首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Peroxisome proliferator-activated receptor-gamma (PPARgamma) has been shown to play an important role in the regulation of expression of a subclass of adipocyte genes and to serve as the molecular target of the thiazolidinedione (TZD) and certain non-TZD antidiabetic agents. Hypercorticosteroidism leads to insulin resistance, a variety of metabolic dysfunctions typically seen in diabetes, and hypertrophy of visceral adipose tissue. In adipocytes, the enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD-1) converts inactive cortisone into the active glucocorticoid cortisol and thereby plays an important role in regulating the actions of corticosteroids in adipose tissue. Here, we show that both TZD and non-TZD PPARgamma agonists markedly reduced 11beta-HSD-1 gene expression in 3T3-L1 adipocytes. This diminution correlated with a significant decrease in the ability of the adipocytes to convert cortisone to cortisol. The half-maximal inhibition of 11beta-HSD-1 mRNA expression by the TZD, rosiglitazone, occurred at a concentration that was similar to its K(d) for binding PPARgamma and EC(50) for inducing adipocyte differentiation thereby indicating that this action was PPARgamma-dependent. The time required for the inhibitory action of the TZD was markedly greater for 11beta-HSD-1 gene expression than for leptin, suggesting that these genes may be down-regulated by different molecular mechanisms. Furthermore, whereas regulation of PPARgamma-inducible genes such as phosphoenolpyruvate carboxykinase was maintained when cellular protein synthesis was abrogated, PPARgamma agonist inhibition of 11beta-HSD-1 and leptin gene expression was ablated, thereby supporting the conclusion that PPARgamma affects the down-regulation of 11beta-HSD-1 indirectly. Finally, treatment of diabetic db/db mice with rosiglitazone inhibited expression of 11beta-HSD-1 in adipose tissue. This decrease in enzyme expression correlated with a significant decline in plasma corticosterone levels. In sum, these data indicate that some of the beneficial effects of PPARgamma antidiabetic agents may result, at least in part, from the down-regulation of 11beta-HSD-1 expression in adipose tissue.  相似文献   

4.
5.
PURPOSE OF REVIEW: The prevalence of type 2 diabetes globally is reaching epidemic proportions. Type 2 diabetes is strongly associated with increased risk of cardiovascular disease. Atherosclerosis is thought to arise as a result of a chronic inflammatory process within the arterial wall. Insulin resistance is central to the pathogenesis of type 2 diabetes and may contribute to atherogenesis, either directly or through associated risk factors. The peroxisome proliferator-activated receptor-gamma agonists, the thiazolidinediones, pioglitazone and rosiglitazone, are insulin sensitizing agents, that are licensed for the management of hyperglycaemia. Growing evidence supports an array of additional effects of thiazolidinedione therapy, both immunomodulatory and antiinflammatory, which may attenuate atherogenesis in type 2 diabetes. RECENT FINDINGS: Studies have shown that thiazolidinedione therapy may lead to risk factor modulation in type 2 diabetes. Thiazolidinediones treatment has been shown to reduce blood pressure, modify the atherogenic lipid profile associated with type 2 diabetes, reduce microalbuminuria and ameliorate the prothrombotic diathesis. Further evidence suggests that thiazolidinediones therapy inhibits the inflammatory processes which may be involved in atherosclerotic plaque initiation, propagation and destabilization. SUMMARY: Modification of insulin resistance by thiazolidinedione therapy in type 2 diabetes and the range of pleiotropic effects may not only impact on incident type 2 diabetes, but also on associated cardiovascular disease. Numerous large clinical endpoint studies are under way to investigate these issues.  相似文献   

6.
7.
8.
9.
We previously reported that in cultured adipose cell lines insulin increased selectively the expression of Glut 1, in contrast to in vivo regulation where variations in insulinemia have been shown to affect only GLUT 4. We have addressed here the question of the long-term regulation of GLUT 1 and GLUT 4 in fat cells by using primary cultures of rat adipocytes. Epididymal fat cells were isolated by collagenase and cultured 4 days in DMEM supplemented with BSA 1%, FCS 1%, and glucose 10 mM. GLUT 1 and GLUT 4 proteins were assessed in total cellular membranes by Western blotting, using specific antibodies against their respective C-terminal peptides. GLUT 1 steadily increased over culture time to reach at day 3, a level 3-fold higher than the initial value. In contrast, GLUT 4 decreased sharply and stabilized at day 3, at 30% of the initial value. The changes in GLUT 1 and GLUT 4 mRNAs with culture time were parallel to changes in the corresponding proteins, suggesting a pre-translational level of regulation. The expression of the lipogenic enzyme, fatty acid synthetase (FAS), highly expressed in fat cell, decreased over time following a pattern closely parallel to that of GLUT 4. Chronic exposure to insulin added at day 2 had no effect on GLUT 4 expression but increased the expression of GLUT 1 and FAS by 70% and 36%, respectively. Glucose consumption was stable over 4 days of culture, while lactate production increased from 24 to 36% of glucose utilization, in agreement with the loss in FAS. Glucose consumption increased only slightly with insulin (+160%), in good keeping with the low levels of expression of both GLUT 4 and FAS in these cultured cells. These data indicate that culture alters oppositely the expression of GLUT 1 and GLUT 4 in rat adipocytes and suggest that factor(s) other than insulin predominate in their regulation in vivo.  相似文献   

10.
11.
An incubation of rat adipocytes with phenylarsine oxide (PAO) and then with insulin caused an inhibition of 3-O-methylglucose equilibrium exchange flux and a parallel reduction in cellular GLUT4 content detected by Western blots. Both the transport inhibition and the GLUT4 reduction were saturable with an increasing concentration of PAO showing essentially an identical Ki value of 35 microM. Both effects were not observed in the absence of insulin or if cells were incubated with insulin first. The reduction was specific to GLUT4; the immunoreactivities of GLUT1, insulin receptor, and clathrin were not affected in these experiments. The GLUT4 reduction occurred only in intact cells and was not observed in homogenized cells or fractionated membranes. GLUT4 in both the microsomal storage pool and the plasma membrane pool were affected with no indication of insulin-induced recruitment impairment. GLUT4 reduction was not observed in the presence of chloroquine or at 18 degrees C suggesting involvement of the lysosomal pathway. Based on these results, we propose that there is a PAO-sensitive protein mechanism that controls an insulin-dependent GLUT4 degradation pathway in adipocytes. This protein mechanism and the GLUT4 degradation pathway may play an important role in determining the steady-state GLUT4 level in the insulin-sensitive peripheral tissues in normal and diseased states.  相似文献   

12.
Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear hormone receptor superfamily originally shown to play an important role in adipocyte differentiation and glucose homeostasis, is now known to regulate inflammatory responses. Given the importance of endothelial cell (EC)-derived chemokines in regulating leukocyte function and trafficking, we studied the effects of PPARgamma ligands on the expression of chemokines induced in ECs by the Th1 cytokine IFN-gamma. Treatment of ECs with PPARgamma activators significantly inhibited IFN-gamma-induced mRNA and protein expression of the CXC chemokines IFN-inducible protein of 10 kDa (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T-cell alpha-chemoattractant (I-TAC), whereas expression of the CC chemokine monocyte chemoattractant protein-1 was not altered. PPARgamma activators decreased IFN-inducible protein of 10 kDa promoter activity and inhibited protein binding to the two NF-kappaB sites but not to the IFN-stimulated response element ISRE site. Furthermore, PPARgamma ligands inhibited the release of chemotactic activity for CXC chemokine receptor 3 (CXCR3)-transfected lymphocytes from IFN-gamma-stimulated ECs. These data suggest that anti-diabetic PPARgamma activators might attenuate the recruitment of activated T cells at sites of Th1-mediated inflammation.  相似文献   

13.
14.
15.
The majority of GLUT4 is sequestered in unique intracellular vesicles in the absence of insulin. Upon insulin stimulation GLUT4 vesicles translocate to, and fuse with, the plasma membrane. To determine the effect of GLUT4 content on the distribution and subcellular trafficking of GLUT4 and other vesicle proteins, adipocytes of adipose-specific, GLUT4-deficient (aP2-GLUT4-/-) mice and adipose-specific, GLUT4-overexpressing (aP2-GLUT4-Tg) mice were studied. GLUT4 amount was reduced by 80-95% in aP2-GLUT4-/- adipocytes and increased approximately 10-fold in aP2-GLUT4-Tg adipocytes compared with controls. Insulin-responsive aminopeptidase (IRAP) protein amount was decreased 35% in aP2-GLUT4-/- adipocytes and increased 45% in aP2-GLUT4-Tg adipocytes. VAMP2 protein was also decreased by 60% in aP2-GLUT4-/- adipocytes and increased 2-fold in aP2-GLUT4-Tg adipocytes. IRAP and VAMP2 mRNA levels were unaffected in aP2-GLUT4-Tg, suggesting that overexpression of GLUT4 affects IRAP and VAMP2 protein stability. The amount and subcellular distribution of syntaxin4, SNAP23, Munc-18c, and GLUT1 were unchanged in either aP2-GLUT4-/- or aP2-GLUT4-Tg adipocytes, but transferrin receptor was partially redistributed to the plasma membrane in aP2-GLUT4-Tg adipocytes. Immunogold electron microscopy revealed that overexpression of GLUT4 in adipocytes increased the number of GLUT4 molecules per vesicle nearly 2-fold and the number of GLUT4 and IRAP-containing vesicles per cell 3-fold. In addition, the proportion of cellular GLUT4 and IRAP at the plasma membrane in unstimulated aP2-GLUT4-Tg adipocytes was increased 4- and 2-fold, respectively, suggesting that sequestration of GLUT4 and IRAP is saturable. Our results show that GLUT4 overexpression or deficiency affects the amount of other GLUT4-vesicle proteins including IRAP and VAMP2 and that GLUT4 sequestration is saturable.  相似文献   

16.
17.
18.
19.
Dehydroascorbic acid (DHA), the first stable oxidation product of vitamin C, was transported by GLUT1 and GLUT3 in Xenopus laevis oocytes with transport rates similar to that of 2-deoxyglucose (2-DG), but due to inherent difficulties with GLUT4 expression in oocytes it was uncertain whether GLUT4 transported DHA (Rumsey, S. C. , Kwon, O., Xu, G. W., Burant, C. F., Simpson, I., and Levine, M. (1997) J. Biol. Chem. 272, 18982-18989). We therefore studied DHA and 2-DG transport in rat adipocytes, which express GLUT4. Without insulin, rat adipocytes transported 2-DG 2-3-fold faster than DHA. Preincubation with insulin (0.67 micrometer) increased transport of each substrate similarly: 7-10-fold for 2-DG and 6-8-fold for DHA. Because intracellular reduction of DHA in adipocytes was complete before and after insulin stimulation, increased transport of DHA was not explained by increased internal reduction of DHA to ascorbate. To determine apparent transport kinetics of GLUT4 for DHA, GLUT4 expression in Xenopus oocytes was reexamined. Preincubation of oocytes for >4 h with insulin (1 micrometer) augmented GLUT4 transport of 2-DG and DHA by up to 5-fold. Transport of both substrates was inhibited by cytochalasin B and displayed saturable kinetics. GLUT4 had a higher apparent transport affinity (K(m) of 0.98 versus 5.2 mm) and lower maximal transport rate (V(max) of 66 versus 880 pmol/oocyte/10 min) for DHA compared with 2-DG. The lower transport rate for DHA could not be explained by binding differences at the outer membrane face, as shown by inhibition with ethylidene glucose, or by transporter trans-activation and therefore was probably due to substrate-specific differences in transporter/substrate translocation or release. These novel data indicate that the insulin-sensitive transporter GLUT4 transports DHA in both rat adipocytes and Xenopus oocytes. Alterations of this mechanism in diabetes could have clinical implications for ascorbate utilization.  相似文献   

20.
Rab proteins are important regulators of insulin-stimulated GLUT4 translocation to the plasma membrane (PM), but the precise steps in GLUT4 trafficking modulated by particular Rab proteins remain unclear. Here, we systematically investigate the involvement of Rab proteins in GLUT4 trafficking, focusing on Rab proteins directly mediating GLUT4 storage vesicle (GSV) delivery to the PM. Using dual-color total internal reflection fluorescence (TIRF) microscopy and an insulin-responsive aminopeptidase (IRAP)-pHluorin fusion assay, we demonstrated that Rab10 directly facilitated GSV translocation to and docking at the PM. Rab14 mediated GLUT4 delivery to the PM via endosomal compartments containing transferrin receptor (TfR), whereas Rab4A, Rab4B, and Rab8A recycled GLUT4 through the endosomal system. Myosin-Va associated with GSVs by interacting with Rab10, positioning peripherally recruited GSVs for ultimate fusion. Thus, multiple Rab proteins regulate the trafficking of GLUT4, with Rab10 coordinating with myosin-Va to mediate the final steps of insulin-stimulated GSV translocation to the PM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号