首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tubulin and actin topology during zygote formation of Saccharomyces cerevisiae   总被引:16,自引:0,他引:16  
The topology of tubulin and actin during mating of Saccharomyces cerevisiae was analysed by fluorescence microscopy with the monoclonal anti-tubulin antibody Tu01 and rhodamine-labelled phalloidin. Preconjugatory cells displayed an asymmetric distribution of the microtubule and actin cytoskeleton and an overall polarization of the cells preceding cell fusion. Prior to karyogamy, the haploid spindle pole bodies were associated with abundant cytoplasmic microtubules. Budding zygotes revealed the same tubulin and actin patterns as vegetative cells. Treatment of the mating mixture with the microtubule inhibitor nocodazole (10 micrograms ml-1) did not prevent polarization and fusion of haploids, zygote formation and emergence of the first zygotic bud. In marked contrast, the migration of the nucleus in preconjugatory cells as well as nuclear migration and fusion within the zygotes was unequivocally blocked by the action of the drug. It is suggested that the problem of the morphogenesis of mating should be approached by considering interactions at the cell periphery.  相似文献   

2.
S Strome  W B Wood 《Cell》1983,35(1):15-25
Germ-line granules in C. elegans embryos (P granules) can be visualized by immunofluorescence microscopy using a monoclonal antibody. In mutant zygotes with abnormal spindle orientations and in wild-type zygotes treated with the microtubule inhibitors nocodazole, colcemid, vinblastine, and griseofulvin, both P-granule segregation to the posterior pole and the concomitant pseudocleavage occur apparently normally, but the normally concurrent migration of the pronuclei is inhibited. Conversely, treatment of wild-type embryos with the microfilament inhibitors cytochalasins D and B inhibits P-granule segregation and pseudocleavage, as well as other manifestations of polarity, without preventing pronuclear migration. The results suggest that P-granule segregation does not require either the spindle or cytoplasmic microtubules, but that this process as well as generation of other asymmetries does require cytoskeletal functions that depend on microfilaments.  相似文献   

3.
The establishment of anterior-posterior polarity in the Caenorhabditis elegans embryo requires the activity of the maternally expressed par genes. We report the identification and analysis of a new par gene, par-5. We show that par-5 is required for asynchrony and asymmetry in the first embryonic cell divisions, normal pseudocleavage, normal cleavage spindle orientation at the two-cell stage, and localization of P granules and MEX-5 during the first and subsequent cell cycles. Furthermore, par-5 activity is required in the first cell cycle for the asymmetric cortical localization of PAR-1 and PAR-2 to the posterior, and PAR-3, PAR-6, and PKC-3 to the anterior. When PAR-5 is reduced by mutation or by RNA interference, these proteins spread around the cortex of the one-cell embryo and partially overlap. We have shown by sequence analysis of par-5 mutants and by RNA interference that the par-5 gene is the same as the ftt-1 gene, and encodes a 14-3-3 protein. The PAR-5 14-3-3 protein is present in gonads, oocytes, and early embryos, but is not asymmetrically distributed. Our analysis indicates that the par-5 14-3-3 gene plays a crucial role in the early events leading to polarization of the C. elegans zygote.  相似文献   

4.
Female meiotic divisions in higher organisms are asymmetric and lead to the formation of a large oocyte and small polar bodies. These asymmetric divisions are due to eccentric spindle positioning which, in the mouse, requires actin filaments. Recently Formin-2, a straight actin filaments nucleator, has been proposed to control spindle positioning, chromosome segregation as well as first polar body extrusion in mouse oocytes. We reexamine here the possible role of Formin-2 during mouse meiotic maturation by live videomicroscopy. We show that Formin-2 controls first meiotic spindle migration to the cortex but not chromosome congression or segregation. We also show that the lack of first polar body extrusion in fmn2(-/-) oocytes is not due to a lack of cortical differentiation or central spindle formation but to a defect in the late steps of cytokinesis. Indeed, Survivin, a component of the passenger protein complex, is correctly localized on the central spindle at anaphase in fmn2(-/-) oocytes. We show here that attempts of cytokinesis in these oocytes abort due to phospho-myosin II mislocalization.  相似文献   

5.
Verlhac MH 《Nature cell biology》2011,13(10):1183-1185
Successful completion of meiosis in vertebrate oocytes requires the localization and maintenance of the meiotic spindle at the cell cortex. Arp2/3-nucleated actin filaments are now shown to flow away from the cortex overlying the spindle, resulting in cytoplasmic streaming, which maintains the spindle in its asymmetric position.  相似文献   

6.
Summary The reorganization of the actin and microtubule (MT) cytoskeleton was immunocytochemically visualized by confocal laser scanning microscopy throughout the photomorphogenetic differentiation of tip-growing characean protonemata into multicellular green thalli. After irradiating dark-grown protonemata with blue or white light, decreasing rates of gravitropic tip-growth were accompanied by a series of events leading to the first cell division: the nucleus migrated towards the tip; MTs and plastids invaded the apical cytoplasm; the polar zonation of cytoplasmic organelles and the prominent actin patch at the cell tip disappeared and the tip-focused actin microfilaments (MFs) were reorganized into a homogeneous network. During prometaphase and metaphase, extranuclear spindle microtubules formed between the two spindle poles. Cytoplasmic MTs associated with the apical spindle pole decreased in number but did not disappear completely during mitosis. The basal cortical MTs represent a discrete MT population that is independent from the basal spindle poles and did not redistribute during mitosis and cytokinesis. Preprophase MT bands were never detected but cytokinesis was characterized by higher-plant-like phragmoplast MT arrays. Cytoplasmic actin MFs persisted as a dense network in the apical cytoplasm throughout the first cell division. They were not found in close contact with spindle MTs, but actin MFs were clearly coaligned along the MTs of the early phragmoplast. The later belt-like phragmoplast was completely depleted of MFs close to the time of cell plate fusion except for a few actin MF bundles that extended to the margin of the growing cell plate. The cell plate itself and young anticlinal cell walls showed strong actin immunofluorescence. After several anticlinal cell divisions, basal cells of the multicellular protonema produced nodal cell complexes by multiple periclinal divisions. The apical-dome cell of the new shoot which originated from a nodal cell becomes the meristem initial that regularly divides to produce a segment cell. The segment cell subsequently divides to produce a single file of alternating internodal cells and multicellular nodes which together form the complexly organized characean thallus. The actin and MT distribution of nodal cells resembles that of higherplant meristem cells, whereas the internodal cells exhibit a highly specialized cortical system of MTs and streaming-generating actin bundles, typical of highly vacuolated plant cells. The transformation from the asymmetric mitotic spindle of the polarized tip-growing protonema cell to the symmetric, higher-plant-like spindle of nodal thallus cells recapitulates the evolutionary steps from the more primitive organisms to higher plants.Abbreviations FITC fluorescein isothiocyanate - MF microfilament - MT microtubule - MSB microtubule-stabilizing buffer - PBS phosphate-buffered saline  相似文献   

7.
We show that in contrast to metaphase II oocytes, metaphase I oocytes cannot be activated by fusion with the zygote. Fusion of metaphase I oocytes with G2 zygotes was followed by premature chromosome condensation, with 60% of the hybrids becoming arrested at metaphase I, the remainder progressing and arresting at metaphase II. Hybrids of metaphase I oocytes and M-phase zygotes underwent accelerated maturation, but all arrested at metaphase II. In both cases the arrest could be overcome by treatment with the parthenogenetic activators ethanol and cycloheximide. We discuss these findings in relation to the possibility that the metaphase I oocyte contains cytostatic factor activity that is activated by its zygotic partner. Alternatively, the G2 zygote may provide an inhibitor of anaphase, normally never present in the metaphase I oocyte and which is absent from the M-phase zygote.  相似文献   

8.
As Caenorhabditis elegans hermaphrodites age, sperm become depleted, ovulation arrests, and oocytes accumulate in the gonad arm. Large ribonucleoprotein (RNP) foci form in these arrested oocytes that contain RNA-binding proteins and translationally masked maternal mRNAs. Within 65 min of mating, the RNP foci dissociate and fertilization proceeds. The majority of arrested oocytes with foci result in viable embryos upon fertilization, suggesting that foci are not deleterious to oocyte function. We have determined that foci formation is not strictly a function of aging, and the somatic, ceh-18, branch of the major sperm protein pathway regulates the formation and dissociation of oocyte foci. Our hypothesis for the function of oocyte RNP foci is similar to the RNA-related functions of processing bodies (P bodies) and stress granules; here, we show three orthologs of P body proteins, DCP-2, CAR-1 and CGH-1, and two markers of stress granules, poly (A) binding protein (PABP) and TIA-1, appear to be present in the oocyte RNP foci. Our results are the first in vivo demonstration linking components of P bodies and stress granules in the germ line of a metazoan. Furthermore, our data demonstrate that formation of oocyte RNP foci is inducible in non-arrested oocytes by heat shock, osmotic stress, or anoxia, similar to the induction of stress granules in mammalian cells and P bodies in yeast. These data suggest commonalities between oocytes undergoing delayed fertilization and cells that are stressed environmentally, as to how they modulate mRNAs and regulate translation.  相似文献   

9.
Microfilaments are needed to generate asymmetry during the first cell cycle in Caenorhabditis elegans zygotes. To investigate when and how microfilaments participate in this process, we have "pulsed" zygotes with the microfilament inhibitor cytochalasin D (CD) at different times during the cell cycle. We have shown that microfilaments are only required during a narrow time interval approximately three-quarters of the way through the first cell cycle for the manifestations of asymmetry that occur during and subsequent to this interval. When CD treatment spans this critical time interval, pseudocleavage, pronuclear migration, germ-granule segregation (all of which occur during the interval), and movement of the mitotic spindle to an asymmetric position (which occurs later in the cell cycle) are perturbed. In contrast, embryos briefly treated with CD before or after the critical time interval manifest normal asymmetry. Our results suggest that in C. elegans microfilaments participate in the generation of zygotic asymmetry by providing spatial cues and/or serving as a part of the necessary machinery only during a brief period in the first cell cycle, and are not required to maintain asymmetries that have already been established.  相似文献   

10.
Oocytes mature into eggs by extruding half of their chromosomes in a small cell termed the polar body. Asymmetric oocyte division is essential for fertility [1], but despite its importance, little is known about its mechanism. In mammals, the meiotic spindle initially forms close to the center of the oocyte. Thus, two steps are required for asymmetric meiotic division: first, asymmetric spindle positioning and second, polar body extrusion. Here, we identify Spire1 and Spire2 as new key factors in asymmetric division of mouse oocytes. Spire proteins are novel types of actin nucleators that drive nucleation of actin filaments with their four WH2 actin-binding domains [2-6]. We show that Spire1 and Spire2 first mediate asymmetric spindle positioning by assembling an actin network that serves as a substrate for spindle movement. Second, they drive polar body extrusion by promoting assembly of the cleavage furrow. Our data suggest that Spire1 and Spire2 cooperate with Formin-2 (Fmn2) to nucleate actin filaments in mouse oocytes and that both types of nucleators act as a functional unit. This study not only reveals how Spire1 and Spire2 drive two critical steps of asymmetric oocyte division, but it also uncovers the first physiological function of Spire-type actin nucleators in vertebrates.  相似文献   

11.
In angiosperms, a zygote generally divides into an asymmetric two-celled embryo consisting of an apical and a basal cell. This unequal division of the zygote is a putative first step for formation of the apical–basal axis of plants and is a fundamental feature of early embryogenesis and morphogenesis in angiosperms. Because fertilization and subsequent embryogenesis occur in embryo sacs, which are deeply embedded in ovular tissue, in vitro fertilization of isolated gametes is a powerful system to dissect mechanisms of fertilization and post-fertilization events. Rice is an emerging molecular and experimental model plant, however, profile of the first zygotic division within embryo sac and thus origin of apical–basal embryo polarity has not been closely investigated. Therefore, in the present study, the division pattern of rice zygote in planta was first determined accurately by observations employing serial sections of the egg apparatus, zygotes and two-celled embryos in the embryo sac. The rice zygote divides asymmetrically into a two-celled embryo consisting of a statistically significantly smaller apical cell with dense cytoplasm and a larger vacuolated basal cell. Moreover, detailed observations of division profiles of zygotes prepared by in vitro fertilization indicate that the zygote also divides into an asymmetric two-celled embryo as in planta. Such observations suggest that in vitro-produced rice zygotes and two-celled embryos may be useful as experimental models for further investigations into the mechanism and control of asymmetric division of plant zygotes.  相似文献   

12.
Female meiosis in higher organisms consists of highly asymmetric divisions, which retain most maternal stores in the oocyte for embryo development. Asymmetric partitioning of the cytoplasm results from the spindle's "off-center" positioning, which, in mouse oocytes, depends mainly on actin filaments [1, 2]. This is a unique situation compared to most systems, in which spindle positioning requires interactions between astral microtubules and cortical actin filaments [3]. Formin 2, a straight-actin-filament nucleator, is required for the first meiotic spindle migration to the cortex and cytokinesis in mouse oocytes [4, 5]. Although the requirement for actin filaments in the control of spindle positioning is well established in this model, no one has been able to detect them in the cytoplasm [6]. Through the expression of an F-actin-specific probe and live confocal microscopy, we show the presence of a cytoplasmic actin meshwork, organized by Formin 2, that controls spindle migration. In late meiosis I, these filaments organize into a spindle-like F-actin structure, which is connected to the cortex. At anaphase, global reorganization of this meshwork allows polar-body extrusion. In addition, using actin-YFP, our FRAP analysis confirms the presence of a highly dynamic cytoplasmic actin meshwork that is tightly regulated in time and space.  相似文献   

13.
14.
Actin-plasma membrane associations in mouse eggs and oocytes   总被引:1,自引:0,他引:1  
Using rhodamine-phalloidin stained preparations and extracted specimens labeled with heavy meromyosin or run on polyacrylamide gels, actin-plasma membrane associations in mouse mature eggs at the second metaphase of meiosis and oocytes at meiotic prophase have been examined. Cortices of extracted oocytes possessed numerous actin filaments that emanated from the plasma membrane delimiting regions between microvilli and from microvillar apices. The membrane anchorage sites of actin filaments were marked by an electron dense material on the inner leaflet of the plasma membrane. The free ends of filaments emanating from the plasma membrane of oocytes intermeshed to form a dense, cortical layer. With meiotic maturation, changes in the organization of cortical actin were first noted approximately 3 hr after the chromosomes had become localized at the oocyte's periphery. Fewer and shorter actin filaments, which did not form a well-defined layer as in oocytes, were connected with electron-dense material to the inner leaflet of the plasma membrane of extracted egg cortices in regions other than that associated with the meiotic spindle. Cortical actin adjacent to the meiotic spindle, however, was organized into a dense, cresentic aggregation in which clusters of filaments emanated from electron-dense regions associated with both the inner and outer leaflets of the plasma membrane. These observations indicate that mouse oocyte maturation not only involves changes in the distribution of cortical actin but also local alterations in the association of actin with the plasma membrane.  相似文献   

15.
16.
Tropomyosins are actin-binding cytoskeletal proteins that play a pivotal role in regulating the function of actin filaments in muscle and non-muscle cells; however, the roles of non-muscle tropomyosins in mouse oocytes are unknown. This study investigated the expression and functions of non-muscle tropomyosin (Tpm3) during meiotic maturation of mouse oocytes. Tpm3 mRNA was detected at all developmental stages in mouse oocytes. Tpm3 protein was localized at the cortex during the germinal vesicle and germinal vesicle breakdown stages. However, the overall fluorescence intensity of Tpm3 immunostaining was markedly decreased in metaphase II oocytes. Knockdown of Tpm3 impaired asymmetric division of oocytes and spindle migration, considerably reduced the amount of cortical actin, and caused membrane blebbing during cytokinesis. Expression of a constitutively active cofilin mutant and Tpm3 overexpression confirmed that Tpm3 protects cortical actin from depolymerization by cofilin. The data indicate that Tpm3 plays crucial roles in maintaining cortical actin integrity and asymmetric cell division during oocyte maturation, and that dynamic regulation of cortical actin by Tpm3 is critical to ensure proper polar body protrusion.  相似文献   

17.
Mature?mammalian?oocytes?are?poised?for?completing?meiosis?II (MII) on fertilization by positioning the spindle close to an actomyosin-rich cortical cap. Here, we show that the Arp2/3 complex localizes to the cortical cap in a Ran-GTPase-dependent manner and nucleates actin filaments in the cortical cap and a cytoplasmic actin network. Inhibition of Arp2/3 activity leads to rapid dissociation of the spindle from the cortex. Live-cell imaging and spatiotemporal image correlation spectroscopy analysis reveal that actin filaments flow continuously away from the Arp2/3-rich cortex, driving a cytoplasmic streaming expected to exert a net pushing force on the spindle towards the cortex. Arp2/3 inhibition not only diminishes this actin flow and cytoplasmic streaming but also enables a reverse streaming driven by myosin-II-based cortical contraction, moving the spindle away from the cortex. Thus, the asymmetric MII spindle position is dynamically maintained as a result of balanced forces governed by the Arp2/3 complex.  相似文献   

18.
Cover Picture     
In mammalian oocytes the meiotic spindle (green) migrates to the cortex and leads to the unique asymmetric cell division, generating a small polar body and a big egg. This process is regulated by actin filaments (red). Knock down of Dynamin expression caused the failure of this process. Blue: DNA.  相似文献   

19.
Summary In the first step of scale formation several small vesicles originating from the Golgi fuse to form a large flattened primary vesicle associated with the surface of one plastid. In a second step this vesicle undergoes several morphogenetic events to form the mold of ornamented scales elaborated in the lumen of the scale forming vesicle (SFV). Thick filaments composed of a stack of actin microfilaments (MFs) settle on the membrane of the SFV turned toward the plastid. They are laterally cross-linked to each other and to the SFV membrane and assembled in a horseshoe figure at the place of the future base-plate of the scale. On the center of the vesicle free of actin MF, where the periplastidial endoplasmic reticulum (PER) and the SFV membranes are glued, a protrusion occurs to form a diverticulum which is to become the future hull or the spine of the finished scale. On the external side of the SFV a microfibrillar network covers the surface of the vesicle. Microtubules (MTs) originating near the kinetosomes change their rectilinear course to follow the two longitudinal margins and the diverticulum of the SFV. MTs are not directly attached to the membrane of the SFV but rather through the microfibrillar network. A set of observations suggest that actin MFs have a structural function in maintaining the shape of the vesicle rather than a role in the migration of the SFV on the surface of the plastid. MTs probably play a role in the migration and in the morphogenesis of the SFV in conjunction with microfibrils. Also, the formation of SFVs and silica deposition are compared to that in diatoms.  相似文献   

20.
Summary Major stages of actin organization during activation leading to germination of pear (Pyrus communis L.) pollen were disrupted by treatment with 5 g/ml cytochalasin D (CD), and the effects of the drug were monitored with rhodamine-phalloidin staining. CD induced the formation of granules or short rods in the place of the filamentous arrays that occur in normally developing pollen. Filamentous arrays, however, returned upon removal of CD. Pollen incubated directly in CD showed a gradual disappearance of circular actin profiles and their replacement by either granules or, less frequently, short rods. These granules and rods initially had a random distribution in the cell, but with time in CD they became localized at one of the three germination apertures. Pollen was also allowed to reach three stages of microfilament (MF) organization (initial fibrillar arrays, interapertural MFs, and MFs confined beneath a single aperture) prior to being continously exposed to CD. After CD treatment, germination was blocked and the number of cells containing short rods increased, but movement of actin to a single aperture continued. Finally, when pollen at different stages of MF organization was treated with a CD pulse and then transferred to drug-free medium, germination was delayed regardless of the stage of MF organization at the time of treatment. The results indicate that an uninterrupted progression of actin organization is essential for pollen germination, but that movement of actin in the cell is CD-insensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号