首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DNA damage induced by ascorbate in the presence of Cu2+ was analyzed by sequencing, and the mutagenic consequences of damages to plasmid pUC18 lacZ' were assayed in a forward repairing system in E. coli JM109 in vivo. Ascorbate induced two classes of DNA damage in the presence of Cu2+, one being non-base-specific direct strand cleavage, and the other being sequence-specific base modification labile to alkali treatment. Radicals generated from ascorbate hydroperoxide were involved in DNA damaging reactions. Ascorbate and Cu2+ caused mutations in pUC18 lacZ' gene. The mutation frequency by this method was about 10(-4) at 18% survivors when measured as a loss of alpha-complementation. All the mutations found were single-base substitutions that occurred in the structural part of the lacZ' gene. They were predominantly G:C----A:T transitions.  相似文献   

2.
Site-specific cleavage of supercoiled DNA by ascorbate/Cu(II).   总被引:1,自引:0,他引:1       下载免费PDF全文
We have investigated ascorbate/Cu(II) cleavage of double-stranded DNA in the presence and absence of DNA negative torsion. We found that ascorbate/Cu(II) cleavage shows a site-specificity that is dependent on negative torsion and is influenced by the nature of the salt, ionic strength, and pH. This provides strong evidence for involvement of local DNA conformation in ascorbate/Cu(II) specific cleavage sites, that differs from the previous reports on cleavage of linear double-stranded DNA and secondary structures assumed by single-stranded DNA. The data indicate specific binding of Cu(II) ions to sites in the negatively supercoiled DNA. Fining mapping of the cleavage sites does not reveal any known DNA conformation, nor does it indicate any sequence identity among the sites cleaved. However, identification of a major site of cleavage of supercoiled DNA at physiological ionic strength, pH and temperature, along with fact that ascorbate and Cu(II) are normal cell constituents, suggests the torsion-dependent, site-specific interactions could have biological significance.  相似文献   

3.
Induction of DNA damage by pyrogallol has been shown at physiological pH, but mutagenesis data also suggest there is inhibition in acidic media. In the present work, the plasmid pBSK was incubated with pyrogallol, under aerobic conditions at 37 degrees C, at pH 7.4, 4.5 or 3.5, for 1, 3 or 5 h, in the absence or presence of Cu(2+). Cleavage of the supercoiled DNA form was analyzed through topology modifications by agarose gel electrophoresis and quantified by densitometry. Independently of the presence of Cu(2+), DNA cleavage at pH 7.4 was significantly (P < 0.001) induced and occurred extensively after 1-h incubation. At pH 4.5, the cleavage was significantly (P < 0.05) induced only after 5 h incubation in the absence of Cu(2+), but was extensive (P < 0.001) after 1-h incubation when the metal ion was present. At pH 3.5, DNA cleavage was inhibited (P > 0.05), after 5-h incubation, even in the presence of Cu(2+). Our results provide evidence that DNA cleavage by pyrogallol is pH-dependent, catalyzed by Cu(2+) , and extensively decreased in acidic pH. Due to the abundant presence of the pyrogallate ion in physiological media, we suggest that this conjugate base form is responsible for DNA cleavage.  相似文献   

4.
We investigated DNA damage induced by aminoacetone, a metabolite of threonine and glycine. Pulsed-field gel electrophoresis revealed that aminoacetone caused cellular DNA cleavage. Aminoacetone increased the amount of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in human cultured cells in a dose-dependent manner. The formation of 8-oxodG in calf thymus DNA increased due to aminoacetone only in the presence of Cu(II). DNA ladder formation was observed at higher concentrations of aminoacetone than those causing DNA cleavage. Flow cytometry showed that aminoacetone enhanced the generation of hydrogen peroxide (H2O2) in cultured cells. Aminoacetone caused damage to 32P-5'-end-labeled DNA fragments, obtained from the human c-Ha-ras-1 and p53 genes, at cytosine and thymine residues in the presence of Cu(II). Catalase and bathocuproine inhibited DNA damage, suggesting that H2O2 and Cu(I) were involved. Analysis of the products generated from aminoacetone revealed that aminoacetone underwent Cu(II)-mediated autoxidation in two different pathways: the major pathway in which methylglyoxal and NH+4 are generated and the minor pathway in which 2,5-dimethylpyrazine is formed through condensation of two molecules of aminoacetone. These findings suggest that H2O2 generated by the autoxidation of aminoacetone reacts with Cu(I) to form reactive species capable of causing oxidative DNA damage.  相似文献   

5.
Eugenol used as a flavor has potential carcinogenicity. DNA adduct formation via 2,3-epoxidation pathway has been thought to be a major mechanism of DNA damage by carcinogenic allylbenzene analogs including eugenol. We examined whether eugenol can induce oxidative DNA damage in the presence of cytochrome P450 using [32P]-5'-end-labeled DNA fragments obtained from human genes relevant to cancer. Eugenol induced Cu(II)-mediated DNA damage in the presence of cytochrome P450 (CYP)1A1, 1A2, 2C9, 2D6, or 2E1. CYP2D6 mediated eugenol-dependent DNA damage most efficiently. Piperidine and formamidopyrimidine-DNA glycosylase treatment induced cleavage sites mainly at T and G residues of the 5'-TG-3' sequence, respectively. Interestingly, CYP2D6-treated eugenol strongly damaged C and G of the 5'-ACG-3' sequence complementary to codon 273 of the p53 gene. These results suggest that CYP2D6-treated eugenol can cause double base lesions. DNA damage was inhibited by both catalase and bathocuproine, suggesting that H2O2 and Cu(I) are involved. These results suggest that Cu(I)-hydroperoxo complex is primary reactive species causing DNA damage. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine was significantly increased by CYP2D6-treated eugenol in the presence of Cu(II). Time-of-flight-mass spectrometry demonstrated that CYP2D6 catalyzed O-demethylation of eugenol to produce hydroxychavicol, capable of causing DNA damage. Therefore, it is concluded that eugenol may express carcinogenicity through oxidative DNA damage by its metabolite.  相似文献   

6.
Increasing evidence reveals the carcinogenicity of UVA radiation. We demonstrated that UVA-irradiated NADH induced damage to (32)P-labeled DNA fragments obtained from the p53 gene in the presence of Cu(II). Formamidopyrimidine glycosylase (Fpg)-sensitive lesions were formed at guanine residues, whereas piperidine-labile lesions occurred frequently at thymine residues. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), upon UVA exposure in the presence of Cu(II), increased depending on NADH concentration. Catalase and bathocuproine, a Cu(I)-specific chelator, inhibited the DNA damage, suggesting the involvement of reactive species derived from H(2)O(2) and Cu(I). UVA-irradiated riboflavin induced DNA cleavage through electron transfer at 5' guanine of the 5'-GG-3' sequence with both Fpg and piperidine treatments; Fpg induced less cleavage at the guanine residues than piperidine. These results imply that NADH may participate as an endogenous photosensitizer in UVA carcinogenesis via H(2)O(2) generation, producing metal-mediated mutagenic lesions such as 8-oxodG.  相似文献   

7.
Shao Y  Sheng X  Li Y  Jia ZL  Zhang JJ  Liu F  Lu GY 《Bioconjugate chemistry》2008,19(9):1840-1848
Novel cleft molecule pyridine-2,6-dicarboxamide appending two guanidinoethyl group side arms (Gua) was synthesized. The interactions of the cleft molecule in the absence of copper(II) (Gua) or in the presence of copper(II) (Cu2+-Gua) with calf thymus DNA were studied by fluorescence and CD spectroscopy. The results indicate that the DNA binding affinity of Cu2+-Gua is stronger than that of Gua, and the binding constants of Cu2+-Gua and Gua are 1.61 x 10(6) M(-1) and 2.86 x 10(5) M(-1), respectively. Agarose gel electrophoresis was used to assess the plasmid pUC 19 DNA cleavage activities in the presence of Gua and Cu2+-Gua. Kinetic data of DNA cleavage promoted by Cu2+-Gua under physiological conditions fit a saturation kinetic profile with k(max) of 0.0173 +/- 0.0011 h(-1), which gave a aproximately 10(6)-fold rate acceleration over uncatalyzed supercoiled DNA, while the catalyst concentration is lower than 0.0625 mM. The hydrolysis pathway was proposed as the possible mechanism for DNA cleavage promoted by Cu2+-Gua. The acceleration is due to efficient cooperative catalysis of the copper cation center and the functional groups (bis(guanidinium) groups).  相似文献   

8.
The DNA-cleavage specificity of ascorbate in the presence of copper ion is analyzed with end-labeled pBR322 DNA fragments. The nonenzymatic reaction of Cu(II)/ascorbate and DNA shows certain degrees of cleavage preference toward purine-containing short segments in the labeled DNA under mild conditions (at 0 degrees C and 10 min). The segments of pyrimidine clusters are least susceptible to cleavage. The DNA scission cannot be detected in the absence of metal ions, and is greatly diminished in the presence of EDTA and metal-chelating peptide. It is more specific than the nuclease-like scission activity induced by cuprous-phenanthroline complex. This scission activity in relation to the antiviral and antitumor activities of vitamin C reported in the literature deserves a crucial consideration.  相似文献   

9.
Y Kohwi 《Nucleic acids research》1989,17(12):4493-4502
Naturally occurring contiguous deoxyguanine residues and their surrounding sequences in the chicken adult beta A globin gene promoter were analyzed for their inherent potential to adopt non-B DNA structures in supercoiled plasmid DNA. In particular, cationic effects on structure were studied by treating the supercoiled plasmid DNA harboring the chicken adult beta A globin 5' flanking sequence with an unpaired DNA base-specific probe, chloroacetaldehyde in the presence of either Mg++, Cu++, Zn++, Ca++ or Co++ ions. The chloroacetaldehyde-reactive bases were mapped at a single base resolution by a chemical cleavage method that specifically cleaves DNA at the chloroacetaldehyde modified sites. These experiments revealed that while Mg++ and Ca++ ions induce a dG.dG.dC triple helix structure at the contiguous dG residues, Zn++, Cu++ and Co++ ions induce yet another structure at the direct repeats immediately 5' of the dG residues. When Mg++ and Zn++ ions are both present, Zn++ inhibits the dG.dG.dC triplex at the contiguous dG residues and induces a particular non-B DNA structure at the adjacent direct repeats. The specific induction of non-B DNA structures by metal ions at the two adjacent sequences within the promoter region may be of biological significance.  相似文献   

10.
J M Veal  K Merchant    R L Rill 《Nucleic acids research》1991,19(12):3383-3388
Copper in the presence of excess 1,10-phenanthroline, a reducing agent, and molecular oxygen causes cleavage of DNA with a preference for T-3',5'-A-steps, particularly in TAT triplets. The active molecular species is commonly thought to be the bis-(1,10-phenanthroline)Cu(I) complex, (Phen)2Cu(I), regardless of the reducing agent type. We have found that (Phen)2Cu(I) is not the predominant copper complex when 3-mercaptopropionic acid (MPA) or 2-mercaptoethanol are used as the reducing agents, but (Phen)2Cu(I) predominates when ascorbate is used as the reducing agent. Substitution of ascorbate for thiol significantly enhances the rate of DNA cleavage by 1,10-phenanthroline + copper, without altering the sequence selectivity. We show that (Phen)2Cu(I) is the complex responsible for DNA cleavage, regardless of reducing agent, and that 1,10-phenanthroline and MPA compete for copper coordination sites. DNA cleavage in the presence of ascorbate also occurs under conditions where the mono-(1,10-phenanthroline)Cu(I) complex predominates (1:1 phenanthroline:copper ratio), but preferential cleavage was observed at a CCGG sequence and not at TAT sequences. The second phenanthroline ring of the (Phen)2Cu(I) complex appears essential for determining the T-3',5'-A sequence preferences of phenanthroline + copper when phenanthroline is in excess.  相似文献   

11.
The mechanism of DNA damage by a metabolite of the carcinogen o-anisidine in the presence of metals was investigated by the DNA sequencing technique using 32P-labeled human DNA fragments. The o-anisidine metabolite, o-aminophenol, caused DNA damage in the presence of Cu(II). The DNA damage was inhibited by catalase and bathocuproine, suggesting the involvement of H2O2 and Cu(I). The formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine by o-aminophenol increased in the presence of Cu(II). We conclude that Cu(II)-mediated oxidative DNA damage by this o-anisidine metabolite seems to be relevant for the expression of the carcinogenicity of o-anisidine. o-Aminophenol plus Cu(II) caused preferential DNA damage at the 5'-site guanine of GG and GGG sequences. When CuZn-SOD or Mn-SOD was added, the DNA damage was enhanced and its predominant cleavage sites were changed into thymine and cytosine residues. We consider that SOD may increase the frequency of mutations due to DNA damage induced by o-aminophenol and thus increase its carcinogenic potential.  相似文献   

12.
Although the cause of dopaminergic cell death in Parkinson's disease is still poorly understood, there is accumulating evidence suggesting that metal ions can be involved in the processes. We investigated the effect of manganese on cell death and DNA damage in PC12 cells treated with dopamine. Mn(II) enhanced cell death induced by dopamine. Mn(II) also increased the 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) contents of DNA in PC12 cells treated with dopamine. To clarify the mechanism of cellular DNA damage, we investigated DNA damage induced by dopamine and Mn(II) using (32)P-labeled DNA fragments. Mn(II) enhanced Cu(II)-dependent DNA damage by dopamine. The Mn(II)-enhanced DNA damage was greatly increased by NADH. Piperidine and formamidopyrimidine-DNA glycosylase treatment induced cleavage sites mainly at T and G of the 5'-TG-3' sequence, respectively. Bathocuproine, a Cu(I) chelator, and catalase inhibited the DNA damage. Oxygen consumption and UV-visible spectroscopic measurements showed that Mn(II) enhanced autoxidation of dopamine with H(2)O(2) formation. These results suggest that reactive species derived from the reaction of H(2)O(2) with Cu(I) participates in Mn(II)-enhanced DNA damage by dopamine plus Cu(II). Therefore, it is concluded that oxidative DNA damage induced by dopamine in the presence of Mn(II), NADH, and Cu(II) is possibly linked to the degeneration of dopaminergic neurons.  相似文献   

13.
Acetamide is carcinogenic in rats and mice. To clarify the mechanism of carcinogenesis by acetamide, we investigated DNA damage by and acetamide metabolite, acetohydroxamic acid (AHA), using 32P-5'-end-labeled DNA fragments. AHA treated with amidase induced DNA damage in the presence of Cu(II) and displayed a similar DNA cleavage pattern of hydroxylamine. DNA damage was inhibited by both catalase and bathocuproine, suggesting that H2O2 and Cu(I) are involved. Carboxy-PTIO, a specific scavenger of nitric oxide (NO), partially inhibited DNA damage. The amount of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) by amidase-treated AHA was similar to that by hydroxylamine. ESR spectrometry revealed that amidase-treated AHA as well as hydroxylamine generated NO in the presence of Cu(II). From these results, it has been suggested that AHA might be converted into hydroxylamine by amidase. These results suggest that metal-mediated DNA damage mediated by amidase-catalyzed hydroxylamine generation plays an important role in the carcinogenicity of acetamide.  相似文献   

14.
Mouse erythroleukemic F4 N cells were treated with mimosine, etoposide, Fe(II)-EDTA, and Cu(II) in the presence of ascorbate. DNA was isolated and subjected to agarose gel electrophoresis and the size and distribution of the DNA fragments produced by the agents were compared. With increasing concentration of Cu(II) the production of DNA fragments was increased without decrease of the average length of the fragments, and their sizes were similar to those produced by etoposide as expected for cleavage of DNA at the nuclear matrix attachments sites. In contrast, mimosine and Fe(II) produced fragments of random size and with the progression of the reaction the average length of the fragments decreased. These results indicate that mimosine cuts DNA in a random fashion, regardless of its higher order chromatin organization. A conclusion is drawn that the DNA fragments obtained after mimosine treatment are a result of mimosine-assisted, Fe(II) dependent Fenton-like reactions randomly cutting chromosomal DNA.  相似文献   

15.
Abstract

Induction of DNA damage by pyrogallol has been shown at physiological pH, but mutagenesis data also suggest there is inhibition in acidic media. In the present work, the plasmid pBSK was incubated with pyrogallol, under aerobic conditions at 37°C, at pH 7.4, 4.5 or 3.5, for 1, 3 or 5 h, in the absence or presence of Cu2+. Cleavage of the supercoiled DNA form was analyzed through topology modifications by agarose gel electrophoresis and quantified by densitometry. Independently of the presence of Cu2+ , DNA cleavage at pH 7.4 was significantly (P < 0.001) induced and occurred extensively after 1-h incubation. At pH 4.5, the cleavage was significantly (P < 0.05) induced only after 5 h incubation in the absence of Cu2+ , but was extensive (P < 0.001) after 1-h incubation when the metal ion was present. At pH 3.5, DNA cleavage was inhibited (P > 0.05), after 5-h incubation, even in the presence of Cu2+. Our results provide evidence that DNA cleavage by pyrogallol is pH-dependent, catalyzed by Cu2+ , and extensively decreased in acidic pH. Due to the abundant presence of the pyrogallate ion in physiological media, we suggest that this conjugate base form is responsible for DNA cleavage.  相似文献   

16.
Site-specific DNA damage caused by lipid peroxidation products   总被引:3,自引:0,他引:3  
DNA damage induced by autoxidized lipids was investigated using covalently closed circular (supercoiled) DNA and DNA fragments of defined sequence. DNA-strand-breaking substances accumulated during autoxidation of methyl linolenate, and strand breakage was measured with samples taken at different times. The DNA-strand-breaking activity reached its maximum a little after the peak value of peroxide and decreased upon further autoxidation. The peak of the DNA-strand-breaking activity did not always coincide with the peak of thiobarbituric acid reactants or of conjugated diene, either. The DNA-strand-breaking reaction was dependent on metal ions and was inhibited by potassium iodide and tiron and partially by catalase, suggesting the involvement of radical species and/or oxygen radicals. No direct cleavage of singly end-labeled 100-200 basepair DNA fragments by autoxidized methyl linolenate and cupric ion was detected under the conditions used. Cleavage occurred during subsequent heating in piperidine after the reaction. The alkali-labile damage was preferentially induced at pyrimidine residues, especially in dinucleotide sequences of pyrimidine-guanine (5'----3'), which was determined by sequencing.  相似文献   

17.
R P Hertzberg  P B Dervan 《Biochemistry》1984,23(17):3934-3945
The synthesis of methidiumpropyl-EDTA (MPE) is described. The binding affinities of MPE, MPE.Ni(II), and MPE.Mg(II) to calf thymus DNA are 2.4 X 10(4) M-1, 1.5 X 10(5) M-1, and 1.2 X 10(5) M-1, respectively, in 50 mM NaCl, pH 7.4. The binding site size is two base pairs. MPE.Mg(II) unwinds PM2 DNA 11 +/- 3 degrees per bound molecule. MPE.Fe(II) in the presence of O2 efficiently cleaves DNA and with low sequence specificity. Reducing agents significantly enhance the efficiency of the cleavage reaction in the order sodium ascorbate greater than dithiothreitol greater than NADPH. At concentrations of 0.1-0.01 microM in MPE.Fe(II) and 10 microM in DNA base pairs, optimum ascorbate and dithiothreitol concentrations for DNA cleavage are 1-5 mM. Efficient cleavage of DNA (10 microM in base pairs) with MPE.Fe(II) (0.1-0.01 microM) occurs over a pH range of 7-10 with the optimum at 7.4 (Tris-HCl buffer). The optimum cleavage time is 3.5 h (22 degrees C). DNA cleavage is efficient in a Na+ ion concentration range of 5 mM to 1 M, with the optimum at 5 mM NaCl. The number of single-strand scissions on supercoiled DNA per MPE.Fe(II) under optimum conditions is 1.4. Metals such as Co(II), Mg(II), Ni(II), and Zn(II) inhibit strand scission by MPE. The released products from DNA cleavage by MPE.Fe(II) are the four nucleotide bases. The DNA termini at the cleavage site are 5'-phosphate and roughly equal proportions of 3'-phosphate and 3'-(phosphoglycolic acid). The products are consistent with the oxidative degradation of the deoxyribose ring of the DNA backbone, most likely by hydroxy radical.  相似文献   

18.
Experimental data are reported on DNA-cleaving activity of the synthetic netropsin analogs consisting of the two N-propylpyrrole carboxamide units linked covalently through two or three glycine residues to a copper-chelating tripeptide glycyl-glycyl-L-histidine. Incubation of DNA restriction fragment and netropsin analog in the presence of ascorbate, hydrogen peroxide and Cu2+ ions resulted in selective cleavage of the DNA at or near the preferred sites for binding of netropsin analog. A similar cleavage pattern is observed after X-ray irradiation of DNA complexes with netropsin analogs tethered with Cu2+ ions. The cleavage patterns are found to be dependent on the length of the connecting chain between the histidine-containing tripeptide and netropsin analog. The netropsin analog containing three glycine residues in the connecting chain, but not the analog with a shorter linker chain, can generate an intense cleavage of one of the two polynucleotide chains at a position corresponding to the presumed binding site for the dimeric ligand species. More than 50% of the total DNA can be cleaved at this position after X-ray irradiation. From analysis of the nucleotide sequences surrounding the preferred cleavage site on several DNA fragments we found that the consensus is 5'-TTTTNCA*AAA-3', where N is an arbitrary nucleotide. The Cu(2+)-mediated cleavage of DNA occurs at the second adenine (indicated by an asterisk) from the 5'-end of the sequence. The greatest cleavage activity is observed when the molar ratio of Cu2+ to the netropsin analog is equal to 0.5. Evidently, the Cu(2+)-ligated and unligated oligopeptide species interacts with each other to form a heterodimer bound to DNA at the cleavage site. To test the validity of this model we have studied the binding of unligated netropsin analog and netropsin analog complexed with Cu2+ ion to a self-complementary oligonucleotide 5'-GCGTTTTGCAAAACGC-3'. It is found that binding of Cu(2+)-ligated netropsin analog to the DNA oligomer preincubated with unligated form of the oligopeptide is a cooperative process for which interactions between the two bound ligands are responsible. The cooperativity parameter is estimated to be on the order of factor 6. Finally, a model is proposed in which a heterodimer stabilized by interligand beta-sheet binds in the minor DNA groove.  相似文献   

19.
Carcinogenic benzo[a]pyrene (BP) is generally considered to show genotoxicity by forming DNA adducts of its metabolite, BP-7,8-diol-9,10-epoxide. We investigated oxidative DNA damage and its sequence specificity induced by BP-7,8-dione, another metabolite of BP, using (32)P-5'-end-labeled DNA. Formamidopyrimidine-DNA glycosylase treatment induced cleavage sites mainly at G residues of 5'-TG-3' sequence and at poly(C) sequences, in DNA incubated with BP-7,8-dione in the presence of NADH and Cu(II), whereas piperidine treatment induced cleavage sites at T mainly of 5'-TG-3'. BP-7,8-dione strongly damaged the G and C of the ACG sequence complementary to codon 273 of the p53 gene. Catalase and a Cu(I)-specific chelator attenuated the DNA damage, indicating the involvement of H(2)O(2) and Cu(I). BP-7,8-dione with NADH and Cu(II) also increased 8-oxo-7,8-dihydro-2'-deoxyguanosine formation. We conclude that oxidative DNA damage, especially double base lesions, may participate in the expression of carcinogenicity of BP in addition to DNA adduct formation.  相似文献   

20.
Propyl gallate (PG), widely used as an antioxidant in foods, is carcinogenic to mice and rats. PG increased the amount of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a characteristic oxidative DNA lesion, in human leukemia cell line HL-60, but not in HP100, which is hydrogen peroxide (H2O2)-resistant cell line derived from HL-60. Although PG induced no or little damage to 32P-5'-end-labeled DNA fragments obtained from genes that are relevant to human cancer, DNA damage was observed with treatment of esterase. HPLC analysis of the products generated from PG incubated with esterase revealed that PG converted into gallic acid (GA). GA induced DNA damage in a dose-dependent manner in the presence of Fe(III)EDTA or Cu(II). In the presence of Fe(III) complex such as Fe(III)EDTA or Fe(III)ADP, GA caused DNA damage at every nucleotide. Fe(III) complex-mediated DNA damage by GA was inhibited by free hydroxy radical (*OH) scavengers, catalase and an iron chelating agent. These results suggested that the Fe(III) complex-mediated DNA damage caused by GA is mainly due to *OH generated via the Fenton reaction. In the presence of Cu(II), DNA damage induced by GA occurred at thymine and cytosine. Although *OH scavengers did not prevent the DNA damage, methional inhibited the DNA damage. Cu(II)-mediated DNA damage was inhibited by catalase and a Cu(I) chelator. These results indicated that reactive oxygen species formed by the interaction of Cu(I) and H2O2 participates in the DNA damage. GA increased 8-oxodG content in calf thymus DNA in the presence of Cu(II), Fe(III)EDTA or Fe(III)ADP. This study suggested that metal-mediated DNA damage caused by GA plays an important role in the carcinogenicity of PG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号