首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of plants depends on the photoperiod length, light intensity, temperature, and length of light day integral. The reaction of a plant to the day length or daily light integral can depend on both the range of studied light intensities and photoperiod. Based on the data concerning the effects of light and thermal integrals on the developmental rate of plants of different photoperiodic groups, a photothermal model of plant development was proposed. The model was used to calculate the lengths of optimal photoperiods and ranges of daily temperature gradients ensuring the highest developmental rate of some plants, such as soybean, wheat, cucumber, and barley.  相似文献   

2.
Cytochemical investigations on peroxidase localization during microsporogenesis inLarix europaea D.C.,Taxus baccata L. andPinus sylvestris L. have revealed striking differences in the localization and activity level of this enzyme linked with the developmental stage. The localization and level of activity of peroxidase, typical of each stage, changed in the course of microsporogenesis in a strictly orderly way, giving a characteristic and stable pattern. The pattern of intracellular peroxidase localization proved to be the same for microsporogenesis of all the gymnosperms in question. It is suggested that the identity of that pattern in plants so phylogenetically distant asTaxus baccata L. andPinus sylvestris L. indicates that peroxidase activity in gymnosperms’ microsporogenesis is connected with the fundamental and genetically well stabilized processes of meiotic cytodifferentiation. Moreover, enhanced peroxidase activity has been found in the sites of callose walls synthesis of dyads and tetrads, which suggests the participation of this enzyme in callose synthesis.  相似文献   

3.
H. Lehn  M. Bopp 《Plant and Soil》1987,101(1):9-14
Five plant species were cultivated on a soil from the Neckar alluvial fan near Heidelberg (FRG) polluted by the emissions of a cement plant. Thallium, cadmium and lead concentrations in seedlings and mature plants were determined by atomic absorption analysis. AdditionallyBrassica napus L.napus was grown on soils containing 5 different concentrations of heavy metals, achieved by mixing two similar soils, from the same area but with different metal concentrations. Thallium and cadmium were shown to be taken up by roots whilst lead which was also absorbed, was deposited mainly on the plant surface. However during cultivation in the winter months, a remarkable deposit of lead via the roots was found. Thallium in the soil from a anthrorogen source was more available to plants than thallium of geological origin. During the lifetime of a plant concentrations of thallium and cadmium were always highest in the seedling. The decrease in metal concentration with maturity depended on the plant species and the element, but was not a function of the metal concentration in the soil.  相似文献   

4.
Based on the data obtained in the experiments with constant and fluctuating diurnal temperatures, the temperature dependence of developmental rate was calculated for different photoperiodic groups of plants using the square equations of regression. These equations made it possible to calculate the temperature areas of maximum developmental rates of plants under different photoperiodic conditions.  相似文献   

5.
该研究利用RT-PCR技术,从油葵(Helianthus annuus L.)种子中克隆了甘油-3-磷酸酰基转移酶(GPAT)基因(HaGPAT1),对其进行生物信息学分析,并通过实时荧光定量PCR技术(qRT-PCR)检测该基因在不同组织、种子不同发育时期以及不同胁迫条件下的表达特征。结果表明:HaGPAT1基因全长为1 656bp,编码551个氨基酸,相对分子量为62.132kD,等电点为8.84。系统进化树分析表明,HaGPAT1蛋白与高等植物莴苣的GPAT1亲缘关系最近。qRT-PCR分析表明,HaGPAT1基因在油葵花蕊中的表达水平最高,开花后17d的种子中次之;在干旱和盐胁迫条件下,HaGPAT1基因的表达水平均显著上调。研究推测,HaGAT1基因可能在油葵花器官发育中发挥重要作用,并且参与了油葵对干旱和高盐的抗性调节。  相似文献   

6.
Summary We examined how different wind speeds and interactions between plant age and wind affect growth and biomass allocation of Sinapis alba L. (white mustard). Physiological and growth measurements were made on individuals of white mustard grown in controlled-environment wind tunnels at windspeeds of 0.3, 2.2 and 6.0 ms–1 for 42 days. Plants were harvested at four different dates. Increasing wind speed slightly increased transpiration and stomatal conductance. We did not observe a significant decline in the photosynthetic rate per unit of leaf area. Number of leaves, stem length, leaf area and dry weights of total biomass and plant parts were significantly lower in plants exposed at high wind speed conditions. There were no significant differences in the unit leaf rate nor relative growth rates, although these were always lower in plants grown at high wind speed. Allocation and architectural parameters were also examined. After 42 days of exposure to wind, plants showed higher leaf area ratio, root and leaf weight ratios and root/shoot ratio than those grown at control treatment. Only specific leaf area declined significantly with wind speed, but stem and reproductive parts also decreased. The responses of plants to each wind speed treatment depended on the age of the plant for most of the variables. It is suggested that wind operates in logarithmic manner, with relatively small or no effect at lower wind speeds and a much greater effect at higher speeds. Since there is no evidence of a significant reduction in photosynthetic rate of Sinapis with increasing wind speed it is suggested that the effect of wind on plant growth was due to mechanical effects leading to changes in allocation and developmental patterns.  相似文献   

7.
We studied the influence of daily temperature gradients on organogenesis in apical and axil shoot meristems at different developmental stages in Cucumis sativus L. The level of organogenic activity of meristems was determined according to the number of leaf primordia on the main and lateral shoots, number of 2nd order shoots, and rudiments of flowers of different levels of development. At the studied ontogenetic stages (mesotrophic seedling or juvenile state), plants were grown under the controlled conditions: photoperiod 12 h, light intensity 100 Wt/m2, range of mean daily temperatures 20…30°C, and daily temperature gradients ?20…+20°C. After the temperature treatment, some plants were returned to the optimal, for growth and development, conditions for two weeks (aftereffect). Three types of organogenic activity of meristems in response to the influence of variable daily temperatures were described: stimulation, inhibition, or absence of effect. The phenomenon of stimulation includes two subtypes: optimization, when a maximum effect, observed at other constant temperatures, was attained under the influence of variable temperatures and maximization, when maximum values markedly exceeded those at constant temperatures. The patterns described are preserved on the whole in the aftereffect of daily temperatures.  相似文献   

8.
The dynamics of exploitation of standard experimental food sources by the German cockroach, Blattella germanicaL. (Blattellidae), were analyzed in an urban habitat in relation to developmental stage. The data presented here stress differences in foraging capacities between small (first-and second-instar) larvae and animals of other developmental stages. The first animals to arrive in a food patch presented a developmental-stage distribution significantly different from that of the general population. Adults and large larvae (fifth and sixth instars) were the first to find food sources and, in particular, before small larvae. Significant differences appeared between developmental stages concerning givingup time and the time animals left a patch. Small larvae were significantly underrepresented in a patch just before food exhaustion but they were significantly more numerous than expected just after depletion. Small larvae remained in the vicinity of a depleted food dish longer than animals of other developmental stages. Adults left patches as soon as these were depleted, long before small larvae did. Developmental stage influenced rate of departure. These observations indicate that cockroaches improve their foraging performance as they grow larger.  相似文献   

9.
Accumulation of cadmium (Cd) in crop plants is of great concern due to the potential for food chain contamination through the soil-root interface. Although Cd uptake varies considerably with plant species, the processes which determine the accumulation of Cd in plant tissues are affected by soil factors. The influence of soil type on Cd uptake by durum wheat (Triticum turgidum var. durum L.) and flax (Linum usitatissimum L.) was studied in a pot experiment under environmentally controlled growth chamber conditions. Four cultivars/lines of durum wheat (Kyle, Sceptre, DT 627, and DT 637) and three cultivars/lines of flax (Flanders, AC Emerson, and YSED 2) were grown in two Saskatchewan soils: an Orthic Gray Luvisol (low background Cd concentration; total/ABDTPA extractable Cd: 0.12/0.03 mg kg-1, respectively) and a Dark Brown Chernozem (relatively high background Cd concentration; total/ABDTPA Cd: 0.34/0.17 mg kg-1 respectively). Plant roots, stems, newly developed heads, and grain/seeds were analyzed for Cd concentration at three stages of plant growth: two and seven weeks after germination, and at plant maturity. The results showed that Cd bioaccumulation and distribution within the plants were strongly affected by both soil type and plant cultivar/line. The Cd concentration in roots leaves and stems varied at different stages of plant growth. However, all cultivars of both plant species grown in the Chernozemic soil accumulated more Cd in grain/seeds than plants grown in the Orthic Gray Luvisol soil. The different Cd accumulation pattern also corresponded to the levels of ABDTPA extractable and metal-organic complex bound soil Cd found in both soils. Large differences were found in grain Cd among the durum wheat cultivars grown in the same soil type, suggesting the importance of rhizosphere processes in Cd bioaccumulation and/or Cd transport processes within the plant. Distribution of Cd in parts of mature plants showed that durum grain contained up to 21 and 36% of the total amount of Cd taken up by the plants for the Orthic Gray Luvisol and Chernozemic soils, respectively. These results indicate the importance of studying Cd speciation, bioaccumulation and cycling in the environment for the management of agricultural soils and crops.  相似文献   

10.
Factors influencing the efficiency of Agrobacterium-mediated transformation of pea were tested using highly efficient, direct regeneration system. The virulence of three Agrobacterium strains (octopine LBA 4404, nopaline C58C1 and succinamopine, hypervirulent EHA 105) clearly varied giving 1 transgenic plant per 100 explants for LBA 4404, 2.2 for C58C1 and 8.2 for EHA 105. To test the efficacy of selection agents we used the hypervirulent EHA 105 strain carrying pGPTV binary vector with one of four different selection genes: nptII, hpt, dhfr or bar. The mean number of transgenic, kanamycin-resistant plants for two cultivars tested was 4.2 per 100 explants and was slightly higher than the number of phosphinothricin-resistant plants (3.6 plants per 100 explants). The proportion of transgenics among kanamycin-selected plants was also higher than among phosphinothricin-resistant plants (35% and 28% respectively). There was no regeneration on hygromycin or methotrexate media (transformation with hpt and dhfr genes). Acetosyringone had no apparent influence on efficiency of transformation with hypervirulent EHA 105 strain, however it did affect the rate of transformation when moderately virulent C58C1 was used. Recovery of transgenic plants was enhanced after application of 5-azacytidine. The presence of integrated T-DNA was checked by PCR and confirmed by Southern hybridization. T-DNA was stably transmitted to the next generation.  相似文献   

11.
Allelochemicals released by rice roots and residues in soil   总被引:7,自引:0,他引:7  
A few rice (Oryza sativa L.) varieties or rice straw produce and release allelochemicals into soil in which interfere with the growth of neighboring or successive plants. Allelopathic rice PI312777 and Huagan-1 at their early growth stages released momilactone B, 3-isopropyl-5-acetoxycyclohexene-2-one-1, and 5,7,4′-trihydroxy-3′,5′-dimethoxyflavone into soil at phytotoxic levels, but non-allelopathic rice Huajingxian did not. Both allelopathic and non-allelopathic rice residues released momilactone B and lignin-related phenolic acids (p-hydroxybenzoic, p-coumaric, ferulic, syringic and vanillic acids) into the soil during residue decomposition to inhibit successive plants. The results indicated that allelochemicals involved in rice allelopathy from living and dead plants are substantially different. Interestingly, the concentrations of the allelochemicals released from the allelopathic rice seedlings in soil increased dramatically when they were surrounded with Echinochloa crus-galli. The concentrations of the allelochemicals were over 3-fold higher in the presence of E. crus-galli than in the absence of E. crus-galli. However, the same case did not occur in non-allelopathic Huajingxian seedlings surrounded with E. crus-galli. In addition to allelochemical exudation being promoted by the presence of E. crus-galli, allelopathic rice seedlings also increased allelochemical exudation in response to exudates of germinated E. crus-galli seeds or lepidimoide, an uronic acid derivative exuded from E. crus-galli seeds. These results imply that allelopathic rice seedlings can sense certain allelochemicals released by E. crus-galli into the soil, and respond by increased production of allelochemicals inhibitory to E. crus-galli. This study suggests that rice residues of both allelopathic and non-allelopathic varieties release similar concentrations and types of allelochemicals to inhibit successive plants. In contrast, living rice plants of certain allelopathic varieties appear to be able to detect the presence of interspecific neighbors and respond by increased allelochemicals.  相似文献   

12.
We studied the influence of gradient temperature regimes on various parameters of the formation of shoots and roots of cucumber plants, such as rate of leaf appearance, rate of growth, duration of growth and length of leaves, and the rate of growth shoots organs and roots. The plants were grown under the controlled conditions: at different combinations of day and night temperature, illumination 100 W/m2, and 12 h photoperiod. The comparison of constant and fluctuating diurnal temperature regimes has shown that in the optimal area for all studied indices, the highest values were recorded at the constant daily temperature (25°C for all growth indices of shoots and 20°C for growth of roots), while all gradient regimes either did not affect, or exerted inhibitory effects on the plant. Outside the optimum area, the effects of gradient temperatures differed. The main acting fluctuating temperatures, that exerted stimulating effects, combined low hardening (15°C) and optimal temperatures (25°C), which was earlier described for animals. The 15/35 and 35/15°C combinations were unambiguously inhibitory, since both temperatures are hardening for the cucumber. A lesser stimulating effect of gradient temperatures on the developmental rate in a plant, as compared to poikilothermic animals, could be due to a greater autonomy of plant ontogenesis because of autotrophy and, correspondingly, a greater degree of homeostasis. The mechanisms accounting for the responses to temperature gradients are similar in different groups of ectotherms.  相似文献   

13.
Destruction of guard cell nuclei in epidermis isolated from leaves of pea, maize, sunflower, and haricot bean, as well as destruction of cell nuclei in leaves of the aquatic plants waterweed and eelgrass were induced by cyanide. Destruction of nuclei was strengthened by illumination, prevented by the antioxidant alpha-tocopherol and an electron acceptor N,N,N ,N -tetramethyl-p-phenylenediamine, and removed by quinacrine. Photosynthetic O2 evolution by the leaf slices of a C3 plant (pea), or a C4 plant (maize) was inhibited by CN- inactivating ribulose-1,5-bisphosphate carboxylase, and was renewed by subsequent addition of the electron acceptor p-benzoquinone.  相似文献   

14.
Apricot (Prunus armeniaca L.) embryos at three stages of development were cultured on C2d, SBH and WPM media. In vitro culture produced high percentages of germination and seedlings throughout all three developmental stages. Significant media effects were noted for changes in both embryo length and weight during the culture period, as well as number of plants produced. Embryos between 5 and 9 mm (developmental stage I) germinated and developed into plants in a significantly higher percentage than in the other two more mature stages. Therefore, embryo culture can be successfully used as a tool in an apricot breeding program to obtain higher percentages of seedlings from planned hybridization or to overcome a lack of seed germination.  相似文献   

15.
16.
Molecular analysis of the transgenes bar and gus was carried out over successive generations in six independent transgenic lines of wheat, until the plants attained homozygosity. Data on expression and integration of the transgenes is presented. Five of the lines were found to be stably transformed, duly transferring the transgenes to the next generation. The copy number of the transgenes varied from one to five in the different lines. One line was unstable, first losing expression of and then eliminating both the transgenes in R3 plants. Although the gus gene was detected in all the lines, GUS expression had been lost in R2 plants of all but one line. Rearrangement of transgene sequences was observed, but it had no effect on gene expression. All the stable lines were found to segregate for transgene activity in a Mendelian fashion.  相似文献   

17.
Summary Eleven primary trisomics of rice, variety Nipponbare, were subjected to anther culture. The 12th trisomic did not produce normal anthers. A total of 3,734 plants were obtained, which were examined morphologically at the seedling stage in the greenhouse. A number of plants appeared in the progenies of ten trisomics which had unique morphological features. The frequency of these variant types differed among different progenies. Cytological observations revealed that 43 variant plants in the progenies of nine trisomics had 13 chromosomes (n + 1), and 56 were tetrasomics (2n = 26). The tetrasomic plants in the progeny of a trisomic were morphologically identical. Similarly, n + 1 plants in the progeny of a trisomic were also identical. Plants with 23, 25, 36, 39, and 73 chromosomes were also obtained. Results show that valuable aneuploids such as n + 1 and 2n + 2 can be obtained in the anther-culture-derived progenies of trisomics.  相似文献   

18.
The plant growth regulators, gibberellic acid (GA3), ethephon and chlormequat chloride (CCC) were sprayed on young lettuce, cauliflower and bean (Phaseolus vulgaris) plants, which had either been given or not been given a mechanically-induced stress (MIS) treatment. MIS was applied by brushing the plants with paper for 1.5 minutes each day. GA3 increased extension growth of bean and leaf length of lettuce in unbrushed plants as much as in brushed ones. CCC and ethephon were less effective at reducing the height of brushed bean plants compared to unbrushed ones. The effects of CCC on the growth of cauliflower and lettuce plants was not influenced by brushing, whereas unbrushed plants responded more readily to ethephon than did brushed ones. The effects of CCC on growth were generally similar to those of MIS whereas the effects of ethephon were in many ways different to MIS.The results are discussed in relation to the use of PGR and MIS treatments for modifying plant growth.  相似文献   

19.
The influence of the developmental stage of microspores on establishing isolated microspore cultures of three Hungarian (‘Szegedi 80’, ‘Szegedi 178’, and ‘Remény’) and three Spanish (‘Jeromin’, ‘Jariza’, and ‘Jaranda’) pepper genotypes was investigated. Donor anthers containing 80% uninucleated and 20% binucleated microspores yielded the highest frequency of successful microspore cultures. Co-cultures with wheat, line ‘CY-45’, ovaries exhibited enhanced frequency of embryoid production than those with pepper ovaries. Differences in efficiency of isolated pepper microspore culture establishment were observed among different pepper genotypes. Green plantlets were regenerated from microspore-derived embryoids, but some were exhibited abnormal growth habits, such as leaf rosetting. A total of seven fertile microspore-derived plants were obtained, including three ‘Jariza’, three ‘Jaranda’, and a single ‘Szegedi 80’ plant.  相似文献   

20.
Summary Numbers of autotrophic nitrifiers in the rhizosphere, and thein vivo nitrate reductase activity (NRA) in the leaves of individual plants ofPlantago lanceolata were determined in plants at two contrasting sites. In a dune grassland, high numbers of nitrifiers were present in the rhizosphere, and significant NRA was detected in the leaves. During dry periods nitrate utilization sometimes was depressed. In a wet hayfield, on peat soil, very low numbers of nitrifiers were found in the rhizosphere. Also the NRA was low. In the wet habitat, the NRA in the leaves of some fen species, containing aerenchyma in the roots, was higher than that ofP. lanceolata, not containing aerenchyma.Grassland Species Research Group. Publication No. 105.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号