首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of the protein structure of (Na+ + K+)-ATPase on its incorporation into liposome membranes was investigated as follows: the catalytic alpha-subunit of (Na+ + K+)-ATPase was split into low-molecular weight fragments by trypsin treatment and the digested enzyme was reconstituted at the same protein concentration as intact control enzyme. The reconstitution process was quantified by the average number of intramembrane particles appearing on concave and convex fracture faces after freeze-fracture of the (Na+ + K+)-ATPase liposomes. The number of intramembrane particles as well as their distribution on concave and convex fracture faces is not modified by the proteolysis. In contrast, the ATPase activity and the transport capacity of the (Na+ + K+)-ATPase decrease progressively with increasing incubation times in the presence of trypsin and are abolished when the original 100 000 molecular weight alpha-subunit is no longer visible by sodium dodecylsulfate gel electrophoresis. Apparently, functional (Na+ + K+)-ATPase with intact protein structure and digested, non functional enzyme consisting of fragments of the alpha-subunit reconstitute in the same manner and to the same extent as judged by freeze-fracture analysis. We conclude that, while trypsin treatment modifies the (Na+ + K+)-ATPase molecule in a functional sense, it appears not to modify its interaction with the bilayer in producing intramembrane particles. On the basis of our results, we propose a lipid-lipid interaction mechanism for reconstitution of (Na+ + K+)-ATPase.  相似文献   

3.
Regulation of rat brain (Na+ +K+)-ATPase activity by cyclic AMP   总被引:3,自引:0,他引:3  
The interaction between the (Na+ +K+)-ATPase and the adenylate cyclase enzyme systems was examined. Cyclic AMP, but not 5'-AMP, cyclic GMP or 5'-GMP, could inhibit the (Na+ +K+)-ATPase enzyme present in crude rat brain plasma membranes. On the other hand, the cyclic AMP inhibition could not be observed with purified preparations of (Na+ +K+)-ATPase enzyme. Rat brain synaptosomal membranes were prepared and treated with either NaCl or cyclic AMP plus NaCl as described by Corbin, J., Sugden, P., Lincoln, T. and Keely, S. ((1977) J. Biol. Chem. 252, 3854-3861). This resulted in the dissociation and removal of the catalytic subunit of a membrane-bound cyclic AMP-dependent protein kinase. The decrease in cyclic AMP-dependent protein kinase activity was accompanied by an increase in (Na+ +K+)-ATPase activity. Exposure of synaptosomal membranes containing the cyclic AMP-dependent protein kinase holoenzyme to a specific cyclic AMP-dependent protein kinase inhibitor resulted in an increase in (Na+ +K+)-ATPase enzyme activity. Synaptosomal membranes lacking the catalytic subunit of the cyclic-AMP-dependent protein kinase did not show this effect. Reconstitution of the solubilized membrane-bound cyclic AMP-dependent protein kinase, in the presence of a neuronal membrane substrate protein for the activated protein kinase, with a purified preparation of (Na+ +K+)-ATPase, resulted in a decrease in overall (Na+ +K+)-ATPase activity in the presence of cyclic AMP. Reconstitution of the protein kinase alone or the substrate protein alone, with the (Na+ +K+)-ATPase has no effect on (Na+ +K+)-ATPase activity in the absence or presence of cyclic AMP. Preliminary experiments indicate that, when the activated protein kinase and the substrate protein were reconstituted with the (Na+ +K+)-ATPase enzyme, there appeared to be a decrease in the Na+-dependent phosphorylation of the Na+-ATPase enzyme, while the K+-dependent dephosphorylation of the (Na+ +K+)-ATPase was unaffected.  相似文献   

4.
1. The specific activity of renal cortical (Na+ + K+)-ATPase of the Richardson ground squirrel is markedly reduced during hibernation, in contrast to the specific activity of the accompanying Mg2+-ATPase which is markedly increased. 2. The sensitivity of (Na+ + K+)-ATPase to inhibition by ouabain is unchanged by hibernation. 3. Both the non-linear thermal dependence of (Na+ + K+)-ATPase and the linear thermal dependence of Mg2+-ATPase are also unchanged by hibernation. 4. The energy of activation of both enzymes is unchanged during hibernation, or by comparison with that determined in awake controls. 5. There is no evidence for inherent "cold resistance" in these enzyme preparations compared to similar preparations from the non-hibernating rabbit. This parameter does not change during hibernation. 6. Both the rate and amount of specific [3H]-ouabain binding to the renal cortical preparations of (Na+ + K+)-ATPase decrease during hibernation. This decrease matches the fall in enzyme activity so that the ratio of pumping sites/unit of enzyme activity shows no seasonal variations. 7. These findings suggest that the amount of renal cortical (Na+ + K+)-ATPase enzyme falls during hibernation, but that the enzyme which remains functions with the same thermodynamic efficiency and identical biochemical characteristics of that found in the awake summer controls.  相似文献   

5.
We have shown previously that the canine kidney Na+,K+ pump [Na+ + K+)-ATPase) reacts with the ATP affinity analog p-fluorosulfonylbenzoyladenosine (FSBA). At 20 degrees C, we find the time-course of this reaction to be that predicted for a first-order reaction accompanied by competing solvolysis of the reagent. The FSBA-inactivated (Na+ + K+)-ATPase retains the ability to move between the E1 and E2 conformations that predominate in Na+ and K+ medium, respectively. Therefore, FSBA reaction with the enzyme does not interfere significantly with either its alkali metal cation binding or its conformational freedom. The ability of ATP to influence the enzyme's conformation by binding to the high-affinity nucleotide site is decreased, however, in proportion to the degree of inhibition of enzyme activity by FSBA. In addition, the ability of the enzyme to shift from the E1 to the E2 conformation through the (ATP + Na+)-dependent phosphorylation cycle is inhibited by FSBA treatment, as shown by the decreased ability of these substrates to stimulate the K+-dependent p-nitrophenylphosphatase activity. Both of these effects are consistent with specific reaction of FSBA with the ATP binding site of the enzyme. An additional effect of FSBA treatment is that it causes loss of p-nitrophenylphosphatase activity, but to a lesser extent than (Na+ + K+)-ATPase or Na+-ATPase activity. Binding of p-nitrophenylphosphate to the enzyme is apparently unaffected by FSBA treatment, since the Km for p-nitrophenylphosphate is not changed.  相似文献   

6.
Long-chain fatty acid esters of CoA activate (Na+ + K+)-ATPase (the sodium pump) when ATP is suboptimal. To explore the nature of the interactions of these CoA derivatives with the pump, reversible effects of palmitoyl-CoA on the purified membrane-bound kidney enzyme were studied under conditions where interference from the irreversible membrane-damaging effect of the compound was ruled out. With 50 microM ATP, while saturating palmitoyl-CoA increased (Na+ + K+)-ATPase activity, it caused partial inhibition of Na+-ATPase activity without affecting the steady-state level of the phosphoenzyme. Palmitoyl-CoA did not change the K0.5 of ATP for Na+-ATPase, but it altered the complex Na+ activation curve to suggest the antagonism of the low-affinity, but not the high-affinity, Na+ sites. At a low ATP concentration (0.5 microM), K+ inhibited Na+-ATPase as expected. In the presence of palmitoyl-CoA and 0.5 microM ATP, however, K+ became an activator, as it is at high ATP concentrations. The activating effect of palmitoyl-CoA on (Na+ + K+)-ATPase activity was reduced with increasing pH (6.5-8.5), but its inhibitory effect on Na+-ATPase was not altered in this pH range. The data show two distinct actions of palmitoyl-CoA: 1) blockade of the extracellular "allosteric" Na+ sites whose exact role in the control of the pump is yet to be determined, and 2) activation of the pump through increased rate of K+ deocclusion. Since in their latter action the fatty acid esters of CoA are far more effective than ATP at a low-affinity regulatory site, we suggest that these CoA derivatives may be the physiological ligands of this regulatory site of the pump.  相似文献   

7.
1. Incubation of purified (Na+ + K+)-ATPase (ATP phosphohydrolase EC 3.6.1.3) from rabbit kidney outer medulla with butanedione in borate buffer leads to reversible inactivation of the (Na+ + K+)-ATPase activity. 2. The reaction shows second-outer kinetics, suggesting that modification of a single amino acid residue is involved in the inactivation of the enzyme. 3. The pH dependence of the reaction and the effect of borate ions strongly suggest that modification of an arginine residue is involved. 4. Replacement of Na+ by K+ in the butanedione medium decreases inactivation. 5. ATP, ADP and adenylyl imido diphosphate, particularly in the presence of trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid to complex Mg2+, protect the enzyme very efficiently against inactivation by butanedione. 6. The (Na+ + Mg2+)-dependent phosphorylation capacity of the enzyme is inhibited in the same degree as the (Na+ + K+)-ATPase activity by butanedione. 7. The K+-stimulated p-nitrophenylphosphatase activity is much less inhibited than the (Na+ + K+)ATPase activity. 8. The ATP stimulation of the K+-stimulated p-nitrophenylphosphatase activity is inhibited by butanedione to the same extent as the (Na+ + K+)-ATPase activity. 9. Modification of sulfhydryl groups with 5,5'-dithiobis(2-nitrobenzoic acid) protects partially against the inactivating effect of butanedione. 10. The results suggest that an arginine residue is present in the nucleotide binding centre of the enzyme.  相似文献   

8.
Effects of commonly used purification procedures on the yield and specific activity of (Na+ + K+)-ATPase (Mg2+-dependent, Na+ + K+-activated ATP phosphohydrolase, EC 3.6.1.3), the turnover number of the enzyme, and the kinetic parameters for the ATP-dependent ouabain-enzyme interaction were compared in canine brain, heart and kidney. Kinetic parameters were estimated using a graphical analysis of non-steady state kinetics. The protein recovery and the degree of increase in specific activity of (Na+ + K+)-ATPase and the ratio between (Na+ + K+)-ATPase and Mg2+-ATPase activities during the successive treatments with deoxycholate, sodium iodide and glycerol were dependent on the source of the enzyme. A method which yields highly active (Na+ + K+)-ATPase preparations from the cardiac tissue was not suitable for obtaining highly active enzyme preparations from other tissues. Apparent turnover numbers of the brain (Na+ + K+)-ATPase preparations were not significantly affected by the sodium iodide treatment, but markedly decreased by deoxycholate or glycerol treatments. Similar glycerol treatment, however, failed to affect the apparent turnover number of cardiac enzymes preparations. Cerebral and cardiac enzyme preparations obtained by deoxycholate, sodium iodide and glycerol treatments had lower affinity for ouabain than renal enzyme preparations, primarily due to higher dissociation rate constants for the ouabain.enzyme complex. This tissue-dependent difference in ouabain sensitivity seems to be an artifact of the purification procedure, since less purified cerebral or cardiac preparations had lower dissociation rate constants. Changes in apparent association rate constants were minimal during the purfication procedure. These results indicate that the presentyl used purification procedures may alter the properties of membrane (Na+ + K+)-ATPase and affect the interaction between cardiac glycosides and the enzyme. The effect of a given treatment depends on the source of the enzyme. For the in vitro studies involving purified (Na+ + K+)-ATPase preparations, the influence of the methods used to obtain the enzyme preparation should be carefully evaluated.  相似文献   

9.
Inactivation of (Na+ + K+)-ATPase of Yoshida sarcoma cells and beef brain microsomes by phospholipase A2 and a cytotoxin P6 from snake venom has been examined in relation to their activity to degrade phospholipids. Cytotoxin P6 which was most basic and devoid of phospholipase activity was most effective in inhibiting the (Na+ + K+)-ATPase of Yoshida sarcoma cells. Phospholipase A2 from Naja naja which was most active in degrading phospholipids was least effective in inhibiting (Na+ + K+)-ATPase in Yoshida sarcoma cells or in beef brain microsomes. Addition of trace amounts of cytotoxin P6 to the phospholipase considerably enhanced the inactivation of (Na+ + K+)-ATPase. The evidence suggests that the charge of the inhibitor protein and its specific structure play an important role in the inactivation of (Na+ + K+)-ATPase.  相似文献   

10.
Kinetic properties of C12E8-solubilized (Na+ + K+)-ATPase   总被引:1,自引:0,他引:1  
The properties of the rectal gland (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.8) solubilized in octaethyleneglycol dodecylmonoether ( C12E8 ) have been investigated. The kinetic properties of the solubilized enzyme resemble those of the membrane-bound enzyme to a large extent. The main difference is that Km for ATP for the (Na+ + K+)-ATPase is about 30 microM for the solubilized enzyme and about 100 microM for the membrane-bound enzyme. The Na+-form (E1) and the K+-form (E2) can also be distinguished in the solubilized enzyme, as seen from tryptic digestion, the intrinsic fluorescence and eosin fluorescence responses to Na+ and K+. The number of vanadate-binding sites is unchanged upon solubilization, and it is shown that vanadate binding is much more resistant to detergent inactivation than the enzymatic activities. The number of phosphorylation sites on the 95-100% pure supernatant enzyme is about 3.8 nmol/mg, and is equal to the number of vanadate sites. Inactivation of the enzyme by high concentrations of detergent can be shown to be related to the C12E8 /protein ratio, with a weight ratio of about 4 being a threshold for the onset of inactivation at low ionic strength. At high ionic strength, more C12E8 is required both for solubilization and inactivation. It is observed that the commercially available detergent polyoxyethylene 10-lauryl ether is much less deleterious than C12E8 , and its advantages in the assay of detergent-solubilized (Na+ + K+)-ATPase are discussed. The results show that (Na+ + K+)-ATPase can be solubilized in C12E8 in an active form, and that most of the kinetic and conformational properties of the membrane-bound enzyme are conserved upon solubilization. C12E8 -solubilized (Na+ + K+)-ATPase is therefore a good model system for a solubilized membrane protein.  相似文献   

11.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 microM ATP and 50 microM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 microM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+ -ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 microM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

12.
Showdomycin [2-(beta-D-ribofuranosyl)maleimide] is a nucleoside antibiotic containing a maleimide ring and which is structurally related to uridine. Showdomycin inhibited rat brain (Na+ + K+)-ATPase irreversibly by an apparently bimolecular reaction with a rate constant of about 11.01-mol- minus 1-min- minus 1. Micromolar concentrations of ATP protected against this inhibition but uridine triphosphate or uridine were much less effective. In the presence of K+, 100 MUM ATP was unable to protect against inhibition by showdomycin. These observations show that showdomycin inhibits (Na+ + K+)-ATPase by reacting with a specific chemical group or groups at the nucleotide-binding site on this enzyme. Inhibition by showdomycin appears to be more selective for this site than that due to tetrathionate or N-ethylmaleimide. Since tetrathionate is a specific reactant for sulfhydryl groups it appears likely that the reactive groups are sulfhydryl groups. The data thus show that showdomycin is a relatively selective nucleotide-site-directed inhibitor of (Na+ + K+)-ATPase and inhibiton is likely due to the reaction of showdomycin with sulfhydryl group(s) at the nucleotide-binding site on this enzyme.  相似文献   

13.
Monoclonal antibodies against horse kidney outer medulla (Na+ + K+)-ATPase were prepared. One of these antibodies (M45-80), was identified as an IgM, recognized the alpha subunit of the enzyme. M45-80 had the following effects on horse kidney (Na+ + K+)-ATPase: (1) it inhibited the enzyme activity by 50% in 140 mM Na+ and by 80% in 8.3 mM Na+; (2) it increased the Na+ concentration necessary for half-maximal activation (K0.5 for Na+) from 12.0 to 57.6 mM, but did not affect K0.5 for K+; (3) it slightly increased the K+-dependent p-nitrophenylphosphatase (K-pNPPase) activity; (4) it inhibited phosphorylation of the enzyme with ATP by 30%, but did not affect the step of dephosphorylation; and (5) it enhanced the ouabain binding rate. These data are compatible with a stabilizing effect on the E2 form of (Na+ + K+)-ATPase. M45-80 was concluded to bind to the extracellular surface of the plasmamembrane, based on the following evidence: (1) M45-80 inhibited by 50% the ouabain-sensitive 86Rb+ uptake in human intact erythrocytes from outside of the cells; (2) the inhibition of (Na+ + K+)-ATPase activity in right-side-out vesicles of human erythrocytes was greater than that in inside-out vesicles; and (3) the fluorescence intensity due to FITC-labeled rabbit anti-mouse IgM that reacted with M45-80 bound to the right-side-out vesicles was much greater than that in the case of the inside-out vesicles.  相似文献   

14.
1. The 3'-ribosyl ester of ATP with 2-nitro-4-azidophenyl propionic acid has been prepared and its ability to act as a photoaffinity label of (Na+ + K+)-ATPase has been tested. 2. In the dark 3'-O-[3-(2-nitro-4-azidophenyl)-propionyl]adenosine triphosphate (N3-ATP) is a substrate of (Na+ + K+)-ATPase and a competitive inhibitor of ATP hydrolysis. 3. Upon irradiation by ultraviolet light, N3-ATP photolabels the high-affinity ATP-binding site and is covalently attached to the alpha-subunit and an approximately 12000-Mr component. 4. Photolabeling of the alpha-subunit by N3-ATP irreversibly inactivates (Na+ + K+)-ATPase. 5. Photoinactivation is strictly Mg2+-dependent. Na+ enhances the inactivation. ATP or ADP and K+ protect the enzyme against inactivation. 6. Mg2+, in concentrations required for photoinactivation, protects (Na+ + K+)-ATPase against inactivation by tryptic digestion under controlled conditions. 7. It is assumed that a conformational change of the ATP-binding site of (Na+ + K+)-ATPase occurs upon binding of Mg2+ to a low-affinity site.  相似文献   

15.
Rats were made dependent upon ethanol by feeding them liquid diets containing ethanol. Synaptosomal plasma membranes (SPM) were isolated from cerebral cortex and midbrain regions of isocaloric-fed control and ethanol-dependent rats. No major alcohol-induced alteration in in vitro (Na+ + K+)-ATPase activity was found in SPM of either brain area. At 37 degrees C, ethanol (0.10 to 0.98 M) added to incubations caused a dose-dependent inhibition of (Na+ + K+)-ATPase activity. The degree of inhibition found was independent of the diet administered or whether ethanol was present in the diet. At temperatures between 14 and 22 degrees C, 0.48 M ethanol caused a temperature-dependent decrease in activity. Arrhenius plots for SPM (Na+ + K+)-ATPase showed that in control and ethanol-dependent rats fed the Lieber de Carli diet, 0.48 M ethanol did not alter the transition temperature of this enzyme. Activation energies both above and below the transition temperature were decreased by the addition of ethanol to incubations. These results indicate that (Na+ + K+)-ATPase, a membrane-bound enzyme that is sensitive to its lipid environment and to the presence of ethanol, is not altered by the chronic administration of ethanol to rats.  相似文献   

16.
Antibodies against Lubrol-solubilized Electrophorus electroplax (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) and its 96 000-dalton polypeptide (P96) were raised in rabbits. The P96 antibody does not cross react with the (Na+ + K+)-ATPase from mammalian species and tissues, but it cross reacts with the (Na+ + K+)-ATPase from both Electrophorus electroplax and brain. The combination of enzyme with anti-P96 is found to inhibit phosphoryl enzyme formation to the same extent that it inhibits enzyme activity. The rate of K+-sensitive dephosphorylation of phosphoryl enzyme appears to be unchanged. These are also found to be true with the antibody against the whole enzyme. Upon tryptic digestion of the enzyme-anti-P96 complex only the large polypeptide of the enzyme is protected. In the case of enzyme-anti-Lubrol-solubilized enzyme complex, both the large and small polypeptides are protected, whereas preimmune sera are without any protecting effect. The data indicate that the phosphoryl acceptor polypeptide and the Lubrol-solubilized electroplax (Na+ + K+)-ATPase from which the polypeptide is derived are phylogenetically distinct from those of the mammalian (Na+ + K+)-ATPases. The selective tryptic resistance of the enzyme-anti-P96 complex indicates that the two polypeptides are spatially well separated, possibly on opposite sides of the membrane.  相似文献   

17.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

18.
(Na+ + K+)-ATPase was isolated from the grey matter of brain and incorporated into liposomes. Most of the reconstituted enzyme was oriented 'inside-out' with respect to its in vivo orientation and externally added ATP promoted Na+ uptake that was inhibitable by internally trapped ouabain. Using the same proteoliposomes, an Na+ - Ca2+ exchange system was observed as indicated by the following pieces of evidence. (1) The Na+ gradient provided the only readily apparent driving force for acceleration of Ca2+ accumulation into proteoliposomes. (2) The antiporter was specific for Ca2+, high Mg2+ excess did not inhibit Ca2+ antiport. (3) The Na+ efflux was dependent on the extravesicular Ca2+ concentration. (4) The Na+ efflux was not inhibited by tetrodotoxin. The demonstrated Na+ - Ca2+ exchange could not be related to (Na+ + K+)-ATPase protein, since it was not purified with (Na+ + K+)-ATPase, as followed from transport studies with liposomes containing (Na+ + K+)-ATPase of different specific activity. The results strongly indicate that plasma membranes isolated from the grey matter of brain contain an Na+ - Ca2+ exchange system and that the proteoliposomes are suitable for further purification of the carrier molecule.  相似文献   

19.
The fluorescing sulfhydryl reagent N-(7-dimethylamino-4-methylcoumarinyl)maleimide (DACM) inactivates purified (Na+ + K+)-ATPase at 20 microM. This inactivation results in a decrease of the ouabain-binding capacity of the enzyme. Treatment of (Na+ + K+)-ATPase, embedded in right-side-out-oriented vesicles, by DACM does not affect ouabain binding to the enzyme. Incorporation of DACM into the alpha subunit of (Na+ + K+)-ATPase embedded in right-side-out vesicles is also not affected by the presence or absence of 100 microM ouabain. It is therefore concluded that a sulfhydryl group does not reside within the ouabain-binding site of (Na+ + K+)-ATPase.  相似文献   

20.
Na+-ATPase activity is extremely sensitive to inhibition by vanadate at low Na+ concentrations where Na+ occupies only high-affinity activation sites. Na+ occupies low-affinity activation sites to reverse inhibition of Na+-ATPase and (Na+, K+)-ATPase activities by vanadate. This effect of Na+ is competitive with respect to both vanadate and Mg2+. The apparent affinity of the enzyme for vanadate is markedly increased by K+. The principal effect of K+ may be to displace Na+ from the low-affinity sites at which it activates Na+-ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号