首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The murine monoclonal antibody 125E11 is an IgG which recognizes PreS1(21-47) fragment of large hepatitis B surface antigen. It has been successfully used for clinical detection of HBV virion in serum of hepatitis B patients. In present study, the genes of variable region in heavy chain (VH) and light chain (VL) of 125E11 have been cloned. Sequence analysis of cloned VH gene and VL gene showed that they had general characterization of immunoglobin variable region genes. According to Kabat classification, VH gene and VL gene belong to VH10 family, subgroup IIID and Vkappa family subgroup I, respectively. An expression vector of 125E11 single-chain Fv antibody fusion protein, in which VH and VL peptide were connected by a flexible linker (Gly(4)Ser)(3), was constructed. The scFv fusion protein was highly expressed in Escherichia coli mainly in inclusion body form. Using urea and pH gradient gel filtration method, the refolding of scFv was efficiently achieved. The refolding efficiency reached about 11% and 2.7 mg refolded scFv was obtained from 1L of culture. The binding activity and specificity of 125E11 scFv against PreS1(21-47)-containing antigen were also analyzed.  相似文献   

2.
Diabodies are the recombinant bispecific antibodies (BsAbs), constructed from heterogeneous single-chain antibodies. Usually, diabodies have been prepared from bacterial periplasmic fraction using a co-expression vector (i.e. genes encoding two chains were tandemly located under the same promoter). Some diabodies, however, cannot be expressed as a soluble material owing to inclusion body formation, which limits the utilization of diabodies in various fields. Here we report an improved method for the construction of diabodies using a refolding system. As a model, a bispecific diabody binding to adenocarcinoma-associated antigen MUC1 and to CD3 on T cells was studied. One chain consisted of a VH specific for MUC1 linked to a VL specific for CD3 with a short polypeptide linker (GGGGS). The second was composed of a VL specific for MUC1 linked to a VH specific for CD3. The two hetero scFvs were independently obtained from intracellular insoluble fractions of Escherichia coli, purified, mixed stoichiometrically (at an equivalent molar ratio of 1:1) and refolded. The refolded two hetero scFv has a hetero-dimeric structure, with complete specificity for both target cells [i.e. MUC1 positive cells and CD3 positive lymphokine-activated killer cells with a T cell phenotype (T-LAK)]. Evaluation of the in vitro efficacy of T-LAK with the diabody by growth inhibition assay of cancer cells demonstrated maximum growth inhibition of cancer cells to reach approximately 98% at an effector:target ratio (E:T ratio) of 10, almost identical with that with anti-MUC1xanti-CD3 chemically synthesized BsAbs (c-BsAbs). This is the first report of the construction of a diabody using a refolding system.  相似文献   

3.
Bispecific single-chain Fv antibodies comprise four covalently linked immunoglobulin variable (VH and VL) domains of two different specificities. Depending on the order of the VH and VL domains and on the length of peptides separating them, the single-chain molecule either forms two single-chain Fv (scFv) modules from the adjacent domains of the same specificity, a so-called scFv-scFv tandem [(scFv)(2)], or folds head-to-tail with the formation of a diabody-like structure, a so-called bispecific single-chain diabody (scBsDb). We generated a number of four-domain constructs composed of the same VH and VL domains specific either for human CD19 or CD3, but arranged in different orders. When expressed in bacteria, all (scFv)(2) variants appeared to be only half-functional, binding to CD19 and demonstrating no CD3-binding activity. Only the diabody-like scBsDb could bind both antigens. Comparison of the scBsDb with a structurally similar non-covalent dimer (diabody) demonstrated a stabilizing effect of the linker in the middle of the scBsDb molecule. We demonstrated that the mechanism of inactivation of CD19xCD3 diabody under physiological conditions is initiated by a dissociation of the weaker (anti-CD3) VH/VL interface followed by domain swapping with the formation of non-active homodimers. The instability of one homodimer makes the process of diabody dissociation/reassociation irreversible, thus gradually decreasing the fraction of active molecules. The structural parameters influencing the formation of functional bispecific single-chain antibodies are indicated and ways of making relatively stable bispecific molecules are proposed.  相似文献   

4.
Single-chain Fv antibody fragments (scFvs) incorporate a polypeptide linker to tether the VH and VL domains together. An scFv molecule with a linker 5-12 residues long cannot fold into a functional Fv domain and instead associates with a second scFv molecule to form a bivalent dimer (diabody). Direct ligation of VH and VL domains further restricts association and forces three scFv molecules to associate into a trivalent trimer (triabody). We have defined the effect of linker length on scFv association by constructing a series of scFvs from anti-neuraminidase antibody NC10 in which the linker varied from one to four glycine residues. NC10 scFv molecules containing linkers of three and four residues showed a strong preference for dimer formation (diabodies), whereas a linker length of one or two glycine residues prevented the formation of diabodies and directed scFv association into trimers (triabodies). The data suggest a relatively strict transition from dimer (diabody) to trimer (triabody) upon reduction of the linker length from three to two glycine residues. Modelling studies are consistent with three residues as the minimum linker length compatible with diabody formation. Electron microscope images of complexes formed between the NC10 scFv multimers and an anti-idiotype Fab' showed that the dimer was bivalent for antigen binding and the trimer was trivalent.  相似文献   

5.
Secondary antigen stimulation usually produces IgG antibodies with hypermutated V segments. Studying a strong secondary response to the polynucleotide antigen poly(dC), however, we found a highly selective IgG antibody (mAb dC7) with only one mutation (a conservative Leu to Ileu substitution) throughout the whole VH domain. To investigate the roles of VH and VL domains in selective binding by this mAb, we prepared its VH, VL and single-chain Fv (scFv) fragments. A bacterial expression system produced soluble monomeric V region proteins. CD spectra confirmed that they had the beta-secondary structure expected for Ig domains. Both the scFv and VH fragments bound to single-stranded non-protonated poly(dC) and to ssDNA but not to protonated, more structured poly(dC) or dsDNA. The VL domain alone did not bind to nucleic acids, but VL association modified the VH binding, giving the scFv a 10-fold higher affinity than the VH for poly(dC) and greatly increasing the cytosine-dependent selectivity. Non-ionic interactions were prominent in the Fv reaction with a (dC)( n) sequence. Ionic interactions were revealed in Fv cross-reactions with ssDNA, and were more prominent in binding of either poly(dC) or ssDNA by VH alone, consistent with the lesser base selectivity of the VH. Thus, the Fv and VH alone bind to a single antigen, poly(dC), but mechanistic differences result from additional subsites in the Fv. Generation of a selective IgG with very few CDR mutations in either VH or VL, which was accompanied by IgM antibodies with unmutated V regions, also suggests that nucleic acid binding activity is a property of the B cell repertoire even before immunization.  相似文献   

6.
In an attempt to generate recombinant anti-D reagents for possible diagnostic and therapeutic use we cloned the genes encoding the variable (V) domains of a human anti-D antibody secreted by the lymphoblastoid cell line BTSN4. A single-chain Fv (scFv) fragment was constructed using a 21 amino acid linker to join the genes encoding the variable domains of the BTSN4 heavy (VH) and light chains (VL). A diabody construct was also generated by reducing the length of the scFv linker from 21 to 10 residues. The scFv and diabody constructs were cloned into the pFLAG-CTS vector, expressed in E. coli host cells and the recombinant proteins were affinity-isolated from bacterial culture medium. Analysis of the recombinant proteins indicated that they retained the D antigen binding specificity of the parental BTSN4 IgG. Furthermore, both fragments mediated agglutination of papain-treated D positive erythrocytes in the absence of a cross-linking second antibody. While the agglutinating property of BTSN4 diabody was readily explained by the non-covalent association of this protein as a bivalent dimer, oligomeric forms of BTSN4 scFv were not detected when the protein was analysed by size exclusion chromatography. Thus, the agglutinating property of the scFv is not the result of the formation of non-covalently associated multimeric forms of the antibody fragment.  相似文献   

7.
Remodeling domain interfaces to enhance heterodimer formation.   总被引:3,自引:0,他引:3       下载免费PDF全文
An anti-p185HER2/anti-CD3 humanized bispecific diabody was previously constructed from two cross-over single-chain Fv in which YH and VL domains of the parent antibodies are present on different polypeptides. Here this diabody is used to evaluate domain interface engineering strategies for enhancing the formation of functional heterodimers over inactive homodimers. A disulfide-stabilized diabody was obtained by introducing two cysteine mutations, VL L46C and VH D101C, at the anti-p185HER2.VL/VH interface. The fraction of recovered diabody that was functional following expression in Escherichia coli was improved for the disulfide-stabilized compared to the parent diabody (> 96% versus 72%), whereas the overall yield was > 60-fold lower. Eleven "knob-into-hole" diabodies were designed by molecular modeling of sterically complementary mutations at the two VL/VH interfaces. Replacements at either interface are sufficient to improve the fraction of functional heterodimer, while maintaining overall recoverable yields and affinity for both antigens close to that of the parent diabody. For example, diabody variant v5 containing the mutations VL Y87A:F98M and VH V37F:L45W at the anti-p185HER2 VL/VH interface was recovered as 92% functional heterodimer while maintaining overall recovered yield within twofold of the parent diabody. The binding affinity of v5 for p185HER2 extracellular domain and T cells is eightfold weaker and twofold stronger than for the parent diabody, respectively. Domain interface remodeling based upon either sterically complementary mutations or interchain disulfide bonds can facilitate the production of a functional diabody heterodimer. This study expands the scope of domain interface engineering by demonstrating the enhanced assembly of proteins interacting via two domain interfaces.  相似文献   

8.
The assembly of single-chain Fv (scFv) antibody fragments, consisting of an interconnected variable heavy chain (VH) and variable light chain (VL), is a cooperative process that requires coupled folding and domain association. We report here an initial investigation of VH/VL domain-domain assembly with a site-directed mutagenesis study that probes a highly conserved VH/VL hydrogen bonding interaction. Gln168 of the S5 scFv (Kabat VH 39) is absolutely conserved in 95% of all VH, and Gln44 (Kabat VL 38) is found in 94% of all kappa VL (Glx in 95% of all lambda VL). These side chains form two hydrogen bonds in head-to-tail alignment across the VH/VL interface. Double mutant cycles at Gln168 and Gln44 were constructed to first investigate their contribution to thermodynamic folding stability, second to investigate whether stability can be improved, and third to determine whether refolding efficiencies are affected by mutations at these positions. The results demonstrate that the Gln168-Gln44 interaction is not a key determinant of S5 scFv folding stability, as sequential modification to alanine has no significant effect on the free energy of folding. Several mutations that alter the glutamines to methionine or charged amino acids significantly increase the thermodynamic stability by increasing the m(g) associated with the unfolding isotherm. These effects are hypothesized to arise largely from an increase in the VH/VL association free energy that leads to tighter coupling between domain-domain association and folding. All of the mutants also display a reduced antigen binding affinity. Single and double methionine mutants also displayed significant increases in refolding efficiency of 2.4- to 3-fold over the native scFv, whereas the double alanine/methionine mutants displayed moderate 1.9- to 2.4-fold enhancement. The results suggest that reengineering the VH/VL interface could be useful in improving the stability of single-chain antibodies, as Ala/Met mutations at these conserved positions increase the free energy of folding by 46% while minimally perturbing binding affinity. They also could be useful in improving scFv recovery from inclusion bodies as the mutations increase the refolding efficiency by more than twofold.  相似文献   

9.
A previously described polyol-responsive monoclonal antibody (PR-mAb) was converted to a single-chain variable fragment (scFv). This antibody, PR-mAb NT73, reacts with the beta' subunit of Escherichia coli RNA polymerase and has been used for the immunoaffinity purification of polymerase. mRNAs encoding the variable regions of the heavy chain (VH) and light chain (VL) were used as the template for cDNA synthesis. The sequences were joined by the addition of a "linker" sequence and then cloned into several expression vectors. A variety of expression plasmids and E. coli hosts were used to determine the optimal expression system. Expression was highest with the pET22b(+) vector and the Rosetta(DE3)pLysS host strain, which produced approximately 60 mg purified His-tagged scFv per liter of culture (3.3 g wet weight cells). Although the production of soluble scFv was preferred, overproduced scFv formed inclusion bodies under every expression condition. Therefore, inclusion bodies had to be isolated, washed, solubilized, and refolded. The FoldIt protein refolding kit and enzyme-linked immunosorbent assay were sequentially used to determine the optimal refolding conditions that would produce active His-tagged scFv. Immobilized metal affinity chromatography was used for the final purification of the refolded active scFv. The polyol-responsiveness of the scFv was determined by an ELISA-elution assay. Although the scFv loses considerable affinity for its antigen, it maintains similar polyol-responsiveness as the parent monoclonal antibody, PR-mAb NT73.  相似文献   

10.
An antibody variable domain fragment (Fv) is a candidate for a specific inhibitor of the hepatitis C virus (HCV) NS3 protease. Here we report the functional characterization of the Fv of antibody 8D4, which is specific for the active site of the HCV NS3 protease domain. The variable fragments of 8D4 in the forms of Fv and scFv (VH-(G(4)S)(3)-VL) were expressed as insoluble fractions in the periplasm of Escherichia coli, and were subsequently solubilized, purified under denaturing conditions, and refolded. The Fv had an inhibition profile almost identical to that of the parent IgG, with an IC(50) of 71.3 nM, whereas the scFv had a greatly decreased affinity to NS3 and was the same as the isolated VH fragment. To date, this is the first report of an antibody Fv fragment specific for the HCV NS3 protease domain, aimed at designing potent protease inhibitors and antiviral drugs.  相似文献   

11.
用MSI公司开发的计算机辅助分子设计系统模建肝癌细胞表面抗原特异性单链抗体三维结构。先分别模建VH(variable region of the heave chain)和VL(variable region of the light chain)两个结构域,然后搭建出scFv(single chain variable fragment)片段的整体三维结构,并对模建的结构进行分子力学和动力学优化;对结构的合理性验证显示模建结构是合理的。文章可为预测该特异性单链抗体的生物活性以及研制高亲和力、高特异性的双价抗体提供结构信息。  相似文献   

12.
The formation of the disulfide bonds in the variable domains VH and VL of the antibody McPC603 was found to be essential for the stability of all antigen binding fragments investigated. Exposure of the Fv fragment to reducing conditions in vitro resulted in irreversible denaturation of both VH and VL. In vitro refolding of the reduced Fv fragment was only possible when the disulfide bonds were allowed to form under oxidizing conditions. The analysis of a series of mutants of the Fv fragment, the Fab fragment and the single-chain Fv fragment, all secreted into the periplasm of Escherichia coli, in which each of the cysteine residues of the variable domains was replaced by a series of other amino acids, showed that functional antigen binding fragments required the presence of both the disulfide bond in VH and the one in VL. These results were also used to devise an alternative expression system based on the production of insoluble fusion proteins consisting of truncated beta-galactosidase and antibody domains, enzymatic cleavage, and refolding and assembly in vitro. This strategy should be useful for providing access to unstable antibody domains and fragments.  相似文献   

13.
We have studied the equilibrium unfolding and the kinetics of folding and unfolding of an antibody scFv fragment devoid of cis-prolines. An anti-GCN4 scFv fragment carrying a VL lambda domain, obtained by ribosome display, served as the model system together with an engineered destabilized mutant in VH carrying the R66K exchange. Kinetic and equilibrium unfolding experiments indicate that the VH mutation also affects VL unfolding, possibly by partially destabilizing the interface provided by VH, even though the mutation is distant from the interface. Upon folding of the scFv fragment, a kinetic trap is populated whose escape rate is much faster with the more stable VH domain. The formation of the trap can be avoided if refolding is carried out stepwise, with VH folding first. These results show that antibody scFv fragments do not fold by the much faster independent domain folding, but instead form a kinetically trapped off-pathway intermediate, which slows down folding under native conditions. This intermediate is characterized by premature interaction of the unfolded domains, and particularly involving unfolded VH, independent of proline cis-trans isomerization in VL. This work also implies that VH should be a prime target in engineering well behaving antibody fragments.  相似文献   

14.
Single-chain Fv (scFv) antibody against c-Met is expected to be employed in clinical treatment or imaging of cancer cells owing to the important biological roles of c-Met in the proliferation of malignancies. Here, we show that the productivity of scFv against c-Met in Escherichia coli is significantly influenced by the orientation of its variable domains. We generated anti-c-Met scFv antibodies with two different domain orders (i.e., VL-linker-VH and VHlinker- VL), expressed them in the cytoplasm of E. coli trx/ gor deleted mutant, and compared their specific activities as well as their productivities. Productivity of total and functional anti-c-Met scFv with VH/VL orientation was more than five times higher than that with VL/VH format. Coexpression of DsbC enhanced the yield of soluble amounts of anti-c-Met scFv protein for both constructs. The purified scFv antibodies of the two different formats exhibited almost the same antigen-binding activities. We also compared the productivities and specific activities of anti-c-Met diabodies with VH/VL or VL/VH formats and obtained similar results to the case of scFv antibodies.  相似文献   

15.
We previously reported the construction and activity of a humanized, bispecific diabody (hEx3) that recruited T cells towards an epidermal growth factor receptor (EGFR) positive tumor. Herein, we describe the construction of a second functional, fully humanized, anti-EGFR bispecific diabody that recruits another subset of lymphocyte effectors, the natural killer cells, to EGFR-expressing tumor cells. After we confirmed that an anti-EGFR?×?anti-CD16 bispecific diabody (Ex16) consisting of a previously humanized anti-EGFR variable fragment (Fv) and a mouse anti-CD16 Fv had growth inhibitory activity, we designed a humanized anti-CD16 Fv to construct the fully humanized Ex16 (hEx16). However, the humanized form had lower activity for inhibition of cancer growth. To restore its growth inhibitory activity, we introduced mutations into the Vernier zone, which is located near the complementarity-determining regions and is involved in their binding activity. We efficiently prepared 15 different hEx16 mutants by expressing each chimeric single-chain component for hEx16 separately. We then used our in vitro refolding system to select the most functional mutant, which had a growth inhibitory effect comparable with that of the commercially available chimeric anti-EGFR antibody, cetuximab. Our refolding system could aid in the efficient optimization of other proteins with heterodimeric structure.  相似文献   

16.
Four anti-bisphenol A monoclonal antibodies (mabs) were obtained and each characterized by an enzyme-linked immunosorbent assay (ELISA). Among these mabs, BBA-2187 was the most reactive towards bisphenol A. The quantitation limit of the ELISA assay for bisphenol A was 0.13 ng/ml, which is more sensitive than the other immunoassays reported. Then, the cDNA clones encoding variable heavy and variable light chains of these four mabs were isolated, and used for construction of four single-chain Fv (scFv) antibody genes, which were expressed in Escherichia coli cells. The reactivity of four scFv antibodies towards bisphenol A in ELISA was comparable to those of the parent mabs. The most sensitive assay was achieved with BBA-2187scFv. Its cross-reactivity to the related compounds was similar to that of the parent mab. Based on the reactivity of heterologous combinations of VH and VL fragments, it was found that the unique structure of the framework region 2 in the VL of BBA-2187 appeared to be important for specific assembly together with the VH.  相似文献   

17.
The expression of antibodies inside cells to ablate protein function has the potential for disease therapy and for target validation in functional genomics. However, due to inefficient expression or folding, only a few antibodies or antibody fragments, usually as single-chain Fv antibody fragments (scFv), bind their antigens in an intracellular environment. We have established a genetic-selection technology (intracellular antibody capture, IAC) to facilitate the isolation of functional intracellular scFv from a diverse repertoire. This approach comprises an in vitro library screen with scFv-expressing bacteriophage, employing bacterially expressed antigen, followed by a yeast in vivo antibody-antigen interaction screen of the sub-library of in vitro scFv antigen-binders. Accordingly, we have isolated panels of scFv that bind intracellularly to the BCR or the ABL parts of the BCR-ABL oncogenic protein. Sequence analysis of the intracellular antibody scFv panels revealed a sequence conservation indicating an intracellular antibody consensus for both VH and VL, which could form the basis for the de novo synthesis of intracellular antibody libraries to be used with intracellular antibody-capture technology.  相似文献   

18.
An active form of single-chain antibody (scFv) has been produced in Escherichia coli for murine monoclonal antibody MabA34 (gamma 1, kappa), which is specific for human plasma apolipoprotein (apo) A-I. The complementary DNAs (cDNAs) encoding the variable regions of heavy chain (VH) and light chain (VL) were connected by a (Gly4Ser)3 linker using an assembly polymerase chain reaction. The construct (VL-linker-VH) was placed under the control of highly efficient T7 promoter system. The cloned scFv was expressed in E. coli as inclusion bodies. After purification from E. coli lysate using sonication and low speed centrifugation, the inclusion body was solubilized and denatured in the presence of 8 M urea, renatured by dialysis, and scFv was finally purified using antigen-affinity chromatography. The purity and activity of purified scFv were confirmed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE), Western blotting and enzyme-linked immunosorbent assay (ELISA). The affinity constant was determined by a biosensor method using the BIAcore system. The results showed that the yield of correctly refolded scFv was more than 20 mg l-1 of E. coli flask culture and the specific binding activity to apo A-I was retained with an affinity constant of 6.74 x 10(-8) M (Kd). A notable thing is that guanidine-HCl as a denaturant induced more multimeric formation in the subsequent refolding procedure for the scFv of MabA34 and thus, it was not suitable as urea was. This fact is uncommon for what is generally known for the denaturation and refolding of recombinant antibodies.  相似文献   

19.
A fluorescein-binding single-chain Fv (scFv) was chosen as a model for the study of the physicochemical parameters associated with synthetic IgG fragments. Three such scFv proteins were designed from the primary sequences of one anti-fluorescyl monoclonal antibody (Mab 4.4.20). These were constructed with varying-length interdomain peptide linkers of between 12 and 25 residues, expressed in Escherichia coli, and the protein folding, stability, and antigen-binding characteristics were assessed. Efficient renaturation could be accomplished in vitro to yield approximately 26 mg of active scFv/L of fermentation. Scatchard analysis for fluorescein ligand binding revealed that the scFv designs come within 2-fold of the Ka = 1.99 (+/- 0.18) x 10(9) observed for the parental 4.4.20 Fab and have identical stoichiometries (n approximately 0.99). Reversible solvent denaturation studies demonstrated that the unfolding/refolding equilibria for the scFv proteins can be fit to a simple two-state model and that two of the scFv designs were found to be slightly more stable than single IgG domains (VL and CL) when assessed in terms of the free energy of unfolding, delta Gon-u, or nearly identical to other multiple domain immunoglobulin proteins such as light chains and Fab's when relative transition midpoints, Cm, are compared. Linkers which conferred conformational flexibility beyond the minimally required length of 12 residues were found to have a stabilizing effect. By these criteria of ligand-binding function and protein stability, the scFv proteins were found to be bona fide minimal replicas of their parental IgG molecules.  相似文献   

20.

Background  

The connection of the variable part of the heavy chain (VH) and and the variable part of the light chain (VL) by a peptide linker to form a consecutive polypeptide chain (single chain antibody, scFv) was a breakthrough for the functional production of antibody fragments in Escherichia coli. Being double the size of fragment variable (Fv) fragments and requiring assembly of two independent polypeptide chains, functional Fab fragments are usually produced with significantly lower yields in E. coli. An antibody design combining stability and assay compatibility of the fragment antigen binding (Fab) with high level bacterial expression of single chain Fv fragments would be desirable. The desired antibody fragment should be both suitable for expression as soluble antibody in E. coli and antibody phage display.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号