首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A total of 14 I-Ad-restricted helper T-cell clones specific for the hemagglutinin (HA) molecule of influenza virus were isolated from spleens of BALB/c or (BALB/c X C57BL/10)F1 mice immunized with the H3 subtype influenza virus A/Memphis/71 (Mem 71) and from lymph nodes of BALB/c mice primed with purified HA. The specificity of these T-cell clones was assessed in proliferation assays by reactivity with naturally occurring strains of viruses that arose by antigenic drift and contain known amino acid sequence changes in HA and with a panel of monoclonal antibody (MAb)-selected mutants of Mem 71 with single amino acid substitutions in HA. The HA genes of those mutant viruses that failed to stimulate one or more of the T-cell clones were sequenced. The clones could be allocated to at least four groups, each group having a distinct pattern of reactivity with the panel of natural field strains. The epitopes recognized by the four groups of clones were found, by reactivity with MAb-selected mutants, to be in very close proximity to one another and probably overlapping. All of the distinct epitopes recognized by the T-cell clones were adversely affected by a single amino acid substitution, either at residue 60 or at residue 63 in the HA1 polypeptide chain, within the region known from antibody-binding studies as site E. Some, but not all, of the epitopes may be influenced by the addition of a carbohydrate side chain to the HA of a particular MAb-selected mutant and certain field strains containing an Asp----Asn substitution at residue 63. Site E is therefore a major site of H-2d helper T-cell recognition on the H3 HA.  相似文献   

2.
Long-term murine cytotoxic T-cell clones arising in response to stimulation with human lymphoblastoid cells and reactive with the HLA-A2 antigen are characterized. These clones distinguish between HLA-A2 and 21 other serologically defined HLA-A and -B antigens. In addition, most clones discriminate between prototypical HLA-A2 antigens, expressed by the majority of HLA-A2-positive individuals, and variant HLA-A2 antigens, which are serologically identical with the prototype, but distinguishable by human cytotoxic T cells and by biochemical analysis. This discrimination is reflected as an inability to cause any significant lysis of variant HLA-A2-expressing target cells at effector-to-target ratios 10- to 100-fold greater than those giving 50% lysis of prototype HLA-A2-expressing cells. By screening a panel of serologically HLA-A2-positive cells, a new variant HLA-A2-expressing cell line has been defined. The recognition patterns of these xenogeneic clones are suggested to reflect recognition of alloantigenic polymorphic determinants. Based on the strong bias in the xenogeneic T-cell repertoire for such determinants, we propose a model for T-cell recognition of class I products of the major histocompatibility complex.  相似文献   

3.
Murine experimental autoimmune thyroiditis has been used as a model for human autoimmune thyroiditis. Experimental autoimmune thyroiditis is induced in mice by immunization with mouse thyroglobulin (Tg) in CFA. To characterize the antibodies to this autoantigen, we have studied the binding specificities and determined the nucleotide sequences of monoclonal anti-Tg antibodies. The specificities of the mAb for determinants on Tg varied extensively. Seven of 16 mAb showed reactivity to only mTg, 4 reacted to Tg from more than one species and four reacted to a variety of Ag. Many of the mAb were competitively inhibited by thyroid hormones, suggesting that they recognize the hormonogenic sites on the Tg molecule. The mAb could be divided into at least seven reactivity patterns based on reciprocal competitive inhibition studies, indicating that mTg contains at least seven antigenic regions. DNA sequence analysis of the mAb showed that a large number of V region gene segments encoded the H and L chains. No evidence for preferential use of any V region family or gene segment was found. Gene segments from the VH 7183, Q52, J558, and VH10 families were used by heavy chains, and the V kappa 1, 4, 8, 9, 19, and 21 families were used by kappa-chains. The results indicate that the antigenic epitopes on mTg elicit a very diverse autoantibody response that is derived from a large number of V region gene segments. Many of these autoantibodies show specific reactivity with mTg indicating they recognize species specific epitopes. The results suggest that clonal deletion of autoreactive Ab to certain self-epitopes may not occur.  相似文献   

4.
Recovery from Lassa virus (LASV) infection usually precedes the appearance of neutralizing antibodies, indicating that cellular immunity plays a primary role in viral clearance. To date, the role of LASV-specific CD8(+) T cells has not been evaluated in humans. To facilitate such studies, we utilized a predictive algorithm to identify candidate HLA-A2 supertype epitopes from the LASV nucleoprotein and glycoprotein precursor (GPC) genes. We identified three peptides (GPC(42-50), GLVGLVTFL; GPC(60-68), SLYKGVYEL; and GPC(441-449), YLISIFLHL) that displayed high-affinity binding (< or =98 nM) to HLA-A*0201, induced CD8(+) T-cell responses of high functional avidity in HLA-A*0201 transgenic mice, and were naturally processed from native LASV GPC in human HLA-A*0201-positive target cells. HLA-A*0201 mice immunized with either GPC(42-50) or GPC(60-68) were protected against challenge with a recombinant vaccinia virus that expressed LASV GPC. The epitopes identified in this study represent potential diagnostic reagents and candidates for inclusion in epitope-based vaccine constructs. Our approach is applicable to any pathogen with existing sequence data, does not require manipulation of the actual pathogen or access to immune human donors, and should therefore be generally applicable to category A through C agents and other emerging pathogens.  相似文献   

5.
Homan EJ  Bremel RD 《PloS one》2011,6(10):e26711
Antigenic drift allowing escape from neutralizing antibodies is an important feature of transmission and survival of influenza viruses in host populations. Antigenic drift has been studied in particular detail for influenza A H3N2 and well defined antigenic clusters of this virus documented. We examine how host immunogenetics contributes to determination of the antibody spectrum, and hence the immune pressure bringing about antigenic drift. Using uTOPE™ bioinformatics analysis of predicted MHC binding, based on amino acid physical property principal components, we examined the binding affinity of all 9-mer and 15-mer peptides within the hemagglutinin 1 (HA1) of 447 H3N2 virus isolates to 35 MHC-I and 14 MHC-II alleles. We provide a comprehensive map of predicted MHC-I and MHC-II binding affinity for a broad array of HLA alleles for the H3N2 influenza HA1 protein. Each HLA allele exhibited a characteristic predicted binding pattern. Cluster analysis for each HLA allele shows that patterns based on predicted MHC binding mirror those described based on antibody binding. A single amino acid mutation or position displacement can result in a marked difference in MHC binding and hence potential T-helper function. We assessed the impact of individual amino acid changes in HA1 sequences between 10 virus isolates from 1968–2002, representative of antigenic clusters, to understand the changes in MHC binding over time. Gain and loss of predicted high affinity MHC-II binding sites with cluster transitions were documented. Predicted high affinity MHC-II binding sites were adjacent to antibody binding sites. We conclude that host MHC diversity may have a major determinant role in the antigenic drift of influenza A H3N2.  相似文献   

6.
DC-SIGN, a Ca2+-dependent transmembrane lectin, is found assembled in microdomains on the plasma membranes of dendritic cells. These microdomains bind a large variety of pathogens and facilitate their uptake for subsequent antigen presentation. In this study, DC-SIGN dynamics in microdomains were explored with several fluorescence microscopy methods and compared with dynamics for influenza hemagglutinin (HA), which is also found in plasma membrane microdomains. Fluorescence imaging indicated that DC-SIGN microdomains may contain other C-type lectins and that the DC-SIGN cytoplasmic region is not required for microdomain formation. Fluorescence recovery after photobleaching measurements showed that neither full-length nor cytoplasmically truncated DC-SIGN in microdomains appreciably exchanged with like molecules in other microdomains and the membrane surround, whereas HA in microdomains exchanged almost completely. Line-scan fluorescence correlation spectroscopy indicated an essentially undetectable lateral mobility for DC-SIGN but an appreciable mobility for HA within their respective domains. Single-particle tracking with defined-valency quantum dots confirmed that HA has significant mobility within microdomains, whereas DC-SIGN does not. By contrast, fluorescence recovery after photobleaching indicated that inner leaflet lipids are able to move through DC-SIGN microdomains. The surprising stability of DC-SIGN microdomains may reflect structural features that enhance pathogen uptake either by providing high-avidity platforms and/or by protecting against rapid microdomain endocytosis.  相似文献   

7.
The studies presented here investigated the relationship between T cell recognition of MHC-encoded products and non-MHC-linked Mls determinants. The first aspect addressed whether Mls-reactive T cells recognize Mls-encoded products alone or in association with MHC-encoded determinants. Initial studies used Mlsa-specific T cell clones that were generated by repeated stimulation of C57BL/6 or B10.A(5R) spleen cells with DBA/2 lymphoid cells. These clones recognized Mlsa on cells expressing MHC products of the H-2b, H-2d, and H-2k haplotypes, but not the H-2q haplotype. Thus, these cloned T cells were found to recognize Mlsa products in association with public but demonstrably polymorphic H-2 determinants. The question of whether T cell clones that were specific for self-H-2 determinants (autoreactive) or soluble antigen plus syngeneic H-2 (antigen-specific) could also be stimulated by Mlsa determinants was also addressed. A substantial proportion of the antigen-specific or autoreactive T cell clones tested were stimulated by Mlsa determinants. Furthermore, stimulation of these clones by Mlsa was H-2 restricted. The pattern of H-2-restricted recognition of Mlsa by these clones was not distinguishable from that observed in the Mlsa-specific T cell clones, nor was it influenced by the primary specificity or H-2 restriction pattern of a given clone. Although these findings provide a means of explaining the observation that Mls-reactive T cells exist at extremely high precursor frequencies, they also raise questions regarding the nature of the receptor structures which are used by a single T cell in the recognition of two or more apparently distinct stimuli.  相似文献   

8.
We exploited the conditional-lethal phenotype of secB null mutations to demonstrate that SecB function was required for PrlA-mediated suppression of signal sequence mutations. The results of these experiments provide information about the functions performed and the sequence determinants recognized by each of these components of the protein export machinery of Escherichia coli.  相似文献   

9.
Cellular immune reactions against the autoantigen myelin basic protein (MBP) are strongly implicated in the occurrence of postinfectious and postvaccination encephalomyelitis. Clinical autoimmune encephalomyelitis in experimental animals can be transferred with cloned MBP-specific cytolytic major histocompatibility complex Class II-restricted T lymphocytes. The HLA restriction pattern of specific proliferative and cytolytic functions of two human MBP-specific cytotoxic T lymphocyte clones, derived from two different multiple sclerosis patients, was analyzed in detail. Using monoclonal antibodies against various HLA gene products and allogeneic Epstein-Barr virus-transformed B cells as antigen-presenting cells and as targets for cytolysis, it was found that MBP-specific functions of the T cell clones was restricted by HLA class II antigens, and, more specifically, by molecules encoded for by DR locus genes.  相似文献   

10.
Observations have frequently been interpreted as showing that the helper T cells which collaborate with alloantigen-specific cytotoxic T-cell precursors can only recognize antigens encoded in the I region of the H-2 gene complex. An experimental system is described here that allows analysis of the recognition repertoire of these helper cells. CBA helper T-cell precursors can be primed in vitro to antigens encoded in the H-2 b gene complex. These helpers can then be tested for the existence of a subset of helper cells which recognize antigens encoded in the D region of H-2 b haplotype. CBA thymocytes were used as a source of cytotoxic T-cell precursors that respond poorly in the absence of exogeneous helper activity. The source of alloantigen was varied by using irradiated spleen cells from various (BALB/c × recombinant)F1 hybrid mice as stimulator cells. When the stimulator cell bears BALB/c determinants recognized by the cytotoxic T-cell precursor and also bears only the D region antigens of the H-2 b haplotype, an anti-BALB/c cytotoxic response is generated only if the anti-H-2b helper population contains cells able to recognize H-2Db. A positive cytotoxic response was obtained, indicating that helper cells are not limited to recognition of I region antigens and can efficiently recognize antigens encoded in the D region of the H-2 gene complex. This was confirmed by the demonstration of helpers specific for H-2Dd. We were unable to detect any evidence for Ia-restricted recognition of the H-2D alloantigens, suggesting that, as for cytotoxic T lymphocytes (CTL), helper cell recognition of class I alloantigens is an unrestricted event.  相似文献   

11.
Celiac disease is caused by an abnormal intestinal T-cell response to gluten proteins of wheat, barley and rye. Over the last few years, a number of gluten T-cell epitopes restricted by celiac disease associated HLA-DQ molecules have been characterized. In this work, we give an overview of these epitopes and suggest a comprehensive, new nomenclature.  相似文献   

12.
Xia Z  Huynh T  Kang SG  Zhou R 《Biophysical journal》2012,102(6):1453-1461
Antibodies binding to conserved epitopes can provide a broad range of neutralization to existing influenza subtypes and may also prevent the propagation of potential pandemic viruses by fighting against emerging strands. Here we propose a computational framework to study structural binding patterns and detailed molecular mechanisms of viral surface glycoprotein hemagglutinin (HA) binding with a broad spectrum of neutralizing monoclonal antibody fragments (Fab). We used rigorous free-energy perturbation (FEP) methods to calculate the antigen-antibody binding affinities, with an aggregate underlying molecular-dynamics simulation time of several microseconds (~2 μs) using all-atom, explicit-solvent models. We achieved a high accuracy in the validation of our FEP protocol against a series of known binding affinities for this complex system, with <0.5 kcal/mol errors on average. We then introduced what to our knowledge are novel mutations into the interfacial region to further study the binding mechanism. We found that the stacking interaction between Trp-21 in HA2 and Phe-55 in the CDR-H2 of Fab is crucial to the antibody-antigen association. A single mutation of either W21A or F55A can cause a binding affinity decrease of ΔΔG > 4.0 kcal/mol (equivalent to an ~1000-fold increase in the dissociation constant Kd). Moreover, for group 1 HA subtypes (which include both the H1N1 swine flu and the H5N1 bird flu), the relative binding affinities change only slightly (< ±1 kcal/mol) when nonpolar residues at the αA helix of HA mutate to conservative amino acids of similar size, which explains the broad neutralization capability of antibodies such as F10 and CR6261. Finally, we found that the hydrogen-bonding network between His-38 (in HA1) and Ser-30/Gln-64 (in Fab) is important for preserving the strong binding of Fab against group 1 HAs, whereas the lack of such hydrogen bonds with Asn-38 in most group 2 HAs may be responsible for the escape of antibody neutralization. These large-scale simulations may provide new insight into the antigen-antibody binding mechanism at the atomic level, which could be essential for designing more-effective vaccines for influenza.  相似文献   

13.
In a recent study, we reported extensive diversity in the Iak-restricted T cell repertoire for the hemagglutinin molecule (HA) of influenza A viruses (H3 subtype). Synthetic peptides identified six nonoverlapping epitopes on the HA1 subunit, and CD4+ T cell clones, specific for these regions, discriminated between natural variant viruses that had accumulated amino acid substitutions during antigenic drift. Here, we demonstrate similar specificity and diversity for the Iad haplotype and have identified multiple T cell epitopes within the sequences HA1 56-76, 71-91, 81-97, 177-199, 186-205, and 206-227. These also include recognition sites for neutralizing antibodies and correlations can be made between antigenic drift substitutions in H3 subtype viruses and the specificity of individual CD4+ clones for mutant HA. Moreover, these peptides appear not to exhibit structural homology and fail to compete for Ag presentation, indicating heterogeneity in peptide-Ia interaction. To explain the observation that CD4+ T cells, from two major haplotypes, recognize antibody binding regions of the HA molecule, we propose that surface Ig receptors of the Ag-specific B memory cell exert a direct effect on the processing of HA peptides and subsequent selection of the class II-restricted T cell memory repertoire after natural infection.  相似文献   

14.
A group of hybridoma antibodies that recognize structurally overlapping epitopes on the influenza virus hemagglutinin have been analyzed for the sequence of their immunoglobulin heavy and light chain variable regions. All VH regions derive from the same gene family, and only two Vk genes, from different families, are involved. The repetitive and restricted use of these variable region genes indicates that considerable structural requirements influence the generation of antibodies specific for this region of the hemagglutinin. The degree of amino acid variability which is permissive for interaction with this region suggests that two thirds of the possible replacement mutations may abolish either antibody function or specificity. Analysis of the somatic mutation which occurred in the individual antibodies indicates that the light chains acquired replacement mutations at the rate predicted for random mutation. The heavy chains, however, accumulated a 3-fold excess of replacement mutations over that predicted for random accumulation, correlating with the dominant role they apparently play in determining fine differences in the specificity of these antibodies. The effect of somatic mutation on the clonal amplification and diversification of these B cell lineages is discussed.  相似文献   

15.
Sera from rabbits hyperimmunized with hemagglutinin (HA) subunits isolated from the A/Port Chalmers/73 (H3N2)strain of influenza virus showed great differences in their cross-reactions with different strains of influenza virus. In hemagglutination-inhibition tests, some sera reacted to about the same titer with A/Port Chalmers/73 and A/Hong Kong/68 viruses, suggesting that these two strains were very closely related. Other sera, which reacted to high titer with A/Port Chalmers/73 virus, had only a low titer with the Hong Kong/68 strain, suggesting that the two viruses were distantly related. Evidence suggested that these diverse cross-reactions were due to widely different ratios, in the different sera, of antibodies to the "common" and the "specific" antigenic determinants on the HA subunits. Thus, some rabbits gave a stronger response to the "common" determinants than to the "specific", whereas in others, the reverse seemed to be the case. Sera from human volunteers injected with A/Port Chalmers/73 inactivated or subunit influenza virus vaccines, or from people infected with Port Chalmers/73 virus, contained, in most cases, antibodies predominantly to the "common" antigenic determinants on the HA subunits. These sera reacted to higher titer with Hong Kong/68 virus than with the Port Chalmers/73 strain. Absorption of these sera with Hong Kong/68 virus totally removed all detectable antibody, suggesting that they contained no antibody to the "specific" determinants of Port Chalmers/73 HA. Paradoxically, absorption of the sera with Port Chalmers virus did not remove all antibodies, suggesting that the sera contained antibodies to the "specific" determinants on Hong Kong/68 HA.  相似文献   

16.
T-cell epitopes on the E2 protein of rubella virus were studied by using 15 overlapping synthetic peptides covering the E2 protein sequence. The most frequently recognized epitopes on E2 were E2-4 (residues 54 to 74), with 5 of 10 tested T-cell lines responding to it. Two CD4+ cytotoxic T-cell cloned isolated from one T-cell line responded strongly in proliferation assays with peptide E2-4 and were cytotoxic to target cells presenting the E2-4 determinant. Truncated peptides contained within the E2-4 peptide sequence were used to define the T-cell determinants. Results indicated that amino acid residues 54 to 65 were directly involved. Human cell lines with different HLA phenotypes were tested for the capacity to present the antigenic determinants. The results suggested that recognition of peptide E2-4 by T-cell clones was associated with HLA DR7.  相似文献   

17.
The characterization of human T cell antigenic sites on influenza A nucleoprotein (NP) is important for subunit vaccine development for either antibody boosting during infection or to stimulate T cell-mediated immunity. To identify such sites, 31 synthetic peptides that cover more than 95% of the amino acid sequence from NP of influenza A/NT/60/68 virus were tested for their ability to stimulate PBL from 42 adult donors. The most frequently recognized region was covered by a peptide corresponding to residues 206-229 of NP, with 20/42 (48%) of responders. In many individuals this was also one of the peptides that stimulated the strongest T cell responses. Other regions that were also frequently recognized were 341-362 by 13/42 (30%), 297-318 by 10/42 (23%), and 182-205 by 9/42 (21%) of individuals. These peptides covered highly conserved regions in NP of influenza A viruses, suggesting that they could be useful in boosting cross-reactive immunity against the known type A virus strains. In order to define the class II restriction molecules used to present particular T cell epitopes, 22 persons from the donor panel were HLA-typed. The majority of persons who expressed DR2, and proliferated to NP also responded to the major immunodominant region 206-229. In addition, this peptide was also immunodominant in the one person expressing DRw13. The observation that recognition of this peptide is associated with DR2 was confirmed by using short term T cell lines and APC from a panel of typed donors. Further results with virus-specific T cell lines and clones and transfected L cells expressing DR molecules showed that DR1 could also present this peptide. Therefore the results suggest that recognition of 206-229 is associated with at least three different DR haplotypes and this may explain the high frequency with which this peptide is recognized in the population. The fine specificity of the response to peptide 206-229 was distinct when presented by DR1- or DR2-expressing APC. The DR1 response was dependent on the N terminus, and the DR2 response was directed to the C terminus of the peptide.  相似文献   

18.
Current efforts to develop an Epstein-Barr virus subunit vaccine are based on the major envelope glycoprotein gp340. Given the central role of CD4+ T cells in regulating immune responses to subunit vaccine antigens, the present study has begun the work of identifying linear epitopes which are recognized by human CD4+ T cells within the 907-amino-acid sequence of gp340. A panel of gp340-specific CD4+ T-cell clones from an Epstein-Barr virus-immune donor were first assayed for their proliferative responses to a series of truncated gp340 molecules expressed from recombinant DNA vectors in rat GH3 cells, by using an autologous B lymphoblastoid cell line as a source of antigen-presenting cells. The first four T-cell clones analyzed all responded to a truncated form of gp340 which contained only the first 260 N-terminal amino acids. These clones were subsequently screened for responses to each of a panel of overlapping synthetic peptides (15-mers) corresponding to the primary amino acid sequence of the first 260 N-terminal amino acids of gp340. One clone (CG2.7) responded specifically to peptides from the region spanning amino acids 61 to 81, while three other clones (CG5.15, CG5.24, and CG5.36) responded specifically to peptides from the region spanning amino acids 163 to 183. Work with individual peptides from these regions allowed finer mapping of the T-cell epitopes and also revealed the highly dose-dependent nature of peptide-induced responses, with inhibitory effects apparent when the most antigenic peptides were present at supraoptimal concentrations. Experiments using homozygous typing B lymphoblastoid cell lines as antigen-presenting cells showed that the T-cell clones with different epitope specificities were restricted through different HLA class II antigens; clone CG2.7 recognized epitope 61-81 in the context of HLA DRw15, whereas clones CG5.15, CG5.24, and CG5.36 recognized epitope 163-183 in the context of HLA DRw11. The present protocol therefore makes a systematic analysis of CD4+ T-cell epitopes within gp340 possible; it will be necessary to screen gp340-specific T-cell clones from a variety of donors to assess the wider influence of HLA class II polymorphism upon epitope choice.  相似文献   

19.
Murine L cells expressing the products of transfected HLA-DR1 genes functioned as APC for two influenza-specific, human Th cell clones with comparable efficiency to a DR1-expressing human lymphoblastoid cell line. In order to investigate the restriction specificity of the two Th clones, a transfectant expressing the species-mismatched MHC class II dimer DR1:I-E was tested as an APC. Both T cells showed no loss of Ag sensitivity due to substitution of the murine chain. One of the Th clones, TLC 72, showed even greater degeneracy by responding to Ag in the context of I-Ek. Taking into account the lower level of MHC class II expression on the I-Ek transfectant, there is remarkably little loss of efficiency of Ag-induced T cell activation due to the substitution of I-E for DR as restriction element. The Ag-specific responses of both clones were inhibited by anti-CD4 antibody when DR-transfected L cells or human lymphoblastoid cells were used as APC. This inhibition was also seen when Ag was presented to TLC72 by the I-Ek-expressing transfectant. Whether this inhibition is the result of negative signaling or of blocking an interaction between human CD4 and I-Ek is discussed. Similarly the inhibitory effects of mAb against the T cell accessory molecule LFA/1 were the same for both clones when either the transfectants or the lymphoblastoid cell line were used as APC, suggesting that L cells may express a molecule that is capable of acting as a ligand for human LFA/1. The results presented here further illustrate the value of transfectants in analyzing T cell recognition and accessory cell requirements. The patterns of degeneracy of MHC restriction exhibited by these clones provides a platform for a more detailed analysis of key residues involved in MHC class II-restricted T cell Ag recognition.  相似文献   

20.
Cytotoxic T-lymphocyte (CTL) clones specific for the influenza A/PR/8/34 virus hemagglutinin (HA) were isolated by priming CBA mice with a recombinant vaccinia virus expressing the HA molecule. The epitopes recognized by two of these clones, which were CD8+, Kk restricted, and HA subtype specific, were defined by using a combination of recombinant vaccinia viruses expressing HA fragments and synthetic peptides. One epitope is in the HA1 subunit at residues 259 to 266 (numbering from the initiator methionine), amino acid sequence FEANGNLI, and the other epitope is in the HA2 subunit at residues 10 to 18 (numbering from the amino terminus of the HA2 subunit), sequence IEGGWTGMI. These two peptides are good candidates for naturally processed HA epitopes presented during influenza infection, as they are the same length (eight and nine residues) as other naturally processed viral peptides presented to CTL. A comparison of the sequences of these two new epitopes with those of the three previously published Kk-restricted T-cell epitopes showed some homology among all of the epitopes, suggesting a binding motif. In particular, an isoleucine residue at the carboxy-terminal end is present in all of the epitopes. On the basis of this homology, we predicted that the Kk-restricted epitope in influenza virus nucleoprotein, previously defined as residues 50 to 63, was contained within residues 50 to 57, sequence SDYEGRLI. This shorter peptide was found to sensitize target cells at a 200-fold lower concentration than did nucleoprotein residues 50 to 63 when tested with a CTL clone, confirming the alignment of Kk-restricted epitopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号