首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunogenicity of adult Strongyloides ratti was studied in rats. Immunization of rats by intraduodenal implantation of adult worms could completely inhibit the egg production and hasten the expulsion of challenged worms which were developed from subcutaneously inoculated L3 or were implanted intraduodenally as adults. Enteral immunization by intraduodenal implantation of adult worms was, however, not able to affect the esophageal larval output of the challenge infection with L3. In contrast to enteral immunization with adult worms, immunization by full sequence of a primary infection or by a combination of drug-abbreviated infection and adult worm implantation could suppress the esophageal larval output of the challenge infection. The relationship between the host defense mechanism and the life cycle of S. ratti is discussed.  相似文献   

2.
The generation of protective immunity by various stages in the life-cycle of Strongyloides ratti and the phases against which resistance is directed has been examined in murine strongyloidiasis. Mice were exposed to natural, complete infections, were treated with thiabendazole (which largely resembles the natural infection), were treated with cambendazole (which restricts infection to the larval stage), or infected directly by oral transfer of adult worms. Mice that were infected with infective larvae alone did not become resistant to infective larvae or the complete infection but were resistant to adult worms implanted directly into the gut. Mice exposed to adult worms alone were resistant to natural infections and adults worms implanted directly but were not resistant to infective larvae. On the other hand, mice that had received prior natural infections showed evidence of resistance to infective larvae, adult worms, and natural, complete infections. It is concluded that there is immunological cross-reactivity between infective larvae and adult worms but that under certain circumstances the infective larvae are able to evade the host's protective immune response.  相似文献   

3.
The immune response of mice to the nematode Trichinella spiral's was markedly altered when the infection was superimposed upon an existing infection with Nematospiroides dubius. The expulsion of a primary infection of T. spiralis was delayed in such mice, and the worms persisted for at least 4 weeks longer than they did in control mice. The degree to which expulsion was suppressed was related to the number of N. dubius present. It would appear that both adult and larval stages of N. dubius can exert a suppressive effect, since the expulsion of T. spiralis was affected within days of a super-imposed (i.e., larval) N. dubius infection. When adult N. dubius were removed from mice 4 days before infection with T. spiralis, the mice expelled the latter parasite within the normal time, indicating that recovery from the suppressive effects of concurrent infection occurred rapidly. Concurrent infection with N. dubius appeared to affect both the afferent and efferent arms of the immune response to T. spiralis, since sensitization by, and memory of, prior infection were impaired and the expression of acquired immunity was inferior to that of controls.  相似文献   

4.
The immune response of inbred strains of mice was studied following infection with isolates of Trichinella from a pig (P1), an arctic fox (AF1), and T. spiralis var. pseudospiralis (TP). Strains of mice previously characterized as highly resistant to a separate pig isolate of T. spiralis responded to the P1 and AF1 isolates by expelling over 80% of the worms by day 10 postinfection (PI), and by suppressing the in vitro release of newborn larvae by female worms. However, the response induced by AF1 worms was expressed more quickly when compared to responses induced by the P1 and TP isolates. The host response to TP was less as recovery was always higher at day 10 PI and antifecundity effects were not induced in TP worms even in highly resistant strains of mice. Strains of mice previously characterized as susceptible to T. spiralis infection were slow to develop resistance when compared to the resistant mouse strains, but even among the susceptible strains, infection with AF1 induced a more rapid response. The mouse strains used in these experiments allowed us to assess the role of the major histocompatibility complex (MHC) and/or non-MHC genes in influencing the responses observed. As previously reported for a pig isolate of T. spiralis, both MHC and non-MHC genes influenced the rate at which worms were expelled from the gut and the host response that limits the fecundity of adult female worms.  相似文献   

5.
An in vitro immune effector mechanism against the target excysted metacercariae of Paragonimus westermani was demonstrated in the rat system. Peritoneal exudate cells, mainly macrophages from normal rats, showed adherence to and killing of excysted metacercariae of P. westermani in the presence of complement-independent serum from rats infected with Paragonimus metacercariae. These reactions were specific for the excysted metacercariae, as tissue-migrating juvenile worms were not affected. Damage of excysted metacercariae of P. westermani due to antibody and macrophages was assessed by morphological observation, by cell adherence reaction and by the use of vital dyes. Trypan blue dye exclusion proved to be a reliable indicator of judging metacercarial viability. Electron microscopic studies demonstrated that macrophages reacted with fuzzy material on the tegumental surface and fine structures in the syncytium of the parasites. The tubular tunnels formed between the basement membrane and muscle layers of the damaged parasites were also noticeable. The relevance of these findings to cellular immunity in the early paragonimiasis was discussed.  相似文献   

6.
Trichinella spiralis: acquired immunity in swine   总被引:5,自引:0,他引:5  
The ability of domestic pigs to develop protective immunity to Trichinella spiralis in response to inoculation with different doses of muscle larvae was assessed. Adult worms developing from the inoculations of 112, 500, and 10,000 larvae were expelled from the intestine about 6 weeks after inoculation. Inoculation with 25,000 larvae, however, resulted in more rapid intestinal worms expulsion, indicating that gut expulsion is dose dependent. Secondary expulsion also tended to be dependent upon primary infection level. Pigs initially inoculated with 500 to 10,000 larvae expelled the challenge infection of adult worms after 22 to 25 days; in contrast, infection by inoculation of only 112 larvae failed to induce significant enchanced gut expulsion of the challenge infection intestinal worms. However, all primary infection levels, including inoculation with 112 larvae, induced nearly absolute resistance to the muscle establishment of larvae from challenge adult worms. The fecundity of female worms recovered from immune pigs was reduced 75% in comparison to controls. These results show that, in contrast to some host species, very rapid gut expulsion does not occur in domestic swine. Yet, immune responses at the gut level are important, perhaps responsible for much of the inhibition reflected as reduction in the establishment of muscle larvae.  相似文献   

7.
In mice, repeatedly infected orally with larvae of Nematospiroides dubius, resistance caused delay in the maturation of larvae, their investment in inflammatory nodules and, in sufficiently resistant animals, their death. The fecundity of adult worms was not affected by host resistance.Previously uninfected mice which had received adult worms by transplantation at operation produced only very low titres of reaginic antibody in comparison with mice infected with larvae by mouth.The migration of leucocytes from resistant mice was inhibited by a crude antigen derived from adult worms.In mice made passively immune by transfer of serum the entry of larvae into the wall of the intestine was delayed; there was no inflammatory response and the larvae did not die.In mice selectively depleted of thymus-derived lymphocytes no inflammatory response occurred and the maturation of larvae was not delayed in response to repeated infection.  相似文献   

8.
Congenitally athymic (nude) mice maintained infections of Trichuris muris for at least 40 days post-infection, whereas phenotypically normal mice expelled the worms by 18 days post-infection. Complete worm expulsion occurred in nude mice which had been given spleen cells. On the other hand, a partial resistance to the infection was observed in nude mice which received thymus or mesenteric lymph node cells. No significant worm reduction was seen by injection of immune serum.  相似文献   

9.
Mice initially infected with Hymenolepis nana eggs became completely immune to challenge with mouse-derived cysticercoids (cysts) after more than 10 days. The host possessed at least two separated immune responses, one directed exclusively against reinfection with eggs (early response) and the other against cyst infection (late response). In two different mouse strains the responses showed markedly different duration both for the time lag prior to acquisition of the late response and for the survival of the initially infected worms, but were otherwise similar. The mice became immune to adult tapeworms and expelled the initially infected, destrobilated worms; this third immune response determines the longevity of H. nana in the mouse host. Thus, there is a strong indication that H. nana successively changes its immunogenicity during development, each stage stimulating immunity after a time lag. It is possible that the longevity of H. nana in a mouse strain depends on the length of time prior to acquisition of immune responses directed not against the tissue stage (early response), but against the lumen stages (late response and worm expulsion response).  相似文献   

10.
Mice were infected orally with 1,6, or 30 cysticercoids of Hymenolepis diminuta. These were allowed to develop for different periods of time before elimination with anthelminthic, thus exposing the hosts to antigens from the prestrobilate, early strobilate, or fully strobilate worms. Other groups of mice were immunized by intraperitoneal (ip) implantation of a live strobilate worm or by ip implantation of live worms from cysticercoids excysted in vitro. Strong protection against challenge with a surgically transplanted strobilate worm was achieved by prior infection with 6 or 30 worms eliminated as early as Day 3 of infection. By this time these worms would not have strobilated. Conversely, a single worm, strobilating extensively over 16 days, stimulated only weak protection. Parenteral implantation of excysted worms protected mice but parenteral implantation of a strobilate worm had no effect. It is suggested that (i) the tapeworm protective antigens are primarily related to the scolex and/or the germinative region; (ii) the number of worms and the duration of antigenic stimulation in an immunizing infection determine the magnitude of a protective secondary response.  相似文献   

11.
Despite a growing understanding of the role of cytokines in immunity to the parasitic helminth Trichuris muris, the local effector mechanism culminating in the expulsion of worms from the large intestine is not known. We used flow cytometry and immunohistochemistry to characterize the phenotype of large intestinal intraepithelial lymphocytes (IEL) and lamina propria leukocytes (LPL) from resistant and susceptible strains of mouse infected with T. muris. Leukocytes accumulated in the epithelium and lamina propria after infection, revealing marked differences between the different strains of mouse. In resistant mice, which mount a Th2 response, the number of infiltrating CD4+, CD8+, B220+, and F4/80+ IEL and LPL was generally highest around the time of worm expulsion from the gut, at which point the inflammation was dominated by CD4+ IEL and F4/80+ LPL. In contrast, in susceptible mice, which mount a Th1 response, the number of IEL and LPL increased more gradually and was highest after a chronic infection had developed. At this point, CD8+ IEL and F4/80+ LPL were predominant. Therefore, this study reveals the local immune responses underlying the expulsion of worms or the persistence of a chronic infection in resistant and susceptible strains of mouse, respectively. In addition, for the first time, we illustrate isolated lymphoid follicles in the large intestine, consisting of B cells interspersed with CD4+ T cells and having a central zone of rapidly proliferating cells. Furthermore, we demonstrate the organogenesis of these structures in response to T. muris infection.  相似文献   

12.
Rats infected orally with Trichinella spiralis developed an immunity that was induced by and expressed against separate phases of the parasite's enteral life cycle. Infectious muscle larvae generated an immune response (rapid expulsion) that was directed against the very early intestinal infection and resulted in the expulsion of worms within 24 hr. This response eliminated more than 95% of worms in an oral challenge inoculum. Developing larvae (preadults) also induced an immune response that was expressed against adult worms. The effect on adults was dependent upon continuous exposure of worms to the immune environment throughout their enteral larval development. Immunity induced by preadult T. spiralis was not expressed against adult worms transferred from nonimmune rats. While adult worms were resistant to the immunity engendered by preadults they induced an efficient immunity that was autospecific. Both “preadult” and “adult” immunities were expressed in depression of worm fecundity as well as in the expulsion of adults from the gut. However, the two reactions differed in respect to their kinetics and their efficiency against various worm burdens. Preadult immunity was directed mainly against fecundity whereas adult immunity favored worm expulsion. All responses (rapid expulsion, preadult and adult immunity, and antifecundity) acted synergistically to produce sterile immunity against challenge infections of up to 5000 muscle larvae. These findings indicate that the host protective response to T. spiralis is a complex, multifactorial process that operates sequentially and synergistically to protect the host against reinfection.  相似文献   

13.
Gastrointestinal nematodes require energy for active establishment in the gut against intestinal flow and peristaltic motion. In this study we employed CellTiter-Glo Luminescent Cell Viability Assay to measure the ATP value of individual adult Nippostrongylus brasiliensis during the course of immune-mediated expulsion from the small intestine in rats. The ATP values of adult worms taken from the lumen of the distal small intestine were lower than worms collected from the lumen of the proximal small intestine. Moreover, values from worms in the lumen of the proximal small intestine were lower than those from worms in the mucosa, the preferred site of adult N. brasiliensis. The reduction of ATP values in worms from each region was observed not only at expulsion phase, but also at established phases of the infection suggesting that energy metabolism of the parasites is independent of host immune response. When adult worms with low ATP values on day 12 post-infection were implanted surgically into the small intestine of na?ve rats, the worms re-established in recipients and completely restored the ATP values. Short in vitro culture of adult worms under low oxygen tension resulted in low ATP value in the worms. These results suggested that adult worms were dislodged from their preferred site by intact energy metabolism activity.  相似文献   

14.
Adult H. polygyrus are capable of surviving for many months after primary exposure of mice to infective larvae, raising the possibility that worms of this species have inherent resistance to intestinal immune responses. Accordingly experiments were carried out to determine whether H. polygyrus are resistant to the inflammatory changes elicited during the acute phase of the intestinal response to Trichinella spiralis. Adult worms were expelled from mice when their presence coincided with the most intense phase of inflammation elicited by T. spiralis. The effect was dose-dependent with more intense T. spiralis challenge resulting in a correspondingly greater loss of H. polygyrus. Even the less pathogenic species T. pseudospiralis elicited a response of sufficient intensity in NIH mice to cause the expulsion of H. polygyrus from concurrently infected animals. Tissue larval stages of H. polygyrus were protected from expulsion by their location deep in the intestinal walls and the maximum detrimental effect against H. polygyrus was observed during the adult phase or during the establishment of L3 larvae. Acceleration of the response to T. spiralis in immune challenged mice resulted in earlier loss of H. polygyrus. When the expulsion of T. spiralis was delayed (e.g. from slow responder C57BL/10 mice) the loss of H. polygyrus took place correspondingly later. These experiments demonstrate unequivocally that mouse strains which normally tolerate chronic infections with H. polygyrus have the capacity to mount intestinal inflammatory responses of sufficient vigour to remove the worms but that this potential is not normally realized. However, the observation that some H. polygyrus always survived even when the response induced by T. spiralis was of the rapid secondary type suggests that the parasites are resilient in the face of the inflammatory response capable of removing most of the worms. It is suggested that in addition to the immunomodulatory strategy employed by adult worms to prevent the intestinal response being elicited, the worms have a second line of defence which is reflected in their resilience to responses which they have been unable to prevent.  相似文献   

15.
Kristan DM 《Aging cell》2007,6(6):817-825
Long-term calorie restriction (CR) has numerous benefits; however, effects of CR on susceptibility to intact pathogens are not well understood. Because CR enhances immune function of laboratory mice ( Mus musculus ), it was hypothesized that mice subjected to CR would be less susceptible to experimental infections of the intestinal parasite Heligmosomoides bakeri . Furthermore, because H. bakeri must combat a greater host immune response by CR mice compared to fully fed mice, it also was also hypothesized that (i) worms living in CR hosts would have lower reproduction than worms from ad libitum -fed mice, and (ii) CR mice would have a more female-biased sex ratio as male worms may be more vulnerable to host immune response than female worms. Mice were subjected to CR for 6.7 months and were then infected with H. bakeri for one additional month. As expected, CR mice had equal or enhanced immune response (eosinophils and immunoglobin G1 production) to H. bakeri infection compared to ad libitum -fed mice, and CR mice harbored a more female-biased sex ratio than ad libitum -fed mice. Contrary to predictions, CR mice had more worms than ad libitum -fed mice and the worms from CR mice produced more eggs than worms from ad libitum -fed mice. These data indicate that, despite the evidence that long-term CR enhances traditional measures of immune function, CR may actually increase susceptibility to intact parasite infection. Furthermore, changes in worm reproduction and differential survival of male vs. female worms may influence host–parasite transmission dynamics during long-term host CR.  相似文献   

16.
The course of Strongyloides venezuelensis infection in congenitally hypothymic (nu/nu) mice and their heterozygous thymus-bearing littermates (nu/+) was followed. Unlike the infected nu/+ mice, the nu/nu mice were unable to expel the worms until the end of the observation period (98 days post-infection). In addition, about three times as many eggs were counted at the peak level of infection in faeces of the infected nu/nu mice in comparison with the nu/+ mice. No acquired resistance to rechallenge was observed among the nu/nu mice. Auto-reinfection within the infected nu/nu mice could not be supposed in the present study. The worm expulsion mechanism was generated by nu/nu mice which had been given syngeneic spleen cells from intact +/+ mice. The expulsion of adult worms, as well as the protection against migrating larvae, occurred anamnestically when spleen cells from immune +/+ mice were transferred. The serum transfer, however, only caused a retardation of larval migration. The results support the hypothesis that direct worm immunity and worm expulsion are a T cell-dependent phenomenon.  相似文献   

17.
The rapid expulsion of Trichinella spiralis by mice of a variety of inbred and F1 mouse strains was examined. Mice were reinfected once with T. spiralis during and immediately after the natural termination of a primary infection and worm rejection was measured less than or equal to 24 hr after the challenge. The results showed that the challenge (super)infection was consistently rejected by all mouse strains before rejection of the adult worms from the primary infection commenced. Rejection of the challenge infection began at different times after the primary infection with NFS (2 days) less than C3H less than or equal to B10.Q approximately B10.BR (greater than 5 days). In all strains, rejection of the challenge infection preceded adult worm rejection from the primary infection by 5-8 days. At its peak, the loss of challenge worms related directly to the strength of the primary rejection process NFS greater than or equal to 98%, C3H 90-98%, and B10 mice 80-90%. Furthermore, loss of the capacity to reject the challenge followed approximately 7 days after the complete loss of the primary infection in each strain examined. Thus, the sooner worms from the primary infection were lost, the earlier the capacity to promptly reject the challenge infection disappeared. B10.Br mice still partially rejected a superinfection 35 days after the primary infection began, whereas NFS mice lost this capacity around 25 days. However, premature termination of the primary infection in B10.BR mice with methyridine at the same time that NFS mice naturally terminated their infection (15 days) abrogated the capacity of B10.BR mice to reject the superinfection at 24 days. Passive transfer of protective rat IgG monoclonal antibody to mice did not lead to rapid expulsion. Transfer of mouse immune serum to intestinally primed rats did result in rapid expulsion, suggesting that mouse antibody responses were adequate. The expression of superinfection rejection was susceptible to the administration in vivo of GK1.5, anti-mouse L3T4 antibody. The data indicate that the principal determinant of the strength, time of initiation, and longevity of rejection of a challenge infection was the response to the primary infection of that individual mouse strain. The genetic determinants of challenge infection rejection were seen to be identical to those that determined rejection of the primary infection. Since no evidence could be found to support the identity of this response with rapid expulsion, as defined in rats, a new term, "associative expulsion," is proposed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The ultrastructure of the ovary of Paragonimus ohirai was investigated in different developmental stages of experimental infection in rats, from the metacercarial stage to the adult stage. The female reproductive cells were observed in order to understand the development of the ovary. During its development in the definitive host, the ovarian primordium and the ovary increased in size and cell number and underwent morphological changes. The blind end of the female genitalia was an undifferentiated primordium at the metacercarial stage, but became the bud of an ovary on day 3. Germ cells and supporting cells were observed on day 5. Oogonia were identified in the 15-day-old ovary, followed by the appearance of young oocytes at 17 days. Large oocytes were found on day 19, but the 21-day-old ovary contained degenerated oocytes. Mature ovaries were observed in the 26-day-old worms and egg formation was seen to arise on day 28. The development of the ovary and female reproductive cells was discussed in relation to the physiology of P. ohirai.  相似文献   

19.
An attempt has been made to study the extent and nature of the damage occurring in adult Nippostrongylus brasiliensis undergoing immune expulsion from the rat. It was found that worms are not killed nor irreparably damaged when being rejected. On transfer into naive second recipient rats the rate of re-establishment of worms previously incubated in immune rat recipients for 4-17 hr was high (68-69%) and comparable to that shown by worms from normal recipient rats (48-56%). Similarly, worms taken on days 10, 11, and 12 of a primary infection, already passed to the distal half of the small intestine due to immune expulsion effects, on transfer into naive recipient rats re-established themselves well (rates varying from 62 to 80%) compared to those harvested from their normal habitat in the proximal half of the small intestine (rates varying from 44 to 87%). Worm damage is associated with decreased motility and impaired locomotion capacity. The phenomenon of mucosal trapping occurs during expulsion, but merely to the extent of some 30% of the worm population. It is suggested that in principle, worms subjected to immune expulsion are in a state of acute, transient metabolic crisis. The present results support the enteroallergic indirect mechanism for worm rejection.  相似文献   

20.
The protective capacities of different sources of immune lymphocytes against Nippostrongylus brasiliensis infection were examined. Thoracic duct lymphocytes (TDL) drained from donors on the tenth day of a primary infection (Day 10 TDL) conferred greater protection against adult worms established by larval infection than either mesenteric lymph node cells (MLNC) or TDL drained from hyperimmune donors. Day 10 TDL also conferred a high degree of protection against intraduodenally implanted “normal” and “damaged” worms. These results suggest that the different susceptibilities of “normal” and “damaged” worms to adoptive protection is a quantitative rather than a qualitative phenomenon. The results also emphasise that kinetic and dose-response experiments are important in evaluating the protective capacities of transferred cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号