intentionally overlapped by staggering field edges in an appropriate step size to avoid sharp dose gradient. Evaluation metrics including V95%, D2%, D98%, conformity number (CN) and homogeneity index (HI) were employed to evaluate the dose distribution. Moreover, shifts of the upper spinal field isocenter in each direction were performed to simulate junction errors for robustness analysis.ResultsThe CN and HI of VMAT plans with “staggered overlap” were 0.82 (0.811–0.822) and 0.113 (0.112–0.114), while they were 0.778 (0.776–0.782) and 0.131 (0.130–0.131) for plans with “gradient optimization”. In the robustness study, <3% dose deviations were found for 5 mm shifts in lateral and vertical directions with all techniques. In cranial-caudal direction, “overlap” technique created hot spots (D2% > 170%) and cold spots (D98% < 44%) in the junction region with 10 mm shifts. The dose deviations were decreased to 22% for plans with “staggered overlap” and 9 cm overlapping region.Conclusion“Staggered overlap” technique provides better plan quality as compared to “gradient optimization” approach and makes the plan more robust against junction errors as compared to “overlap” technique.  相似文献   

20.
PurposeThis study retrospectively reviewed locally set pass rates/tolerances for COMPASS® pre-treatment quality assurance results for RapidArc prostate plans to determine if these are appropriate. This was performed via quantifying the agreement between treatment planning system calculations and measurements based on absolute dose comparisons (3% tolerance for all dose points) and global gamma index assessment (3%/3 mm criterion for 97% of points).MethodSeventy-three prostate one-arc RapidArc plans, delivered by four dosimetrically matched linacs, were measured using the MatriXX Evolution two-dimensional array and analysed using COMPASS® (v.3, IBA Dosimetry). For the planning target volumes (PTV) considered, the D99%, D50%, D1% and DMean differences were analysed. The percentage volume with gamma greater than 1, average gamma and DMean difference were investigated for all structures. Nine plans were also assessed across the linac fleet to investigate potential linac dependence of results.Results and ConclusionsRegarding PTV DMean differences, all plans fell within the 3% tolerance and mostly within 2%, although there was a relatively small systematic difference. The absolute percentage differences of average and median doses suggested a weak linac dependence of the results which was found to be clinically insignificant. New stricter tolerances were established both for dose comparisons and gamma evaluation. Correlation between the gamma pass rates and the differences in the D99%, D50% and D1% was found to be moderate suggesting that gamma analysis in isolation has questionable clinical meaning and should only be used to indicate outliers for further analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号