首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Nuclear speckles (speckles) represent a distinct nuclear compartment within the interchromatin space and are enriched in splicing factors. They have been shown to serve neighboring active genes as a reservoir of these factors. In this study, we show that, in HeLa cells, the (pre)spliceosomal assembly on precursor mRNA (pre-mRNA) is associated with the speckles. For this purpose, we used microinjection of splicing competent and mutant adenovirus pre-mRNAs with differential splicing factor binding, which form different (pre)spliceosomal complexes and followed their sites of accumulation. Splicing competent pre-mRNAs are rapidly targeted into the speckles, but the targeting is temperature-dependent. The polypyrimidine tract sequence is required for targeting, but, in itself, is not sufficient. The downstream flanking sequences are particularly important for the targeting of the mutant pre-mRNAs into the speckles. In supportive experiments, the behavior of the speckles was followed after the microinjection of antisense deoxyoligoribonucleotides complementary to the specific domains of snRNAs. Under these latter conditions prespliceosomal complexes are formed on endogenous pre-mRNAs. We conclude that the (pre)spliceosomal complexes on microinjected pre-mRNA are formed inside the speckles. Their targeting into and accumulation in the speckles is a result of the cumulative loading of splicing factors to the pre-mRNA and the complexes formed give rise to the speckled pattern observed.  相似文献   

3.
Ribonuclease P is the enzyme responsible for removing the 5'-leader segment of precursor transfer RNAs in all organisms. All eukaryotic nuclear RNase Ps are ribonucleoproteins in which multiple protein components and a single RNA species are required for activity in vitro as well as in vivo. It is not known, however, which subunits participate directly in phosphodiester-bond hydrolysis. The RNA subunit of nuclear RNase P is evolutionarily related to its catalytically active bacterial counterpart, prompting speculation that in eukaryotes the RNA may be the catalytic component. In the bacterial RNase P reaction, Mg(II) is required to coordinate the nonbridging phosphodiester oxygen(s) of the scissile bond. As a consequence, bacterial RNase P cannot cleave pre-tRNA in which the pro-Rp nonbridging oxygen of the scissile bond is replaced by sulfur. In contrast, the RNase P reaction in plant chloroplasts is catalyzed by a protein enzyme whose mechanism does not involve Mg(II) coordinated by the pro-Rp oxygen. To determine whether the mechanism of nuclear RNase P resembles more closely an RNA- or a protein-catalyzed reaction, we analyzed the ability of Saccharomyces cerevisiae nuclear RNase P to cleave pre-tRNA containing a sulfur substitution of the pro-Rp oxygen at the cleavage site. Sulfur substitution at this position prohibits correct cleavage of pre-tRNA. Cleavage by eukaryotic RNase P thus depends on the presence of a thio-sensitive ligand to the pro-Rp oxygen of the scissile bond, and is consistent with a common, RNA-based mechanism for the bacterial and eukaryal enzymes.  相似文献   

4.
RNase P is a ribonucleoprotein that cleaves tRNA precursors at their 5'-end. Mitochondrion-encoded RNA subunits of mitochondrial RNase P (mtP-RNA) have been identified in jakobid flagellates such as Reclinomonas americana, in the prasinophyte alga Nephroselmis olivacea, and in several ascomycete and zygomycete fungi. While the structures of ascomycete mtP-RNAs are highly reduced, those of jakobids, prasinophytes, and zygomycetes retain most conserved features of their bacterial counterparts. Therefore, these mtP-RNAs might be active in vitro in the absence of a protein subunit, as are bacterial P-RNAs. Here we present a comparative structural analysis including seven newly characterized jakobid mtP-RNAs. We investigate ribozyme activities of mtP-RNAs and find that even the most bacteria-like molecules of jakobids are inactive in vitro. However, when certain domains of jakobid and N. olivacea mtP-RNAs are replaced with those from Escherichia coli, these hybrid RNAs show catalytic activity. In vitro mutagenesis of these hybrid mtP-RNAs shows that various structural elements play a critical role in ribozyme catalysis and provide further support for the presence of these elements in mtP-RNAs. These include GNRA tetraloops in helix P14 and P18 of Jakoba libera, and a remnant P3 pairing in Seculamonas ecuadoriensis. Finally, we will discuss reasons for the failure of mtP-RNAs to show catalytic activity in the absence of P-proteins based on our mutagenesis analysis.  相似文献   

5.
We analysed the soluble form in which the nuclear pore complex protein p68 is stored in Xenopus laevis eggs and its involvement in pore complex assembly processes. We have shown previously that p68, which is the major wheat germ agglutinin (WGA)-binding glycoprotein of nuclear pore complexes from Xenopus oocytes, is located in the pore channel and participates in mediated transport of karyophilic proteins. Using a monoclonal antibody directed against p68 (PI1) we removed this protein from Xenopus egg extract by immunoadsorption. On addition of lambda DNA the immunodepleted extract supported reconstitution of nuclei which were surrounded by a continuous double-membrane envelope but lacked pore complexes and were unable to import karyophilic proteins such as nucleoplasmin or lamin LIII. Essentially identical results were obtained with extract depleted of WGA-binding proteins. Our finding that both the anti-p68 antibody and WGA efficiently removed components from the extract necessary for pore complex assembly but did not interfere with nuclear membrane formation demonstrates that these processes are independent of each other. Analysis of the immunoprecipitate on silver-stained SDS-polyacrylamide gels indicated that the antibody adsorbed other proteins besides p68, notably two high molecular weight components. By sucrose gradient centrifugation and gel filtration we showed that p68 together with associated protein(s) forms a stable, approximately globular complex plex with an Mr of 254,000, a Stokes radius of 5.2 nm and a sedimentation coefficient of 11.3 S. Our finding that p68 occurs in the form of larger macromolecular assemblies offers an explanation for the distinctly punctate immunofluorescence pattern observed in the cytoplasm of mitotic cells after staining with antibodies to p68.W. Hennig  相似文献   

6.
The P446L mutant Drosophila importin-beta (P446L-imp-beta) has been reported to prohibit--in dominant negative fashion--nuclear envelope (NE) assembly. Along elucidating the mode of action of P446L-imp-beta we studied in vitro NE assembly on Sepharose beads. While Drosophila embryo extracts support NE assembly over Sepharose beads coated with Ran, NE assembly does not take place in extracts supplied with exogenous P446L-imp-beta. A NE also forms over importin-beta-coated beads. Surprisingly, when immobilized to Sepharose beads P446L-imp-beta as efficiently recruits NE vesicles as normal importin-beta. The discrepancy in behavior of cytoplasmic and bead-bound P446L-imp-beta appears to be related to icreased--as compared to normal importin-beta--microtubule (MT) binding ability of P446L-imp-beta. While wild-type importin-beta is able to bind MTs and the binding decreases upon RanGTP interaction, P446L-imp-beta cannot be removed from the MTs by RanGTP. P446L-imp-beta, like normal importin-beta, binds some types of the nucleoporins that have been known to be required for NE assembly at the end of mitosis. It appears that the inhibitory effect of P446L-imp-beta on NE assembly is caused by sequestering some of the nucleoporins required for NE assembly to the MTs.  相似文献   

7.
Native bovine seminal ribonucelase is a dimeric protein, whose identical subunits (Mr 14 500), linked through two disulfide bridges, can be dissociated by a selective reduction procedure. Evidence is presented that the synthesis in vitro, under reducing conditions, of bovine seminal RNAase, directed by polyadenylated RNA isolated from bull seminal vesicles (where the enzyme is synthesized in vivo), occurs in the form of a precursor, 18 000-Da polypeptide. The precursor nature of this translation product was deduced by two criteria: (1) its specific immunoprecipitation with anti-bovine seminal RNAase antibodies; (2) its processing by dog pancreas microsomal membranes to produce a protein with a molecular weight similar to that of the subunit(s) of bovine seminal RNAase. Moreover, evidence is offered that the precursor polypeptide is able to form in vitro a dimeric molecule under conditions where no exogenous reducing agents were added.  相似文献   

8.
Ribonuclease P (RNase P) is a ribonucleoprotein that requires magnesium ions to catalyze the 5' maturation of transfer RNA. To identify interactions essential for catalysis, the properties of RNase P containing single sulfur substitutions for nonbridging phosphodiester oxygens in helix P4 of Bacillus subtilis RNase P were analyzed using transient kinetic experiments. Sulfur substitution at the nonbridging oxygens of the phosphodiester bond of nucleotide U51 only modestly affects catalysis. However, phosphorothioate substitutions at A49 and G50 decrease the cleavage rate constant enormously (300-4,000-fold for P RNA and 500-15,000-fold for RNase P holoenzyme) in magnesium without affecting the affinity of pre-tRNA(Asp), highlighting the importance of this region for catalysis. Furthermore, addition of manganese enhances pre-tRNA cleavage catalyzed by B. subtilis RNase P RNA containing an Sp phosphorothioate modification at A49, as observed for Escherichia coli P RNA [Christian et al., RNA, 2000, 6:511-519], suggesting that an essential metal ion may be coordinated at this site. In contrast, no manganese rescue is observed for the A49 Sp phosphorothioate modification in RNase P holoenzyme. These differential manganese rescue effects, along with affinity cleavage, suggest that the protein component may interact with a metal ion bound near A49 in helix P4 of P RNA.  相似文献   

9.
10.
11.
12.
Here, we report the first evidence that the Ran GTPase cycle is required for nuclear pore complex (NPC) assembly. Using a genetic approach, factors required for NPC assembly were identified in Saccharomyces cerevisiae. Four mutant complementation groups were characterized that correspond to respective mutations in genes encoding Ran (gsp1), and essential Ran regulatory factors Ran GTPase-activating protein (rna1), Ran guanine nucleotide exchange factor (prp20), and the RanGDP import factor (ntf2). All the mutants showed temperature-dependent mislocalization of green fluorescence protein (GFP)-tagged nucleoporins (nups) and the pore-membrane protein Pom152. A decrease in GFP fluorescence associated with the nuclear envelope was observed along with an increase in the diffuse, cytoplasmic signal with GFP foci. The defects did not affect the stability of existing NPCs, and nup mislocalization was dependent on de novo protein synthesis and continued cell growth. Electron microscopy analysis revealed striking membrane perturbations and the accumulation of vesicles in arrested mutants. Using both biochemical fractionation and immunoelectron microscopy methods, these vesicles were shown to contain nups. We propose a model wherein a Ran-mediated vesicular fusion step is required for NPC assembly into intact nuclear envelopes.  相似文献   

13.
14.
Ribonuclease P is an ancient enzyme that cleaves pre-tRNAs to generate mature 5' ends. It contains an essential RNA subunit in Bacteria, Archaea, and Eukarya, but the degree to which the RNA subunit relies on proteins to supplement catalysis is highly variable. The eukaryotic nuclear holoenzyme has recently been found to contain almost twenty times the protein content of the bacterial enzymes, in addition to having split into at least two related enzymes with distinct substrate specificity. In this review, recent progress in understanding the molecular architecture and functions of nuclear forms of RNase P will be considered.  相似文献   

15.
16.
Nuclear envelope precursor vesicles were affinity purified from a Xenopus egg extract by a chromatin binding method. Vesicles bound to chromatin at 4 degrees C were dissociated with a high salt buffer and further fractionated into nuclear envelope precursor vesicle fractions 1 (PV1) and 2 (PV2) by differential centrifugation. PV1 contained larger vesicles. When chromatin was incubated in a Xenopus egg cytosol fraction supplemented with PV1, vesicles bound to chromatin, fused with each other, formed a bilayered nuclear envelope, and assembled into spherical small nuclei. However, the thus assembled nuclei did not grow to the normal size. Nuclear pore complexes were not found on the thus assembled nuclei. On the other hand, PV2 contained smaller vesicles. PV2 vesicles bound to chromatin, fused little with each other in the Xenopus egg cytosol fraction, and no nuclei were assembled. When PV1 supplemented with PV2 was used for the nuclear assembly reaction, the assembled nuclei grew to the normal size. Nuclear pore complexes existed in the thus assembled nuclear envelopes. These results suggested that 1) two vesicle populations, PV1 and PV2, are necessary for the assembly of normal sized nuclei, 2) PV1 contains a chromatin targeting molecule(s) and membrane fusion machinery, 3) PV2 contains a chromatin targeting molecule(s) and a molecule(s) necessary for nuclear pore complex assembly, and 4) PV1 has the ability to assemble a nuclear membrane, and PV2 is necessary for the assembly of nuclear pore complexes and for nuclei to grow to the normal size. An in vitro nuclear assembly system constituted with affinity-purified vesicle fractions, PV1 and PV2, was established.  相似文献   

17.
The nuclear pore complex (NPC) mediates all nucleocytoplasmic transport, yet its structure and biogenesis remain poorly understood. In this study, we have functionally characterized interaction partners of the yeast transmembrane nucleoporin Ndc1. Ndc1 forms a distinct complex with the transmembrane proteins Pom152 and Pom34 and two alternative complexes with the soluble nucleoporins Nup53 and Nup59, which in turn bind to Nup170 and Nup157. The transmembrane and soluble Ndc1-binding partners have redundant functions at the NPC, and disruption of both groups of interactions causes defects in Ndc1 targeting and in NPC structure accompanied by significant pore dilation. Using photoconvertible fluorescent protein fusions, we further show that the depletion of Pom34 in cells that lack NUP53 and NUP59 blocks new NPC assembly and leads to the reversible accumulation of newly made nucleoporins in cytoplasmic foci. Therefore, Ndc1 together with its interaction partners are collectively essential for the biosynthesis and structural integrity of yeast NPCs.  相似文献   

18.
Kakuta Y  Ishimatsu I  Numata T  Kimura K  Yao M  Tanaka I  Kimura M 《Biochemistry》2005,44(36):12086-12093
Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the removal of 5' leader sequences from tRNA precursors (pre-tRNA). The human protein Rpp21 is essential for human RNase P activity in tRNA processing in vitro. The crystal structure of Ph1601p from the hyperthermophilic archaeon Pyrococcus horikoshii OT3, the archaeal homologue of Rpp21, was determined using the multiple anomalous dispersion (MAD) method with the aid of anomalous scattering in zinc and selenium at 1.6 A resolution. Ph1601p comprises an N-terminal domain (residues 1-55), a central linker domain (residues 56-79), and a C-terminal domain (residues 80-120), forming an L-shaped structure. The N-terminal domain consists of two long alpha-helices, while the central and C-terminal domains fold in a zinc ribbon domain. The electrostatic potential representation indicates the presence of positively charged clusters along the L arms, suggesting a possible role in RNA binding. A single zinc ion binds the well-ordered binding site that consists of four Cys residues (Cys68, Cys71, Cys97, and Cys100) and appears to stabilize the relative positions of the N- and C-domains. Mutations of Cys68 and Cys71 or Cys97 and Cys100 to Ser destabilize the protein structure, which results in inactivation of the RNase P activity. In addition, site-directed mutagenesis suggests that Lys69 at the central loop and Arg86 and Arg105 at the zinc ribbon domain are strongly involved in the functional activity, while Arg22, Tyr44, Arg65, and Arg84 play a modest role in the activity.  相似文献   

19.
At least six proteins co-purify with human ribonuclease P (RNase P), a tRNA processing ribonucleoprotein. Two of these proteins, Rpp30 and Rpp38, are Th autoantigens. Recombinant Rpp30 and Rpp38 are also recognized by Th sera from systemic sclerosis patients. Two of the other proteins associated with RNase P, Rpp20 and Rpp40, do not cross-react with Th sera. Polyclonal antibodies raised against all four recombinant proteins recognize the corresponding proteins associated with RNase P and precipitate active holoenzyme. Catalytically active RNase P holoenzyme can be separated from the nucleolar and mitochondrial RNA processing endoribonuclease, RNase MRP, even though these two enzymes may share some subunits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号