首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: Investigations on the production of red pigments by Rhodotorula glutinis on raw substrates of agro-industrial origin may be considered of interest because they represent the first approach to the utilization of these raw materials for biotechnological purposes. METHODS AND RESULTS: Rhodotorula glutinis DBVPG 3853 was batch and fed-batch co-cultured with Debaryomyces castellii DBVPG 3503 in a medium containing corn syrup as the sole carbon source. Fed-batch co-cultures gave a volumetric production of 8.2 mg total carotenoid l(-1), about 150% of that observed in batch co-cultures. The different carotenoid pigments (beta-carotene, torulene, torularhodin) were quantified. CONCLUSION: Oligosaccharides and dextrins of corn syrup could be used profitably for pigment production by R. glutinis DBVPG 3853-D. castellii DBVPG 3503 in co-culture. SIGNIFICANCE AND IMPACT OF THE STUDY: The above results suggest that the red yeasts belonging to the genus Rhodotorula may have industrial relevance as carotenoid producers.  相似文献   

2.
Wild strains of Rhodotorula glutinis and R. rubra were investigated concerning their carotenoid production, proportion of beta-carotene and cell mass yield. R. glutinis NCIM 3353 produced 2.2 mg carotenoid/l in 72 h; and the amount of beta-carotene was 14% (w/w) of the total carotenoid content (17 microg/g cell dry weight). It was subjected to mutagenesis using UV radiation for strain improvement. Out of 2,051 isolates screened, the yellow coloured mutant 32 produced 120-fold more beta-carotene (2,048 microg/g cell dry weight) than the parent culture in 36 h, which was 82% (w/w) of the total carotenoid content. Mutant 32 was grown on different carbon and nitrogen sources. The best yield of beta-carotene (33+/-3 mg/l) was obtained when glucose and yeast extract were supplied as carbon and nitrogen sources, respectively. Divalent cation salts further increased the total carotenoid content (66+/-2 mg/l) with beta-carotene as the major component (55+/-2%, w/w).  相似文献   

3.
AIMS: Enhancement in the production of beta-carotene by the hyper producer mutant 32 of Rhodotorula glutinis by manipulation of temperature and illumination. METHODS AND RESULTS: Growth and beta-carotene production was investigated in a 1 litre fermenter at different temperature and illumination conditions. The optimum temperature for growth and beta-carotene production was 30 and 20 degrees C, respectively. At 30 degrees C, beta-carotene production was 125 +/- 2 mg l-1 and accounted for 66% of the total carotenoids in 72 h; at 20 degrees C, it was 250 +/- 7 mg l-1 and accounted for 92% of total carotenoid content. Continuous illumination of the fermenter by 1000 lx white light hampered growth as well as carotenoid synthesis. At 30 degrees C, illuminating the fermenter in late logarithmic phase resulted in a 58% increase in beta-carotene production with a concurrent decrease in torulene; at 20 degrees C, however, it showed no appreciable increase. SIGNIFICANCE AND IMPACT OF THE STUDY: Proper manipulation of culture conditions enhanced beta-carotene production by R. glutinis which makes it a significant source of beta-carotene.  相似文献   

4.
Mutant 32, derived from Rhodotorula glutinis NCIM 3353 produced 76-fold more beta-carotene than the parent strain. In the growth medium prepared in seawater, the total carotenoid content and dry cell mass was 86 mg/l and 16 g/l, respectively, as compared to 70 mg/l and 12 g/l obtained with a medium prepared in distilled water. A 2-fold increase in beta-carotene with simultaneous 2.3-fold decrease in torulene content was also observed. When grown in seawater medium at pH 6.0, 83 +/- 5% carotenoids could be extracted from the cells without any mechanical disintegration.  相似文献   

5.
AIMS: To obtain beta-carotene-rich dry cell preparation from mutant 32 of Rhodotorula glutinis and determination of its pigment stability. METHODS AND RESULTS: The mutant 32 of R. glutinis was grown in a 14 l stirred tank fermenter. Cell mass was concentrated 10-fold by cross-flow microfiltration and then spray dried. Butylated hydroxy toluene (BHT) and d-tocopherol were used as protecting agents. A two-level, three-variable, factorial optimization was performed to achieve moisture-free, non-viable and beta-carotene-rich feed additive. CONCLUSIONS: The beta-carotene and cell mass in stirred tank fermenter were found to be 54 +/- 5 mg l-1 and 12.8 +/- 2 g l-1, respectively. In the presence of BHT, 97 +/- 3% (w/w) beta-carotene was recovered for all the inlet temperatures studied. The best beta-carotene and yeast powder recoveries were obtained at 160 degrees C, 11.6% (w/v) cell mass concentration and 1 g l-1 BHT. The pigments inside dried yeast powder were stable in dark and cold condition for at least 10 weeks. The purified beta-carotene got almost totally denatured, under similar conditions of storage, within 76 h. SIGNIFICANCE AND IMPACT OF THE STUDY: Spray dried and stable preparation of beta-carotene-rich yeast, R. glutinis can provide alternative source of beta-carotene for use in animal nutrition.  相似文献   

6.
Rhodotorula glutinis and Sporobolomyces roseus, grown under different aeration regimes, showed differential responses in their carotenoid content. At higher aeration, the concentration of total carotenoids increased relative to biomass and total fatty acids in R. glutinis, but the composition of carotenoids (torulene > beta-carotene > gamma-carotene > torularhodin) remained unaltered. In contrast, S. roseus responded to enhanced aeration by a shift from the predominant beta-carotene to torulene and torularhodin, indicating a biosynthetic switch at the gamma-carotene branch point of carotenoid biosynthesis. The overall levels of total carotenoids in highly aerated flasks were 0.55 mol-percent and 0.50 mol-percent relative to total fatty acids in R. glutinis and S. roseus (respectively), and 206 and 412 microg g(-1) dry weight (respectively).  相似文献   

7.
Six fungal elicitors prepared from Rhodotorula rubra, Rhodotorula glutinis, Panus conchatus, Coriolus versicolor, Mucor mucedo, Mortieralla alpina M-23 were examined to determine their effects on the growth, total carotenoids and astaxanthin formation by Xanthophyllomyces dendrorhous. The results showed that different fungal elicitor could cause diversely stimulating effects. Among the fungal elicitors tested, the M. mucedo elicitor concentration of 30 mg l(-1) promoted the biomass and total carotenoids yield most remarkably, resulting in 69.81+/-6.00% and 78.87+/-4.15% higher than the control, respectively. At the concentration of 30 mg l(-1), R. glutinis elicitor stimulated the highest astaxanthin yield with a 90.60+/-5.98% increase compared to the control. The R. rubra elicitor concentration of 30 mg l(-1) resulted in the optimal total carotenoids and astaxanthin content to be 42.24+/-0.49% and 69.02+/-0.72% higher than the control, respectively. At the concentration of 30 mg l(-1), R. rubra elicitor gave the highest increase in the ratio of astaxanthin in total carotenoids by 18.85+/-0.11% of the control.  相似文献   

8.
Formation of carotenoids by rhodotorula glutinis in whey ultrafiltrate   总被引:3,自引:0,他引:3  
The growth and carotenoid biosynthesis of the yeast Rhodotorula glutinis was studied by cocultivation with Lactobacillus helveticus in cheese ultrafiltrate containing 3.9% and 7.1% lactose. By growing this mixed culture in a 15-L fermentor MBR AG (Switzerland) at an air flow rate of 0.5 L/L min and agitation at 220 rpm for 6 days, a total yield of carotenoids of 268 mug/g dry cells wasobtained. Carotenoids were formed almost parallel with the cell growth, anda maximum production was reached at an early stationary phase. A high-performance liquid chromatographic system (HPLC) permitting simultaneous determination of major carotenoid pigments was used. The three main pigments (torularhodin, beta-carotene, and torulene) were formed in Rhodotorula glutinis, and reached a maximum concentration as follows: 182.0, 43.9, 23.0 mug,g dry cells. (c) 1994 John Wiley & Sons, Inc.  相似文献   

9.
Two strains were selected--the lactoso-negative yeast Rhodotorula rubra GED2 and the homofermentative Lactobacillus casei subsp. casei Ha1 for co-cultivation in cheese whey ultrafiltrate (WU) and active synthesis of carotenoids. Under conditions of intensive aeration (1.0 l/l min, 220 rpm), a temperature of 30 degrees C, WU with 55.0 g lactose/l, initial pH = 5.5, the carotenoid content in the cells reached a maximum, when the growth of the cultures had come to an end, i.e. in the stationary phase of the yeast. The maxima for dry cell accumulation (27.0 g/l) and carotenoid formation (12.1 mg/l culture medium) did not coincide on the 5th and 6th day, respectively. A peculiarity of the carotenoid-synthesizing Rh. rubra GED2 strain, co-cultivated with L. casei Ha1, was the production of carotenoids with high beta-carotene content (46.6% of total carotenoids) and 10.7% and 36.9% for torulene and torularhodin, respectively.  相似文献   

10.
A face-centered central composite design was applied to optimize a cultivation condition for improved beta-carotene production by Rhodotorula glutinis DM28 in a stirred tank reactor using 30 g/l total soluble solid of fermented radish brine as a sole substrate. The experiments were performed with regression models, where temperature, pH and dissolved oxygen were considered as variables. Results showed that an optimum condition for beta-carotene production of the yeast was at 30 degrees C, pH 6 and 80% dissolved oxygen. Under this condition, the yeast yielded 2.7 g/l biomass and the maximum beta-carotene of 201 microg/l after 24-h fermentation indicating approximately 15% higher than those under an initial condition (2.3g/l and 178 microg/l, respectively).  相似文献   

11.
Strains of basidiomycete yeasts isolated from different sources were studied in order to determine the content of carotenoid pigments and ubiquinone Q10 for subsequent selection work to obtain producers of these substances. High specific productivity of carotenoids (600-700 mg/g) was revealed in the representatives of the following species: Cystofilobasidium capitatum. Rhodosporidium diobovatum, R. sphaerocarpum. Rhodotorula glutinis, Rh. minuta, and Sporobolomyces roseus. The ratio of the major pigments (torulene, torularhodine, and beta-carotene) in the representatives of different species was studied. Certain specific features of pigment formation in relation to the taxonomic position of the yeasts were determined. Eurybiont species with substantial ecological lability are the most active producers of carotenoids and ubiquinone Q10 among the epiphytes. It is the first time a comparative analysis of the coenzyme Q10 content in different taxa has been performed using several strains of the same species. The maximal coenzyme Q10 production (1.84 mg/g of dry biomass) was found in the yeast species R. sphaerocarpum.  相似文献   

12.
AIMS: To study the effect of intermediates of the tricarboxylic acid (TCA) cycle on the production of zeaxanthin from Flavobacterium multivorum in order to optimize production of this xanthophyll carotenoid. METHODS AND RESULTS: The concentration of selected TCA cycle intermediates (malic acid, isocitric acid and alpha-ketoglutarate) was optimized in shake flask culture, using a statistical two-level, three-variable factorial approach. The carotenoid production profile was also studied in the optimized medium at various growth phases. Optimized medium resulted in a sixfold increase in volumetric production of zeaxanthin (10.65 +/- 0.63 microg ml-1) using malic acid (6.02 mm), isocitric acid (6.20 mm) and alpha-ketoglutarate (0.02 mm). The majority of zeaxanthin was produced in the late logarithmic growth phase whereas a substantial amount of beta-cryptoxanthin and beta-carotene were observed in the early logarithmic phase. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates improvement of zeaxanthin production from F. multivorum which might aid in the commercialization of zeaxanthin production from this microbe.  相似文献   

13.
Rhodotorula glutinis 22P when co-cultivated with Lactobacillus helveticus 12A in a whey ultrafiltrate synthesizes maximum cell mass and carotenoid concentrations (31.9 g/l and 8388 g/l, respectively) at 30°C. The change in the growth temperature conditions of both cultures influences the carotenogenesis by yeast and the proportion of individual pigments forming up the carotenoids.  相似文献   

14.
15.
Application of two-phase bioreactors is a useful technique for improvement of the productivity of fermentations. Fermentative extraction of the products in situ is performed in this technique. The effect of light intensity on the extraction of beta-carotene from Dunaliella salina, in the fermentative extraction, has been investigated. Three different average light exposures were applied: 1.5 x 10(-8) (low), 2.7 x 10(-8) (intermediate) and 4.5 x 10(-8) (high) micromol s(-1) per cell. Results show that beta-carotene content of the cells increases by increasing the light exposure. Increase in the beta-carotene content of the cells is not necessarily coupled with an increase in the volumetric production of beta-carotene. Final volumetric production is about the same for the three bioreactors. beta-Carotene extraction rate is enhanced by the increase in the light exposure. The results suggest that extraction rate is related to beta-carotene content of the cells and is not essentially related to the volumetric production of beta-carotene. Although the effectiveness of extraction with respect to the light input is comparable for all light intensities applied, increasing the light input per cell leads to a higher volumetric extraction rate. Moreover, extracted beta-carotene stays very pure even so the extraction increased by the increase of light intensity.  相似文献   

16.
The present investigation deals with citric acid production by some selected mutant strains of Aspergillus niger from cane molasses in 250 ml Erlenmeyer flasks. For this purpose, a conidial suspension of A. niger GCB-75, which produced 31.1 g/l citric acid from 15% (w/v) molasses sugar, was subjected to UV-induced mutagenesis. Among the 3 variants, GCM-45 was found to be a better producer of citric acid (50.0 +/- 2a) and it was further improved by chemical mutagenesis using N-methyl, N-nitro-N-nitroso-guanidine (MNNG). Out of 3,2-deoxy-D-glucose resistant variants, GCMC-7 was selected as the best mutant, which produced 96.1 +/- 1.5 g/l citric acid 168 h after fermentation of potassium ferrocyanide and H2SO4 pre-treated blackstrap molasses in Vogel's medium. On the basis of kinetic parameters such as volumetric substrate uptake rate (Qs), and specific substrate uptake rate (qs), the volumetric productivity, theoretical yield and specific product formation rate, it was observed that the mutants were faster growing organisms and produced more citric acid. The mutant GCMC-7 has greater commercial potential than the parental strain with regard to citrate synthase activity. The addition of 2.0 x 10(-5) M MgSO4 x 5H2O into the fermentation medium reduced the Fe2+ ion concentration by counter-acting its deleterious effect on mycelial growth. The magnesium ions also induced a loose-pelleted form of growth (0.6 mm, diameter), reduced the biomass concentration (12.5 g/l) and increased the volumetric productivity of citric acid monohydrate (113.6 +/- 5 g/l).  相似文献   

17.
A mutant Rhodotorula rubra with enhanced carotenoid-synthesizing activity for synthesizing total carotenoids and beta-carotene was obtained by N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. When co-cultivated with yogurt starter bacteria (Lactobacillus bulgaricus + Streptococcus thermophilus) in whey ultrafiltrate it produced 15.7 mg total carotenoids l(-1) culture fluid or 946 microg total carotenoids g(-1) dry cells of which 71% was beta-carotene. Grown as a monoculture in glucose substrate, the mutant shown 1.4 times lower carotenoid-synthesizing activity, and the relative share of beta-carotene in the total carotenoids was lower (63%). The individual pigments torulene and torularhodin were identified, whose mass fractions were (29% and 7%) and (24% and 4%), respectively, for the mutant grown as a monoculture and as a mixed culture with the yogurt bacteria.  相似文献   

18.
A carotenoid-accumulating bacterium isolated from soil, identified as a Sphingomonas sp., grew at 0.18 h(-1) and produced 1.7 mg carotenoids g(-1) dry cell, among which beta-carotene (29% of total carotenoids) and nostoxanthin (36%). A mutant strain, obtained by treatment with ethyl methanesulfonate, accumulated up to 3.5 mg carotenoids g(-1) dry cell. Accumulation of beta-carotene by this strain depended on the oxygenation of the growth medium, with maximal accumulation (89%) occurring under limiting conditions. Beta-carotene accumulation could be further enhanced by incubating the cells in the presence of glycerol (either not or only slowly assimilated) and yeast extract resulting in an accumulation of 5.7 mg beta-carotene g(-1) dry cell wt. The strain used lactose as carbon source with similar biomass and carotenoid production, providing a viable alternative use for cheese whey ultra-filtrate.  相似文献   

19.
Blakeslea trispora (+) MTCC, Blakeslea trispora NRRL 2895 (+), Blakeslea trispora NRRL 2896 (-) as well as intraspecific mating of both the strain types have been studied for optimum production of beta-carotene. Intraspecific mating of both the strain types increased the yield of beta-carotene to a considerable level (98+/-2mg/l) as compared to wild strains. Effect of different media components such as carbon, nitrogen, and sulphates, and that of process variables such as pH and inoculum size on beta-carotene production by Blakeslea trispora in shake flask culture was investigated. One factor at-a-time method was employed for the optimization of media components. Response surface methodology (RSM) was further used to determine the optimum values of process variables for maximum beta-carotene production. The fit of the quadratic model was found to be significant. A significant increase in beta-carotene production (139+/-1mg/l) was achieved using RSM.  相似文献   

20.
Carotenoid-producing yeast species such as Rhodotorula glutinis and Sporobolomyces roseus efficiently accumulated selenium from the growth medium. It was observed that incorporation of selenium into yeast cells during the growth inhibited production of beta-carotenoid and other carotenoid precursors (torularhodin and torulene). The yeasts with high content of the carotenoid pigments and selenium may be used for the preparation of a new type of antioxidant formula that could be directly applied for various human and animal diets. We have demonstrated that such a formula can only be produced by separate processes of the cultivation of red yeasts and a subsequent sorption of selenium into the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号