首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An oxygen requirement for de novo biotin synthesis in Saccharomyces cerevisiae precludes the application of biotin-prototrophic strains in anoxic processes that use biotin-free media. To overcome this issue, this study explores introduction of the oxygen-independent Escherichia coli biotin-biosynthesis pathway in S. cerevisiae. Implementation of this pathway required expression of seven E. coli genes involved in fatty-acid synthesis and three E. coli genes essential for the formation of a pimelate thioester, key precursor of biotin synthesis. A yeast strain expressing these genes readily grew in biotin-free medium, irrespective of the presence of oxygen. However, the engineered strain exhibited specific growth rates 25% lower in biotin-free media than in biotin-supplemented media. Following adaptive laboratory evolution in anoxic cultures, evolved cell lines that no longer showed this growth difference in controlled bioreactors, were characterized by genome sequencing and proteome analyses. The evolved isolates exhibited a whole-genome duplication accompanied with an alteration in the relative gene dosages of biosynthetic pathway genes. These alterations resulted in a reduced abundance of the enzymes catalyzing the first three steps of the E. coli biotin pathway. The evolved pathway configuration was reverse engineered in the diploid industrial S. cerevisiae strain Ethanol Red. The resulting strain grew at nearly the same rate in biotin-supplemented and biotin-free media non-controlled batches performed in an anaerobic chamber. This study established an unique genetic engineering strategy to enable biotin-independent anoxic growth of S. cerevisiae and demonstrated its portability in industrial strain backgrounds.  相似文献   

2.
The crystal structure of Cnx1G, an enzyme involved in the biosynthesis of the molybdenum cofactor (Moco) in Arabidopsis thaliana, revealed the remarkable feature of a copper ion bound to the dithiolene unit of a molybdopterin intermediate (Kuper et al. Nature 430:803-806, 2004). To characterize further the role of copper in Moco biosynthesis, we examined the in vivo and/or in vitro activity of two Moco-dependent enzymes, dimethyl sulfoxide reductase (DMSOR) and nitrate reductase (NR), from cells grown under a variety of copper conditions. We found the activities of DMSOR and NR were not affected when copper was depleted from the media of either Escherichia coli or Rhodobacter sphaeroides. These data suggest that while copper may be utilized during Moco biosynthesis when it is available, copper does not appear to be strictly required for Moco biosynthesis in these two organisms.  相似文献   

3.
The thermotolerant strain 1-IR was isolated as a contaminant microflora of the industrial strain “Red” (the Netherlands) during the study of the baker’s yeast Saccharomyces cerevisiae. The strain was assigned to the species Ogataea parapolymorpha by sequencing the 26S rDNA D1/D2 domain. The strain 1-IR was shown to be capable of efficient glucose and xylose fermentation at an elevated temperature of 45°C. In this respect, the strain 1-IR surpassed the thermotolerant yeasts O. polymorpha CBS 4732, NCYC 495, and O. parapolymorpha DL1. The prospects of using the O. parapolymorpha yeasts as producers of biofuel from lignocellulose wastes of agricultural and woodworking industries is discussed.  相似文献   

4.
In this study an industrial Saccharomyces cerevisiae yeast strain capable of fermenting ethanol from pretreated lignocellulosic material was engineered. Genes encoding cellulases (endoglucanase, exoglucanase and β-glucosidase) were integrated into the chromosomal ribosomal DNA and delta regions of a derivative of the K1-V1116 wine yeast strain. The engineered cellulolytic yeast produces ethanol in one step through simultaneous saccharification and fermentation of pretreated biomass without the addition of exogenously produced enzymes. When ethanol fermentation was performed with 10% dry weight of pretreated corn stover, the recombinant strain fermented 63% of the cellulose in 96 h and the ethanol titer reached 2.6% v/v. These results demonstrate that cellulolytic S. cerevisiae strains can be used as a platform for developing an economical advanced biofuel process.  相似文献   

5.
Isoprenol (3-methyl-3-butene-1-ol) is a valuable drop-in biofuel and an important precursor of several commodity chemicals. Synthetic microbial systems using the heterologous mevalonate pathway have recently been developed for the production of isoprenol in Escherichia coli, and a significant yield and titer improvement has been achieved through a decade of research. Saccharomyces cerevisiae has been widely used in the biotechnology industry for isoprenoid production, but there has been no good example of isoprenol production reported in this host. In this study, we engineered the budding yeast S. cerevisiae for improved biosynthesis of isoprenol. The strain engineered with the mevalonate pathway achieved isoprenol production at the titer of 36.02 ± 0.92 mg/L in the flask. The IPP (isopentenyl diphosphate)-bypass pathway, which has shown more efficient isoprenol production by avoiding the accumulation of the toxic intermediate in E. coli, was also constructed in S. cerevisiae and improved the isoprenol titer by 2-fold. We further engineered the strains by deleting a promiscuous endogenous kinase that could divert the pathway flux away from the isoprenol production and improved the titer to 130.52 ± 8.01 mg/L. Finally, we identified a pathway bottleneck using metabolomics analysis and overexpressed a promiscuous alkaline phosphatase to relieve this bottleneck. The combined efforts resulted in the titer improvement to 383.1 ± 31.62 mg/L in the flask. This is the highest isoprenol titer up to date in S. cerevisiae and this work provides the key strategies to engineer yeast as an industrial platform for isoprenol production.  相似文献   

6.
A major hurdle in the production of bioethanol with second-generation feedstocks is the high cost of the enzymes for saccharification of the lignocellulosic biomass into fermentable sugars. Simultaneous saccharification and fermentation with Saccharomyces cerevisiae yeast that secretes a range of lignocellulolytic enzymes might address this problem, ideally leading to consolidated bioprocessing. However, it has been unclear how many enzymes can be secreted simultaneously and what the consequences would be on the C6 and C5 sugar fermentation performance and robustness of the second-generation yeast strain. We have successfully expressed seven secreted lignocellulolytic enzymes, namely endoglucanase, β-glucosidase, cellobiohydrolase I and II, xylanase, β-xylosidase and acetylxylan esterase, in a single second-generation industrial S. cerevisiae strain, reaching 94.5 FPU/g CDW and enabling direct conversion of lignocellulosic substrates into ethanol without preceding enzyme treatment. Neither glucose nor the engineered xylose fermentation were significantly affected by the heterologous enzyme secretion. This strain can therefore serve as a promising industrial platform strain for development of yeast cell factories that can significantly reduce the enzyme cost for saccharification of lignocellulosic feedstocks.  相似文献   

7.
Molybdenum (Mo) is an essential micronutrient for almost all organisms. In eukaryotes, it forms a part of the molybdenum cofactor (Moco), which is required for numerous enzymes involved in carbon, nitrogen and sulfur metabolism. Mo is taken up by cells in the form of molybdate and recently molybdate transporters have been identified in Arabidopsis thaliana and Chlamydomonas reinhardtii. Here, we report the characterization of a novel mutant (DB6) of C. reinhardtii generated by random insertional mutagenesis that is unable to assimilate nitrate as a nitrogen source because it lacks functional nitrate reductase (NR). Besides lacking NR, DB6 also lacks xanthine dehydrogenase activity; a common requirement of both enzymes is Moco. DB6 displays a ‘molybdate‐repairable’ phenotype—growth on nitrate is partially restored by supplementing media with high levels of molybdate. This phenotype is typically associated with mutants defective in either molybdate transport or insertion of Mo into the pterin precursor of Moco. Mo content was found to be significantly lower in DB6 than in the wild‐type strain, AOXR1, which suggests that DB6 is defective in Mo uptake. Genetic complementation with a variety of candidate genes that include the known molybdate transporter MOT1 and DNA that spans the site of mutation was unable to recover the wild‐type phenotype. Taken together, our results indicate that DB6 is a novel molybdate transport‐deficient mutant.  相似文献   

8.
Bottlenecks in the efficient conversion of xylose into cost-effective biofuels have limited the widespread use of plant lignocellulose as a renewable feedstock. The yeast Saccharomyces cerevisiae ferments glucose into ethanol with such high metabolic flux that it ferments high concentrations of glucose aerobically, a trait called the Crabtree/Warburg Effect. In contrast to glucose, most engineered S. cerevisiae strains do not ferment xylose at economically viable rates and yields, and they require respiration to achieve sufficient xylose metabolic flux and energy return for growth aerobically. Here, we evolved respiration-deficient S. cerevisiae strains that can grow on and ferment xylose to ethanol aerobically, a trait analogous to the Crabtree/Warburg Effect for glucose. Through genome sequence comparisons and directed engineering, we determined that duplications of genes encoding engineered xylose metabolism enzymes, as well as TKL1, a gene encoding a transketolase in the pentose phosphate pathway, were the causative genetic changes for the evolved phenotype. Reengineered duplications of these enzymes, in combination with deletion mutations in HOG1, ISU1, GRE3, and IRA2, increased the rates of aerobic and anaerobic xylose fermentation. Importantly, we found that these genetic modifications function in another genetic background and increase the rate and yield of xylose-to-ethanol conversion in industrially relevant switchgrass hydrolysate, indicating that these specific genetic modifications may enable the sustainable production of industrial biofuels from yeast. We propose a model for how key regulatory mutations prime yeast for aerobic xylose fermentation by lowering the threshold for overflow metabolism, allowing mutations to increase xylose flux and to redirect it into fermentation products.  相似文献   

9.
The molybdenum cofactor (Moco) is a prosthetic group required by a number of enzymes, such as nitrate reductase, sulfite oxidase, xanthine dehydrogenase, and aldehyde oxidase. Its biosynthesis in eukaryotes can be divided into four steps, of which the last three are proposed to occur in the cytosol. Here, we report that the mitochondrial ABC transporter ATM3, previously implicated in the maturation of extramitochondrial iron-sulfur proteins, has a crucial role also in Moco biosynthesis. In ATM3 insertion mutants of Arabidopsis thaliana, the activities of nitrate reductase and sulfite oxidase were decreased to ∼50%, whereas the activities of xanthine dehydrogenase and aldehyde oxidase, whose activities also depend on iron-sulfur clusters, were virtually undetectable. Moreover, atm3 mutants accumulated cyclic pyranopterin monophosphate, the first intermediate of Moco biosynthesis, but showed decreased amounts of Moco. Specific antibodies against the Moco biosynthesis proteins CNX2 and CNX3 showed that the first step of Moco biosynthesis is localized in the mitochondrial matrix. Together with the observation that cyclic pyranopterin monophosphate accumulated in purified mitochondria, particularly in atm3 mutants, our data suggest that mitochondria and the ABC transporter ATM3 have a novel role in the biosynthesis of Moco.  相似文献   

10.
[目的] 摩尔酸作为齐墩果烷型三萜化合物具有抗HIV、抗炎等多种生物学活性,其前体物质是计曼尼醇,本研究基于合成生物学策略构建酿酒酵母细胞工厂高效合成摩尔酸。[方法] 运用CRISPR/Cas9技术,首先分别整合不同来源的氧化鲨烯环化酶(OSCs),筛选高产计曼尼醇底盘细胞;进一步异源表达长春花来源的细胞色素P450氧化酶(CYP716AL1)和麻风树来源的细胞色素P450还原酶(JcCPR),构建摩尔酸生物合成途径;并通过CYP716AL1和不同来源的CPR适配研究以及过表达甲羟戊酸(MVA)代谢途径中关键酶的方式提高摩尔酸的产量。[结果] 整合苹果来源的氧化鲨烯环化酶MdOSC获得的重组菌株计曼尼醇产量最高,达68.3 mg/L;以此为底盘细胞进一步整合CYP716AL1和JcCPR实现了摩尔酸的生物合成,产量为15.0 mg/L;共表达CYP716AL1和拟南芥来源的CPR获得的重组菌株摩尔酸产量最高,达到24.3 mg/L;最后过表达MVA代谢途径中的关键酶法呢基焦磷酸合酶(ERG20)和鲨烯环氧酶(ERG1),获得的重组菌株摩尔酸产量高达34.1 mg/L。[结论] 本研究实现了摩尔酸的高效生物合成,为构建高产齐墩果烷型三萜酿酒酵母细胞工厂提供了理论和技术依据。  相似文献   

11.
Economic bioconversion of plant cell wall hydrolysates into fuels and chemicals has been hampered mainly due to the inability of microorganisms to efficiently co-ferment pentose and hexose sugars, especially glucose and xylose, which are the most abundant sugars in cellulosic hydrolysates. Saccharomyces cerevisiae cannot metabolize xylose due to a lack of xylose-metabolizing enzymes. We developed a rapid and efficient xylose-fermenting S. cerevisiae through rational and inverse metabolic engineering strategies, comprising the optimization of a heterologous xylose-assimilating pathway and evolutionary engineering. Strong and balanced expression levels of the XYL1, XYL2, and XYL3 genes constituting the xylose-assimilating pathway increased ethanol yields and the xylose consumption rates from a mixture of glucose and xylose with little xylitol accumulation. The engineered strain, however, still exhibited a long lag time when metabolizing xylose above 10 g/l as a sole carbon source, defined here as xylose toxicity. Through serial-subcultures on xylose, we isolated evolved strains which exhibited a shorter lag time and improved xylose-fermenting capabilities than the parental strain. Genome sequencing of the evolved strains revealed that mutations in PHO13 causing loss of the Pho13p function are associated with the improved phenotypes of the evolved strains. Crude extracts of a PHO13-overexpressing strain showed a higher phosphatase activity on xylulose-5-phosphate (X-5-P), suggesting that the dephosphorylation of X-5-P by Pho13p might generate a futile cycle with xylulokinase overexpression. While xylose consumption rates by the evolved strains improved substantially as compared to the parental strain, xylose metabolism was interrupted by accumulated acetate. Deletion of ALD6 coding for acetaldehyde dehydrogenase not only prevented acetate accumulation, but also enabled complete and efficient fermentation of xylose as well as a mixture of glucose and xylose by the evolved strain. These findings provide direct guidance for developing industrial strains to produce cellulosic fuels and chemicals.  相似文献   

12.
Efficient and rapid fermentation of all sugars present in cellulosic hydrolysates is essential for economic conversion of renewable biomass into fuels and chemicals. Xylose is one of the most abundant sugars in cellulosic biomass but it cannot be utilized by wild type Saccharomyces cerevisiae, which has been used for industrial ethanol production. Therefore, numerous technologies for strain development have been employed to engineer S. cerevisiae capable of fermenting xylose rapidly and efficiently. These include i) optimization of xylose-assimilating pathways, ii) perturbation of gene targets for reconfiguring yeast metabolism, and iii) simultaneous co-fermentation of xylose and cellobiose. In addition, the genetic and physiological background of host strains is an important determinant to construct efficient and rapid xylose-fermenting S. cerevisiae. Vibrant and persistent researches in this field for the last two decades not only led to the development of engineered S. cerevisiae strains ready for industrial fermentation of cellulosic hydrolysates, but also deepened our understanding of operational principles underlying yeast metabolism.  相似文献   

13.
We have engineered a conventional yeast, Saccharomyces cerevisiae, to confer a novel biosynthetic pathway for the production of β-carotene and lycopene by introducing the bacterial carotenoid biosynthesis genes, which are individually surrounded by the promoters and terminators derived from S. cerevisiae. β-Carotene and lycopene accumulated in the cells of this yeast, which was considered to be a result of the carbon flow for the ergosterol biosynthetic pathway being partially directed to the pathway for the carotenoid production.  相似文献   

14.
Saccharomyces cerevisiae cannot utilize cellobiose, but this yeast can be engineered to ferment cellobiose by introducing both cellodextrin transporter (cdt-1) and intracellular β-glucosidase (gh1-1) genes from Neurospora crassa. Here, we report that an engineered S. cerevisiae strain expressing the putative hexose transporter gene HXT2.4 from Scheffersomyces stipitis and gh1-1 can also ferment cellobiose. This result suggests that HXT2.4p may function as a cellobiose transporter when HXT2.4 is overexpressed in S. cerevisiae. However, cellobiose fermentation by the engineered strain expressing HXT2.4 and gh1-1 was much slower and less efficient than that by an engineered strain that initially expressed cdt-1 and gh1-1. The rate of cellobiose fermentation by the HXT2.4-expressing strain increased drastically after serial subcultures on cellobiose. Sequencing and retransformation of the isolated plasmids from a single colony of the fast cellobiose-fermenting culture led to the identification of a mutation (A291D) in HXT2.4 that is responsible for improved cellobiose fermentation by the evolved S. cerevisiae strain. Substitutions for alanine (A291) of negatively charged amino acids (A291E and A291D) or positively charged amino acids (A291K and A291R) significantly improved cellobiose fermentation. The mutant HXT2.4(A291D) exhibited 1.5-fold higher Km and 4-fold higher Vmax values than those from wild-type HXT2.4, whereas the expression levels were the same. These results suggest that the kinetic properties of wild-type HXT2.4 expressed in S. cerevisiae are suboptimal, and mutations of A291 into bulky charged amino acids might transform HXT2.4p into an efficient transporter, enabling rapid cellobiose fermentation by engineered S. cerevisiae strains.  相似文献   

15.
16.
The yeast Saccharomyces cerevisiae was metabolically modified for enhanced biofuel precursor production by knocking out genes encoding mitochondrial isocitrate dehydrogenase and over-expression of a heterologous ATP-citrate lyase. A comparative iTRAQ-coupled 2D LC-MS/MS analysis was performed to obtain a global overview of ubiquitous protein expression changes in S. cerevisiae engineered strains. More than 300 proteins were identified. Among these proteins, 37 were found differentially expressed in engineered strains and they were classified into specific categories based on their enzyme functions. Most of the proteins involved in glycolytic and pyruvate branch-point pathways were found to be up-regulated and the proteins involved in respiration and glyoxylate pathway were however found to be down-regulated in engineered strains. Moreover, the metabolic modification of S. cerevisiae cells resulted in a number of up-regulated proteins involved in stress response and differentially expressed proteins involved in amino acid metabolism and protein biosynthesis pathways. These LC-MS/MS based proteomics analysis results not only offered extensive information in identifying potential protein-protein interactions, signal pathways and ubiquitous cellular changes elicited by the engineered pathways, but also provided a meaningful biological information platform serving further modification of yeast cells for enhanced biofuel production.  相似文献   

17.
Isobutanol is a more promising biofuel than ethanol due to its higher energy density and lower hygroscopicity. Saccharomyces cerevisiae, as a model eukaryote, has the potential advantage to produce isobutanol because of its greater tolerance to higher alcohols. NADPH is a key cofactor for isobutanol synthesis, and glucose-6-phosphate dehydrogenase (Zwf1) is one of the main NADPH-supplying sources in S. cerevisiae. In this study, we investigated the effects of over-expressing ZWF1 on isobutanol titers. Our results showed that engineered strain HZAL-7023 produced 6.22 mg isobutanol per g glucose, which increased by 6.64-fold compared with the parent strain, while engineered strain HZAL-7023 22-ZWF1 produced 11.46 mg isobutanol per g glucose, which increased by 1.82-fold compared with engineered strain HZAL-7023. These results suggested that improvement of NADPH supply through over-expressing ZWF1 contributed to isobutanol biosynthesis in S. cerevisiae. These results also verified the proposed concept of increasing isobutanol titers in S. cerevisiae by resolving cofactor imbalance. Finally, this study provides a new strategy for enhancing isobutanol biosynthesis.  相似文献   

18.
Engineering of Saccharomyces cerevisiae to produce advanced biofuels such as isobutanol has received much attention because this yeast has a natural capacity to produce higher alcohols. In this study, construction of isobutanol production systems was attempted by overexpression of effective 2-keto acid decarboxylase (KDC) and combinatorial overexpression of valine biosynthetic enzymes in S. cerevisiae D452-2. Among the six putative KDC enzymes from various microorganisms, 2-ketoisovalerate decarboxylase (Kivd) from L. lactis subsp. lactis KACC 13877 was identified as the most suitable KDC for isobutanol production in the yeast. Isobutanol production by the engineered S. cerevisiae was assessed in micro-aerobic batch fermentations using glucose as a sole carbon source. 93?mg/L isobutanol was produced in the Kivd overexpressing strain, which corresponds to a fourfold improvement as compared with the control strain. Isobutanol production was further enhanced to 151?mg/L by additional overexpression of acetolactate synthase (Ilv2p), acetohydroxyacid reductoisomerase (Ilv5p), and dihydroxyacid dehydratase (Ilv3p) in the cytosol.  相似文献   

19.
20.
The yeast Saccharomyces cerevisiae produces ethanol and glycerol as major unwanted byproducts, unless ethanol and glycerol are the target compounds. Minimizing the levels of these byproducts is important for bioproduction processes using yeast cells. In this study, we constructed a yeast strain in which both ethanol and glycerol production pathways were disrupted and examined its culture characteristics. In wild-type yeast strain, metabolic pathways that produce ethanol and glycerol play an important role in reoxidizing nicotinamide adenine dinucleotide (NADH) generated during glycolysis, particularly under anaerobic conditions. Strains in which both pathways were disrupted therefore failed to grow and consume glucose under anaerobic conditions. Introduction of desired metabolic reaction(s) coupled with NADH oxidation enabled the engineered strain to consume substrate and produce target compound(s). Here we introduced NADH-oxidization-coupled L-lactate production mechanisms into a yeast strain incapable of ethanol and glycerol biosynthesis, based on in silico simulation using a genome-scale metabolic model of S. cerevisiae. From the results of in silico simulation based on flux balance analysis, a feasible anaerobic non-growing metabolic state, in which L-lactate yield approached the theoretical maximum, was identified and this phenomenon was verified experimentally. The yeast strain incapable of both ethanol and glycerol biosynthesis is a potentially valuable host for bioproduction coupled with NADH oxidation under anaerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号