首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescence in situ hybridization (FISH) of chromosome 21 specific yeast artificial chromosome (YAC) clones after Alu-PCR (polymerase chain reaction) amplification has been used to find new region-specific DNA probes for the heterochromatic region of chromosome 21. Six overlapping YAC clones from a pericentromeric contig map (region 21cen-21q11) were analyzed. Four YAC clones were characterized as hybridizing to several chromosomal locations. They are, therefore, either chimeric or shared by different chromosomes. Two of them containing alphoid satellite DNA, are localized at the centromeric regions of chromosomes 13 and 21 (clone 243A11), and on 13cen, 21cen and 1q3 (clone 781G5); the two others are localized at both 21q11 and 13q2 (clone 759D3), and at 18p (clone 770B3). Two YACs were strongly specific for chromosome 21q11 only (clones 124A7 and 881D2). These YACs were used effectively as probes for identifications of chromosome 21 during metaphase and interphase analysis of 12 individuals, including three families with Down syndrome offspring, and 6 amniocyte samples. The location of YAC clones on 21q11 close to the centromeric region allows the application of these clones as molecular probes for the analysis of marker chromosomes with partial deletions of the long arm as well as for pre- and postnatal diagnosis of trisomy 21 when alphoid or more distal region-specific DNA probes are uninformative. Overlapping YAC clones covering human chromosome 21q may be systematically used to detect a set of band-specific DNA probes for molecular-cytogenetic application.  相似文献   

2.
The patient with atypical clinic picture of 18p- syndrome is described. The in situ hybridization technique was used to localize chromosome 18-specific cloned sequence to metaphase chromosomes of the proband. The predominant hybridization was found in pericentromeric regions of homologous chromosome 18. The amount of pericentromeric DNA measured by in situ hybridization was different in homologous chromosomes and the number of radioactive grains was statistically greater in the normal chromosome 18 than in the chromosome 18p-. The cause of asymmetrical hybridization of probes to homologous chromosomes 18 is discussed. The results obtained indicate that this probe may be useful in clinical cytogenetics for identification of chromosome 19 in metaphase and interphase cells, determination of breakpoints or studies of pericentromeric DNA polymorphisms.  相似文献   

3.
A degenerate alpha satellite DNA probe specific for a repeated sequence on human chromosomes 13 and 21 was synthesized using the polymerase chain reaction (PCR). Fluorescence in situ hybridization (FISH) with this probe to normal metaphase spreads revealed strong probe binding to the centromeric regions of human chromosomes 13 and 21 with negligible cross-hybridization with other chromosomes. FISH to normal interphase cell nuclei showed four distinct domains of probe binding. However, hybridization with probe to interphase and metaphase preparations from one apparently normal human male resulted in only three major binding domains. Metaphase chromosome analysis revealed a centromeric deletion on one chromosome 21 that caused greatly reduced probe binding. The result suggest caution in the interpretation of interphase ploidy studies performed with chromosome-specific alphoid DNA probes.  相似文献   

4.
5.
Summary We have used a recombinant DNA clone derived from the Y-specific 3,4-kb repeats for in situ chromosome hybridization and Southern blotting analysis to identify a case of de novo Y;18 translocation. The proband has a chromosome complement of 46,XY and a variant chromosome 18 with a Q-bright and C-positive short arm. The father has a normal male karyotype of 46,XY. The mother has a female karyotype of 46,XX and an unusually large Q-bright satellite on one chromosome 22. In situ hybridization with the 3,4-kb probe to the metaphase preparations of family members indicated that the additional Q-bright material in the proband's variant chromosome 18 derived from the Y chromosome of his father, and not from the variant chromosome 22 of his mother. On Southern hybridization, the proband had approximately twice the amount of 3,4-kb repeats per cell as his father. These observations suggest a de novo genetic rearrangement in the proband which probably occurred during the father's spermatogenesis.  相似文献   

6.
To isolate DNA sequences unique to chromosome 21 we have used a recombinant-DNA library, constructed from a mouse-human somatic-cell hybrid line containing chromosome 21 as the only human chromosome. Individual recombinant phage containing human DNA inserts were identified by their hybridization to total human DNA sequences and by their failure to hybridize to total mouse DNA sequences. A repeat-free human DNA fragment was then subcloned from each of 14 such recombinant phage. An independent somatic-cell hybrid was used to assign all 14 subcloned fragments to chromosome 21. Thirteen of the fragments have been regionally mapped using a somatic-cell hybrid containing a human 21 translocation chromosome. Two probes map proximal to the 21q21.2 translocation breakpoint, and 11 probes map distal to this breakpoint, placing them in the region 21q21.2-21q22. One of seven probes used to screen for restriction-fragment-length polymorphisms recognized polymorphic DNA fragments when hybridized to genomic DNA from unrelated individuals. These 14 unique probes provide useful tools for studying the structure and function of human chromosome 21 as well as for investigating the molecular biology of Down syndrome.  相似文献   

7.
8.
We have assigned six polymorphic DNA segments to chromosomal subregions and have established the physical order of these sequences on the long arm of chromosome 21 by in situ hybridization of cloned probes to normal metaphase chromosomes and chromosomes 21 from individuals with three different structural rearrangements: an interstitial deletion, a ring chromosome, and a reciprocal translocation involving four different breakpoints in band 21q22. Segments D21S1 and D21S11 map to region 21q11.2----q21, D21S8 to 21q21.1----q22.11, and D21S54 to 21q21.3----q22.11; D21S23 and D21S25 are both in the terminal subband 21q22.3, but they are separated by a chromosomal breakpoint in a ring 21 chromosome, a finding that places D21S23 proximal to D21S25. The physical map order D21S1/D21S11-D21S8-D21S54-D21S23-D21S25 agrees with the linkage map, but genetic distances are disproportionately larger toward the distal end of 21q.  相似文献   

9.
We report the chromosomal localization of the cellular oncogene SKI, the putative oncogene of the Sloan-Kettering viruses (SKVs), a group of transforming retroviruses that had been isolated from chicken embryo cells infected with the avian leukosis virus tdB77. Southern blot analysis of DNA from mouse X human somatic cell hybrids with the v-SKI probe established synteny with chromosome 1, but excluding the region 1pter----q21. In situ hybridization of the same probe both to human spermatocyte pachytene and lymphocyte metaphase chromosomes enabled precise localization of the gene to the region 1q22----q24, a region that frequently is involved in translocations and other rearrangements in diverse human tumor types. In situ hybridization studies of metaphase spreads from a small noncleaved cell lymphoma that exhibited a t(1;14)(q21;q32) translocation showed that SKI translocates to the der(14) chromosome. Cytogenetic analysis of 65 prospectively ascertained non-Hodgkin's lymphomas revealed that the SKI region undergoes nonrandom breakage leading to translocations. Further analysis of the chromosome breaks in this group of lymphomas suggested that those involving the SKI site probably are of importance in tumor progression.  相似文献   

10.
Down syndrome (DS) is a major cause of mental retardation and heart disease. Although it is usually caused by the presence of an extra chromosome 21, a subset of the diagnostic features may be caused by the presence of only band 21q22. We now present evidence that significantly narrows the chromosomal region responsible for several of the phenotypic features of DS. We report a molecular and cytogenetic analysis of a three-generation family containing four individuals with clinical DS as manifested by the characteristic facial appearance, endocardial cushion defect, mental retardation, and probably dermatoglyphic changes. Autoradiograms of quantitative Southern blots of DNAs from two affected sisters, their carrier father, and a normal control were analyzed after hybridization with two to six unique DNA sequences regionally mapped on chromosome 21. These include cDNA probes for the genes for CuZn-superoxide dismutase (SOD1) mapping in 21q22.1 and for the amyloid precursor protein (APP) mapping in 21q11.2-21.05, in addition to six probes for single-copy sequences: D21S46 in 21q11.2-21.05, D21S47 and SF57 in 21q22.1-22.3, and D21S39, D21S42, and D21S43 in 21q22.3. All sequences located in 21q22.3 were present in three copies in the affected individuals, whereas those located proximal to this region were present in only two copies. In the carrier father, all DNA sequences were present in only two copies. Cytogenetic analysis of affected individuals employing R and G banding of prometaphase preparations combined with in situ hybridization revealed a translocation of the region from very distal 21q22.1 to 21qter to chromosome 4q. Except for a possible phenotypic contribution from the deletion of chromosome band 4q35, these data provide a molecular definition of the minimal region of chromosome 21 which, when duplicated, generates the facial features, heart defect, a component of the mental retardation, and probably several of the dermatoglyphic changes of DS. This region may include parts of bands 21q22.2 and 21q22.3, but it must exclude the genes S0D1 and APP and most of band 21q22.1, specifically the region defined by S0D1, SF57 and D21S47.  相似文献   

11.
We have employed molecular probes and in situ hybridization to investigate the DNA sequences flanking the breakpoint of a group of t(14q21q) Robertsonian translocations. In all the families studied, the probands were patients with Down syndrome who carried a de novo t(14q21q) translocation. The DNA probes used were two alphoid sequences, alphaRI and alphaXT, which are specific for the centromeres of chromosomes 13 and 21 and of chromosomes 14 and 22, respectively; a satellite III sequence, pTRS-47, which is specific for the proximal p11 region of chromosomes 14 and 22; and a newly defined satellite III DNA, pTRS-63, which is specific for the distal p11 region of chromosome 14. The two alphoid probes detected approximately the same amount of autoradiographic signal on the translocated chromosomes as was expected for chromosomes 14 and 21 of the originating parent, suggesting that there has been no loss of these centromeric sequences during the translocation events. Results with the two satellite III probes indicated that the domain corresponding to pTRS-47 was retained in the translocated chromosomes, whereas the domain for pTRS-63 was lost. These results have allowed us to place the translocation breakpoint between the pTRS-47 and pTRS-63 domains within the p11 region of chromosome 14.  相似文献   

12.
We have sublocalized the human proto-oncogene c-myb by applying two different techniques: in situ hybridization of metaphase spreads and chromosome spot hybridization of flow-sorted chromosomes. For this we used a teratocarcinoma cell line carrying specific chromosome translocations involving the two chromosomes 6 and one chromosome 11. The distribution of the c-myb gene copies on the different translocation chromosomes revealed that c-myb is located in the region 6q21----q23. Because of the close proximity of the c-myb locus to the chromosomal breakpoints in the teratocarcinoma, we investigated whether c-myb was implicated in the development of this tumor. No rearrangement, deletion, or amplification of the gene was detected in the teratocarcinoma cells. Furthermore, the level of c-myb expression was comparable to that of other cell lines of nonhematopoietic origin. These results suggest that c-myb was not affected by the translocation and played no significant role in the development of this teratocarcinoma.  相似文献   

13.
Complex probes used in fluorescence in situ hybridization (FISH) usually contain repetitive DNA sequences. For chromosome painting, in situ suppression of these repetitive DNA sequences has been well established. Standard painting protocols require large amounts of an unlabeled 'blocking agent', for instance Cot-1 DNA. Recently, it has become possible to remove repetitive DNA sequences from library probes by means of magnetic purification and affinity PCR. Such a 'repeat depleted library probe' was hybridized to the q-arm of chromosome 15 of human metaphase spreads and interphase cell nuclei without any preannealing by Cot-1 DNA. Apart from this, 'standard' FISH conditions were used. After in situ hybridization, microscope images were obtained comparable to those achieved with the #15q library probe prior to depletion. The images were recorded by a true color CCD camera. By digital image analysis using 'line scan' and 'area scan' procedures, the painting efficiency expressed in terms of relative fluorescence signal intensity was quantitatively evaluated. The painting efficiency using the repeat depleted probe of chromosome 15q was compared to the painting efficiency after standard FISH. The results indicate that both types of probes are compatible to a high FISH efficiency. Using equivalent probe concentrations, no significant differences were found for FISH with standard painting probes and repeat depleted painting probes.  相似文献   

14.
Summary We report the isolation of 50 independent unique sequences from a human chromosome 21 library (identification code LA21 NSO1). These sequences were individually assigned to chromosome 21 using a mouse-human somatic hybrid cell line, WAVR 4d-F94a. Use of these unique clones as a mixture of probes for in situ hybridization of human metaphase chromosomes demonstrated strong signals on chromosome 21. These unique DNA sequences should provide useful tools for structural and functional analysis of human chromosome 21. The use of these sequences for the detection of Down syndrome is discussed.  相似文献   

15.
The authors used genomic single copy DNA fragments cloned from chromosome 21 to study cytogenetic abnormalities in patients not easily defined by conventional cytogenetic means. Ten restriction fragment length polymorphisms (RLFP) detected by 8 independent probes were used to detect homologous sequences from chromosome 21 in genomic digests of DNA from one patient and her parents. The proband is a 3 1/2-year-old girl who was referred to us at 1 month of age because of hypertonia, hirsutism, flattened nasal bridge, antimongoloid slant of palpebral fissures, high arched palate and bilateral hip dysplasia. The karyotype of the proband was: 46, XX, -3, -21, + ? del (3) (3 pter----3q1:) +? (3qter----3q1:: 21q21----21 pter). GTG banding and the karyotype of her parents were normal (in peripheral blood and skin fibroblasts). She was re-examined by us every three months, because she showed physical and psychomotor retardation. We traced the inheritance of RFLPs from her parents, and familial molecular studies showed in contrast to the cytogenetic analysis that the patient is disomic for all regions of 21q tested by our collection of probes. The use of molecular technology has resulted in a more precise definition of 21 chromosome abnormalities and especially the "complete" monosomy 21 which is extremely rare in live born infants.  相似文献   

16.
Fragments of the natural rat ceruloplasmin (Cp) gene and cDNA copies of rat Cp and transferring (Tf) mRNAs highly labelled by nick translation with 125I-dCTP were used as specific probes for assignment of these genes to the metaphase chromosomes of rat, mouse and man by in situ hybridization. Both Cp and Tf genes were found to be syntenic in rodents, occupying with high probability the regions 9D and 9F1–3 in mice and 7q11–13 and 7q31–34 in rats respectively. The significant increase in silver grain count over chromosome 15 in rats after hybridization with both the Cp and Tf probes suggests the presence of a related pseudogene cluster on this particular chromosome and thus favours its partial homeology to chromosome 7. The localization of silver grains in metaphase chromosome of man indicates subregional assignment of the Tf gene to 3q21. Use of the rat Cp DNA probe does not indicate synteny of the Cp and Tf genes in man and suggests the existence of a related DNA sequence in 15q11–13. The potential and limitations of the in situ hybridization technique with heterologous DNA probes for gene mapping in mammalian species are discussed.  相似文献   

17.
A 4-year-old girl with Down syndrome exhibited an autosomal translocation t(2;18) in addition to trisomy 21. An evaluation of GTG-banded metaphases revealed the karyotype 47,XX,t(2;18),21 that was confirmed by using fluorescent in situ hybridization (FISH) probes. This case represents a very rare coincidence of an autosomal aneuploidy and a structural rearrangement. Her parents showed a normal chromosome complement. The translocation must have been an apparently "balanced" one as the proband presented with typical features of Down syndrome alone. The mechanism of origin of this rearrangement along with a nondisjunctional error and its significance are discussed.  相似文献   

18.
We describe a patient in whom full monosomy 21 was initially assumed from routine GTG banded karyotyping. Re-examination with chromosome painting demonstrated an unbalanced translocation between the long arms of chromosomes 11 and 21. Fluorescence in situ hybridization (FISH) and microsatellite marker analysis revealed partial monosomy of chromosome 21 (pter-q22.2) and 11 (q24-qter). The patient was prematurely born in the 31st week of gestation and expired 3 days after delivery. She showed multiple minor anomalies, a complex cardio-vascular malformation, intestinal malrotation and cerebellar hypoplasia.  相似文献   

19.
We report a case having multiple abnormalities including the simultaneous presence of the heart defect and central nerve system abnormalities, which has been reported in a few cases, and with a partial trisomy 15q. Partial trisomy 15q has been inherited from a balanced translocation carried by his phenotypically normal father, detected by traditional banding and fluorescence in situ hybridization (FISH). Application of FISH using whole chromosome specific library probes, locus specific and repetitive probes allowed us to detect the translocation between chromosomes 15q and 17q. Simultaneous application of probes revealed the position of the translocation. Interestingly, in addition to the chromosomes 15 pericentromeric signals, the use of chromosome 15 beta-satellite III probe demonstrated an extra signal on chromosome 14 in both metaphase, and lighted three signals interphase nuclei which was inherited from his father. This patient is compared with other partial trisomy 15q patients reported in the literature. The results are also discussed in relation to genetic counselling for the possible relation of chromosome abnormality and clinical findings.  相似文献   

20.
The gene associated with adenomatous polyposis coli (APC) has been mapped to the long arm of chromosome 5. To saturate the APC region with DNA markers, two independent microdissection libraries with an emphasis on 5q21.2-21.3 and 5q22 have been constructed from GTG-banded human metaphase chromosomes. PCR-amplified insert DNA of the primary amplificate used as a probe in chromosomal in situ suppression (CISS) hybridization of human metaphase spreads revealed region-specific signals at the chromosomal site that was excised for cloning. One hundred forty-two inserts, derived from both libraries, have been characterized in more detail. Deletion mapping analysis was performed with 17 single-copy clones on a hamster-human hybrid cell panel. Seven of these clones were located within two interstitial deletions of 6-8 Mb from APC-affected individuals around chromosome bands 5q21-22. The identification of new microclones mapping into these deletions and their use in isolating YAC clones should contribute to the construction of a contiguous physical map of the APC region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号