首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Liver fatty acid-binding protein (LFABP) is distinctive among fatty acid-binding proteins because it binds more than one molecule of long-chain fatty acid and a variety of diverse ligands. Also, the transfer of fluorescent fatty acid analogues to model membranes under physiological ionic strength follows a different mechanism compared to most of the members of this family of intracellular lipid binding proteins. Tryptophan insertion mutants sensitive to ligand binding have allowed us to directly measure the binding affinity, ligand partitioning and transfer to model membranes of natural ligands. Binding of fatty acids shows a cooperative mechanism, while acyl-CoAs binding presents a hyperbolic behavior. Saturated fatty acids seem to have a stronger partition to protein vs. membranes, compared to unsaturated fatty acids. Natural ligand transfer rates are more than 200-fold higher compared to fluorescently-labeled analogues. Interestingly, oleoyl-CoA presents a markedly different transfer behavior compared to the rest of the ligands tested, probably indicating the possibility of specific targeting of ligands to different metabolic fates.  相似文献   

2.
The O-octanoylation of human ghrelin is a natural post-translational modification that enhances its binding to model membranes and could potentially play a central role in ghrelin biological activities. Here, we aimed to clarify the mechanisms that drive ghrelin to the membrane and hence to its receptor that mediates most of its endocrinological effects. As the acylation enhances ghrelin lipophilicity and that ghrelin contains many basic residues, we examined the electrostatic attraction and/or hydrophobic interactions with membranes. Using various liposomes and buffer conditions in binding, zeta potential and isothermal titration calorimetry studies, we found that whereas acylated and unacylated ghrelin were both electrostatically attracted towards the membrane, only acylated ghrelin penetrated into the headgroup and the lipid backbone regions of negatively charged membranes. The O-acylation induced a 120-fold increase in ghrelin local concentration in the membrane. However, acylated ghrelin did not deeply penetrate the membrane nor did it perturb its organisation. Conformational studies by circular dichroism and attenuated total reflection Fourier transformed infrared as well as in silico modelling revealed that both forms of ghrelin mainly adopted the same structure in aqueous, micellar and bilayer environments even though acylated ghrelin structure is slightly more α-helical in a lipid bilayer environment. Altogether our results suggest that membrane acts as a “catalyst” in acylated ghrelin binding to the ghrelin receptor and hence could explain why acylated and unacylated ghrelin are both full agonists of this receptor but in the nanomolar and micromolar range, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号