首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zooplankton may at times graze cyanobacteria. However, their top-down effects are considered to be low, particularly in tropical regions dominated by small-size grazers that may be unable to consume efficiently filamentous or colonial species. Recently, cyanobacteria blooms were reported in the Senegal River hydrosystem. We conducted feeding experiments to assess the ability of copepods (Pseudodiaptomus hessei and Mesocyclops ogunnus), cladocerans (Moina micrura and Ceriodaphnia cornuta), and rotifers (Brachionus angularis, B. falcatus, and Keratella sp.) to control different cyanobacteria (Cylindrospermopsis raciborskii, Anabaena solitaria, A. flos-aquae, and Microcystis aeruginosa). None of the zooplankton species ingested M. aeruginosa. Mesocyclops ogunnus did not consume any of the cyanobacteria. Both cladocerans consumed the smallest filaments of cyanobacteria, whereas all the rotifers and P. hessei consumed a broader food-size spectrum. The functional feeding responses suggest that the concentration and size of the filaments are not the sole criteria for food consumption. The high zooplankton community grazing rates, estimated by applying the clearance rates measured in the laboratory to the in situ zooplankton abundance, indicate that grazing by zooplankton potentially constitutes an important controlling factor for the filamentous cyanobacteria in the tropics.  相似文献   

2.
Concentrations of a cyanobacterial toxin, nodularin, were measured in the Baltic Sea in 1998 and 1999. Statistical associations of nodularin concentrations with environmental factors were tested by multiple regression analysis. To reveal the toxin-producing organism, colonies of Aphanizomenon and filaments of Nodularia were picked and analyzed for peptide toxins. It was also investigated whether there was an association with zooplankton and Nodularia. All the measured seston samples contained nodularin, but other toxins were not detected by the HPLC analysis. In both years, the highest nodularin concentrations were found at the surface water layer. The nodularin concentrations were positively correlated with silicate concentrations in water. High concentrations of silica in surface water may indicate recent upwelling, which in turn renders surface water rich in nutrients. This upwelling is likely to intensify cyanobacterial growth and toxin production, which may explain this rather unexpected result. The picked Aphanizomenon colonies did not contain nodularin and the dissolved nodularin concentrations were below detection limit. Thus it was concluded that most of the nodularin was bound to Nodularia cells. The abundances of zooplankton (copepods, rotifers, and cladocerans) were unrelated to Nodularia, but were positively associated with Aphanizomenon.  相似文献   

3.
The comparison of the zooplankton communities developing in the semiprotected shallow waters of Rybinsk Reservoir under the impact of common tern (Sterna hirundo Linnaeus) colonies with communities in sheltered overgrowing habitats situated apart from colonies, has reveled some peculiar features of the former: higher biomass, prevalence of cladocerans, lower share of rotifers, and decrease in species diversity.  相似文献   

4.
Kim  Hyun-Woo  Joo  Gea-Jae 《Hydrobiologia》2000,438(1-3):171-184
The longitudinal distribution and seasonal dynamics of zooplankton were examined along a 200-km section of the middle to lower Nakdong River, Korea. Zooplankton was sampled twice a month from January 1995 to December 1997 at five sites in the main river channel. There was considerable longitudinal variation in total zooplankton abundance (ANOVA, p < 0.001). All major zooplankton groups (rotifers, cladocerans, copepodids and nauplii) increased significantly with distance downstream along the river. There also were statistically significant seasonal differences in zooplankton abundance at the sampling sites (ANOVA, p < 0.01). Zooplankton abundance was high in spring and fall and low in summer and winter. The seasonal pattern of rotifers was similar to that of total zooplankton. This reflected the fact that rotifers (Brachionus calyciflorus, B. rubens, Keratella cochlearis and Polyarthra spp.) strongly dominated the zooplankton community at all locations. Among the macrozooplankton, small-bodied cladocerans (e.g. Bosmina spp.) dominated; the abundance of large-bodied cladocerans (e.g. Daphnia) was negligible (0–5 ind. l–1). Among the environmental variables considered, partial residence time seemed to play the most important role in determining characteristics of the river zooplankton community.  相似文献   

5.
The zooplankton community in the highly eutrophic Lake Kasumigaura was investigated and its relation to a bloom of Microcystis was analyzed. The zooplankton community was dominated by small cladocerans, whose biomass and production became highest in summer, when Microcystis bloomed. The high cladoceran production is considered to depend on the production of colonial Microcystis, because the production of nannoplankton was apparently too low to ensure the cladoceran production. Microcystis cells were unsuitable as food for the cladocerans inhabiting Lake Kasumigaura, but became utilizable when decomposed. Decomposed Microcystis may be the main food for Cladocera in the lake in summer. High water temperatures occurring in summer probably promoted decomposition of the Microcystis, leading to increased production of the small cladocerans.  相似文献   

6.
Zooplankton species composition and abundance variation was studied in Lake Amvrakia, which is a deep, temperate, gypsum karst lake situated in the western Greece. The two year survey of zooplankton revealed 33 species (23 rotifers, five cladocerans, four copepods and one mollusc larva). The mean integrated abundance of the total zooplankton ranged between 83.6 and 442.7 ind. L−1, with the higher density to be recorded in the surface 0–20 m layer. Small numbers of specimens of almost all species were found also in the hypoxic or anoxic hypolimnion. Copepods and especially the calanoid Eudiaptomus drieschi dominated the zooplankton community throughout the sampling period, followed by Dreissena polymorpha larvae, rotifers and cladocerans. Seasonal succession among the cladocerans and the most abundant rotifer species was observed. The concentration of chlorophyll-a was the most important factor for the variation of total zooplankton, as well as for the rotifers’ community. Dissolved oxygen affected copepods and cladocerans, water level correlated mainly with the molluscs larvae of D. polymorpha, while temperature influenced the variation of several rotifers, the cladoceran Diaphanosoma orghidani and the mollusc larvae. Negative correlation of conductivity with the cladoceran Daphnia cucullata and the copepods E. drieschi and Macrocyclops albidus was found. The differences in species composition found in Lake Amvrakia in comparison to the nearby lakes are probably ought to the geographical isolation and perhaps to its particular chemistry (e.g., elevated conductivity).  相似文献   

7.
Summary A zooplankton community was established in outdoor experimental ponds, into which a vertebrate predator (topmouth gudgeon: Pseudorasbora parva) and/or an invertebrate predator (phantom midge larva: Chaoborus flavicans) were introduced and their predation effects on the zooplankton community structure were evaluated. In the ponds which had Chaoborus but not fish, small- and medium-sized cladocerans and calanoid copepods were eliminated while rotifers became abundant. A large-sized cladoceran Daphnia longispina, whose juveniles had high helmets and long tailspines as anti-predator devices, escaped from Chaoborus predation and increased. In the ponds which had fish but not Chaoborus, the large-sized Daphnia was selectively predated by the fish while small-and medium-sized cladocerans and calanoid copepods predominated. In the ponds containing both Chaoborus and fish, the fish reduced the late instar larvae (III and IV) of Chaoborus but increased the early instar larvae (I and II). Small- and large-sized cladocerans were scarcely found. The former might have been eliminated by predation of the early instar larvae of Chaoborus, while the latter was probably predated by fish. Consequently, the medium-sized cladocerans, which may have succeeded in escaping from both types of predator, appeared abundantly. The results suggest that various combinations of vertebrate and invertebrate predators are able to drive various kinds of zooplankton community structure.  相似文献   

8.
The consumption of zooplanktonic organisms by young and adult fish of Astyanax fasciatus in Lobo Reservoir was studied from October 1978 to September 1979 by analysing the abundance of zooplankton in the gut of fishes and relating it to the variation of the zooplankton community in the lake. To analyse the diet the following methods were used: numeric frequency of occurrence, and frequency rate. Astyanax fasciatus showed a large spectrum of feeding. The young stage feeds mainly on zooplankton and macroinvertebrates (insect larvae) but the adults also consume algae and detritus. Even in relation to the zooplankton the young stage showed a food preference different from that of the adults, selecting copepods over cladocerans, while the adults consumed more cladocerans.  相似文献   

9.
Sarma  S. S. S.  Nandini  S. 《Hydrobiologia》2002,486(1):169-174
Freshwater cladocerans and rotifers were used as prey to study functional response and prey selection by adult females of Chirocephalus diaphanus under laboratory conditions. For functional response studies, we offered three rotifer species (Brachionus calyciflorus, B. patulus and Euchlanis dilatata) and three cladoceran species (Alona rectangula, Ceriodaphnia dubia and Moina macrocopa) at various densities ranging from 0.5 to 16 ind. ml–1. We found increased zooplankton consumption with increasing prey density but beyond 4 ind ml–1 cladocerans and 8 ind. ml–1 rotifers, the number of animals eaten plateaued. In general, C. diaphanus consumed fewer large prey (cladocerans) and many more smaller zooplankton (rotifers). For prey selection experiments, we used B. calyciflrous, B. patulus, C. dubia and M. macrocopa, offered at the ratio of two rotifers: one cladoceran and at three prey densities (total zooplankton numbers: 3, 6 and 12 ind. ml–1). Prey selectivity patterns followed the functional response trends. In general, regardless of prey types, with an increase in the available zooplankton, there was an increase in the number of prey consumed. At any given prey density, C. diaphanus consumed higher numbers of rotifers than cladocerans. Among the prey offered, B. patulus and M. macrocopa were positively selected. Results are discussed in light of possible control of zooplankton by anostracans in temporary ponds.  相似文献   

10.
Community level effects of predation by two invertebrate predators, the opossum shrimp (Neomysis intermedia), and the larva of the phantom midge (Chaoborus flavicans) were studied and compared. N. intermedia appeared abundantly in the shallow eutrophic Lake Kasumigaura and had a significant impact on the zooplankton community. The predation pressure by Neomysis was highest on cladocerans, followed by rotifers, and finally copepods. At high densities (maximum nearly 20 000 individuals m–2), Neomysis excluded almost all cladocerans, rotifers and copepods from the lake.Zooplankton communities were established in experimental ponds, into which C. flavicans was introduced. The predator's density was around 1 individual l–1, and was probably controled by cannibalism. Although Chaoborus larvae feed on various zooplankton species, their predation impact on zooplankton populations was markedly selective. They eliminated medium- and small-sized cladocerans and calanoid copepods from the ponds, but rotifers increased.Although the feeding selectivities of Neomysis and Chaoborus individuals were similar, the predation effects on zooplankton communities by the two predators were different.  相似文献   

11.
The investigation of the zooplankton community in the upstream part of Stratos reservoir during a 24 months survey (September 2004–August 2006) revealed 26 invertebrate species (14 rotifers, 6 cladocerans, 5 copepods and one mollusk larva). The mean abundance of the total zooplankton was higher in the first sampling period (2004–2005) and ranged between 8.81 and 47.74 ind. L−1, than the second period (2005–2006) when fluctuated between 1.91 and 43.09 ind. L−1. The seasonal variation was strongly influenced by the presence of rotifers, which accounting on average for 68.4% in total. Among them Keratella cochlearis and the order Bdelloidea were numerically the most important, while Macrocyclops albidus prevailed among the copepods and Bosmina longirostris among the cladocerans. Dreissena polymorpha was the only mollusk found in the zooplankton community. Rotifers, copepods and cladocerans showed a seasonal succession with the former preceding in the abundance having their first maximum in spring, while copepods and cladocerans followed, having peaks of abundance in early summer and in autumn, respectively. No seasonal succession among the cladoceran species was observed. The intense water flow in the upstream part of the reservoir, as well as temperature, conductivity, DO, pH, phosphates and silicates, were significant parameters controlling abiotic and biotic elements of the ecosystem and consequently influencing the seasonal variation and the dynamics of the zooplankton community.  相似文献   

12.
Mamani  A.  Koncurat  M. L.  Boveri  M. 《Hydrobiologia》2019,829(1):19-29

Whether macrophytes offer an effective refuge for zooplankton in all shallow lakes is subject to debate. To explore potential constraints between different predator threats and the related habitat choice by zooplankton, we conducted a mesocosm experiment in 12 large-sized pools mimicking the nearshore environment with part of its length being covered by submersed macrophytes (Egeria densa) and holding a mixed zooplankton community. Four treatments were used: (i) young zooplanktivorous fish (3 silverside, Odontesthes bonariensis) in the “open-water” zone; (ii) macroinvertebrate predator (31 grass shrimp, Palaemonetes argentinus) in the vegetated zone; (iii) both, fish in the open-water and shrimp in the vegetated zones; and (iv) control with no predators. Our results show specific effects of each predator on the abundance, composition, and size of cladocerans. Regarding distribution, in control and shrimp mesocosms, no differences were found between the two zones, while cladocerans were clearly more abundant in the vegetated side in the presence of fish. When both fish and shrimp were present, cladocerans preferred the vegetated zone too, but in a smaller proportion, and their abundance was less. The presence of predatory macroinvertebrates in vegetated littoral zone reduces the refuge value of this habitat, at least for cladocerans.

  相似文献   

13.
1. Oligotrophic lakes are generally dominated by calanoid copepods because of their competitive advantage over cladocerans at low prey densities. Planktivory also can alter zooplankton community structure. We sought to understand the role of planktivory in driving recent changes to the zooplankton community of Lake Huron, a large oligotrophic lake on the border of Canada and the United States. We tested the hypothesis that excessive predation by fish (rainbow smelt Osmerus mordax, bloater Coregonus hoyi) and invertebrates (Mysis relicta, Bythotrephes longimanus) had driven observed declines in cladoceran and cyclopoid copepod biomass between 2002 and 2007. 2. We used a field sampling and bioenergetics modelling approach to generate estimates of daily consumption by planktivores at two 91‐m depth sites in northern Lake Huron, U.S.A., for each month, May–October 2007. Daily consumption was compared to daily zooplankton production. 3. Bythotrephes was the dominant planktivore and estimated to have eaten 78% of all zooplankton consumed. Bythotrephes consumption exceeded total zooplankton production between July and October. Mysis consumed 19% of all the zooplankton consumed and exceeded zooplankton production in October. Consumption by fish was relatively unimportant – eating only 3% of all zooplankton consumed. 4. Because Bythotrephes was so important, we explored other consumption estimation methods that predict lower Bythotrephes consumption. Under this scenario, Mysis was the most important planktivore, and Bythotrephes consumption exceeded zooplankton production only in August. 5. Our results provide no support for the hypothesis that excessive fish consumption directly contributed to the decline of cladocerans and cyclopoid copepods in Lake Huron. Rather, they highlight the importance of invertebrate planktivores in structuring zooplankton communities, especially for those foods webs that have both Bythotrephes and Mysis. Together, these species occupy the epi‐, meta‐ and hypolimnion, leaving limited refuge for zooplankton prey.  相似文献   

14.
Competition between rotifers and cladocerans of different body sizes   总被引:7,自引:0,他引:7  
Summary We conducted laboratory experiments to test the hypothesis that rotifers could coexist with small (<1.2 mm) but not large (>1.2 mm) cladocerans. Keratella cochlearis was excluded in <8 days by the large cladocerans Daphnia pulex and D. magna, probably through both interference and exploitative competition. On the other hand, K. cochlearis persisted for 8 weeks with two small cladocerans (Bosmina longirostris and Ceriodaphnia dubia) and excluded a third small cladoceran (D. ambigua). Similarly, Synchaeta oblonga coexisted with B. longirostris for >7 weeks, and K. testudo coexisted with D. ambigua for >4 weeks. Coexistence of small cladocerans and rotifers was always accompanied by suppression of one or both populations, probably primarily if not exclusively by exploitative competition for limiting food resources. These results indicate that the competitive dominance of cladocerans over rotifers decreases markedly with cladoceran body size and that factors other than body size may determine the competitive outcome between rotifers and small cladocerans. Our study provides a mechanistic explanation for a commonly observed pattern in natural zooplankton communities: planktonic rotifers often are abundant when only small cladocerans occur but typically are rare when large cladocerans are present.  相似文献   

15.
1. Shallow lakes and ponds are a major component of the northern landscape and often contain a high zooplankton biomass despite clear waters that are poor in phytoplankton. 2. In this study we quantified zooplankton food sources and feeding rates in the shallow waters of two contrasting high‐latitude biomes: subarctic forest tundra (Kuujjuarapik, Quebec) and high arctic polar desert (Resolute, Nunavut). Five substrate types were tested (beads, bacteria, picophytoplankton, filamentous plankton and microbial mats). Special attention was given to the role of benthos, a component that is usually poorly integrated into models of aquatic foodwebs. 3. Consistent with observations elsewhere in the circumpolar region, high concentrations of adult macrozooplankton occurred in all sites (up to 17 100 crustaceans m?3) while phytoplankton concentrations and primary productivity were low. The communities were composed of multiple species, including Daphnia middendorfiana, Hesperodiaptomus arcticus, Leptodiaptomus minutus, Artemiopsis stefanssoni and Branchinecta paludosa. 4. Detritus made 89–98% of the planktonic resource pool and bacteria contributed the highest biomass (up to 29 mg C m?3) of the planktonic food particles available to zooplankton. Benthic resources were dominated by microbial mats that grew in nutrient‐rich conditions at the base of the ponds and which dominated overall ecosystem biomass and productivity. 5. All species were flexible in their feeding but there were large, order of magnitude differences in clearance rates among taxa. These differences likely resulted from different grazing strategies among cladocerans, copepods and fairy shrimps, and possibly also from adaptation to specific food types and size ranges that occur locally in these waters. 6. The subarctic cladocerans Ceriodaphnia quadrangula and D. middendorfiana, and the arctic fairy shrimp B. paludosa were observed to graze directly on the microbial mats and the feeding experiments confirmed their assimilation of benthic substrates. The other zooplankton species showed a more pelagic feeding mode but were capable of using microbial mat filaments, thus may be indirectly linked to benthic processes via resuspension. 7. Our study indicates that the classical aquatic food web in which phytoplankton provide the sole production base for grazers does not apply to northern shallow lakes and ponds. Instead, microbial mats increase the physical complexity of these high latitude ecosystems and likely play a role in sustaining their high zooplankton biomass.  相似文献   

16.
1. North Halfmoon Lake and Lofty Lake (Alberta, Canada) were chosen for whole-lake liming experiments as a new restoration technology to enhance calcite precipitation and reduce eutrophication. During a 3-year study (1991–93) the relationships between zooplankton and phytoplankton were assessed, together with the effects of lime additions. 2. Zooplankton communities were numerically dominated by rotifers, while the major contribution to biomass was due to large filter-feeding Daphnia during the first half of the summer season. In Lofty Lake, cladocerans made up to 93% of biomass, whereas in North Halfmoon Lake both cladocerans and calanoids were strongly represented. 3. Total zooplankton and cladoceran biomasses were inversely correlated with chlorophyll a (chl a). The same relationship was found between large Daphnia (≥ 1 mm) and chl a. These relationships suggest that the decline in Daphnia may have been caused by an increase in cyanobacteria biomass during bloom events. 4. There were minor changes in rotifer populations after liming; however, these changes have been caused by natural year-to-year variation rather than liming. In general, cladocerans showed an increase in body size and population biomass when pre and post-treatment data were compared by means of ANCOVA. Statistical analysis showed that there were more cladocerans per unit of chl a after liming; however, further research is needed to relate these patterns unambiguously to the application of lime as a restoration technology.  相似文献   

17.
The impact of Pseudorasbora parva, a common zooplanktivorous fish species in Japan, on a zooplankton community was analyzed in experimental tanks, half of which were stocked with the fish. Different zooplankton species showed different responses to the introduction of the fish. In the presence of the fish, the populations of the large cladoceran Ceriodaphnia and the predatory copepod Mesocyclops were reduced, but the population of the herbivorous copepod Eodiaptomus and the small cladocerans Bosmina fatalis and Bosminopsis deitersi increased relative to the controls. The increase of Mesocyclops seen in the control tanks might have suppressed the populations of the small cladocerans, which are vulnerable to invertebrate predation. The results suggest that the population densities of the large prey items preferred by the fish, Ceriodaphnia and Mesocyclops, were controlled directly by fish predation, but the population densities of the smaller and less preferred zooplankton were controlled indirectly through the food-web cascade.  相似文献   

18.
1. Using 5‐m2 field enclosures, we examined the effects of Elodea canadensis on zooplankton communities and on the trophic cascade caused by 4–5 year old (approximately 16 cm) roach. We also tested the hypothesis that roach in Elodea beds use variable food resources as their diet, mainly benthic and epiphytic macroinvertebrates, and feed less efficiently on zooplankton. Switching of the prey preference stabilises the zooplankton community and, in turn, also the fluctuation of algal biomass. The factorial design of the experiment included three levels of Elodea (no‐, sparse‐ and dense‐Elodea) and two levels of fish (present and absent). 2. During the 4‐week experiment, the total biomass of euplanktonic zooplankton, especially that of the dominant cladoceran Daphnia longispina, decreased with increase in Elodea density. The Daphnia biomass was also reduced by roach in all the Elodea treatments. Thus, Elodea provided neither a favourable habitat nor a good refuge for Daphnia against predation by roach. 3. The electivity of roach for cladocerans was high in all the Elodea treatments. Roach were able to prey on cladocerans in Elodea beds, even when the abundance and size of these prey animals were low. In addition to cladocerans, the diet of roach consisted of macroinvertebrates and detrital/plant material. Although the biomass of macroinvertebrates increased during the experiment in all Elodea treatments, they were relatively unimportant in roach diets regardless of the density of Elodea beds. 4. Euplanktonic zooplankton species other than Daphnia were not affected by Elodea or fish and the treatments had no effects on the total clearance rate of euplanktonic zooplankton. However, the chlorophyll a concentration increased with fish in all the Elodea treatments, suggesting that fish enhanced algal growth through regeneration of nutrients. Thus, our results did not unequivocally show that Elodea hampered the trophic cascade of fish via lowered predation on grazing zooplankton. 5. In treatments with dense Elodea beds (750 g FW m?2), chlorophyll a concentration was always low suggesting that phytoplankton production was controlled by Elodea. Apparently, the top‐down control of phytoplankton biomass by zooplankton was facilitated by the macrophytes and operated simultaneously with control of phytoplankton production by Elodea.  相似文献   

19.
This article describes the peculiarities of the structural organization of zooplankton influenced by the waste products of the black-headed gull (Larus ridibundus Linnaeus) nesting colony in the protected overgrown shallow in Rybinsk Reservoir. The bird colony facilitates a modification of the zooplankton structure that is similar to the modifications of communities at early stages of eutrophication: the number of invertebrate species increases thanks to rotifers and cladocerans and the number and biomass of community increases due to cladocerans and copepods.  相似文献   

20.
Submerged macrophytes may play an important role as a refuge for zooplankton against predators. However, a recent study suggests that their importance depends on the trophic state of the lake. We studied the impact of fish and macrophytes on the horizontal distribution of pelagic cladocerans in 56 oligotrophic arctic Greenland lakes. In north-east and western Greenland, zooplankton was sampled in the near-shore (littoral) and central (pelagial) part of all lakes and fish were sampled with multiple mesh-sized gill nets. Macrophytes were visually estimated in the littoral. In north-east Greenland, 5 taxa of cladocerans were found, while 14 taxa were recorded in western Greenland. Daphnia pulex occurred only in fishless lakes in both northeast and western Greenland and avoided the near-shore areas in the shallow and deep lakes. Bosmina spp. and Holopedium gibberum were evenly distributed between the littoral and the pelagial in the deep and shallow fishless lakes. However, their near-shore density was lowest in the presence of fish. Macrophyte-related and benthic cladocerans concentrated either in the littoral or were evenly distributed between the littoral and the pelagial, irrespective of depth and fish presence or absence. Macrophytes had no impact on the horizontal distribution of pelagic cladocerans. Thus, it is concluded that horizontal heterogeneity of Bosmina spp. and Holopedium gibberum might be affected by the presence of fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号