首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The plasmid pattern of Rhizobium meliloti strain GR4 was studied and a gene bank of one of the large plasmids (pRmeGR4) of 140 Mdal, was constructed using the broad host range vector pRK290. A restriction map was established with EcoRI. Two regions of this plasmid involved in the infectivity of GR4 on Medicago sativa were identified. An EcoRI fragment hybridizing with the PstI-nif fragment of pID1 was also identified. However, no homology to the cloned Klebsiella pneumoniae nitrogenase genes (pSA30) was detected.  相似文献   

3.
Summary We have shown by physical and genetic means that there are two megaplasmids in all strains of Rhizobium meliloti that we have studied. Megaplasmids from several strains of R. meliloti were mobilized to Agrobacterium tumefaciens and to other Rhizobium strains using the Tn5-Mob system. We were also able to resolve these two megaplasmids in agarose gels for most strains, and to show that only one of them hybridized to nif and nod genes. Transfer of this plasmid, the pSym, to Agrobacterium, R. leguminosarum, and R. trifolii strains conferred on these recipients the ability to nodulate alfalfa ineffectively. The second megaplasmid did not appear to have a direct role in nodule initiation. However, we were able to complement extracellular polysaccharide (EPS-) mutants of R. meliloti by transferring this second megaplasmid into them. Furthermore, Tn5-induced EPS- mutants of R. meliloti 2011, which produced ineffective (Fix-) nodules of abnormal morphology, were shown by hybridization and complementation to carry mutations in this second megaplasmid. This demonstrates that both megaplasmids of R. meliloti are necessary for the effective nodulation of alfalfa.  相似文献   

4.
Summary Symbiotic mutants of Rhizobium meliloti were isolated following Tn5 mutagenesis. Besides four nodulation mutants (Nod-) unable to induce nodule formation on alfalfa, five infection mutants (Inf-), which induce the formation of root nodules without detectable infection threads or bacteroids, were obtained. The Inf- mutants were subdivided into two classes. One class contains mutants which fail to synthesize acidic exopolysaccharide (EPS-). The other class is comprised of mutants which produce excess amounts of acidic exopolysaccharide (EPS*). 13C nuclear magnetic resonance spectroscopy of the exopolysaccharide isolated from one of the latter type of Inf- mutant, 101.45, revealed that the side chain of the repeating octosaccharide unit lacks the terminal pyruvate residue. Complementing cosmids were isolated for all Inf- mutants. In the case of the Inf- EPS- mutants the complementing cosmids contain DNA segments which overlap and are part of megaplasmid 2. For two mutants the mutations were found to map on a 7.8 kb EcoRI fragment. In the case of the Inf- EPS* mutants the complementing cosmids carry chromosomal DNA. The mutations of two Inf- EPS* mutants were localized on a 6.4 kb EcoRI fragment. Coinoculation of alfalfa plants with Nod- and Inf- EPS- mutants resulted in effective symbiosis. The nodules appeared wild type and fixed nitrogen. In constrast, coinoculations with Nod- mutants and the Inf- EPS* mutant 101.45 did not result in the formation of effective nodules.  相似文献   

5.
6.
We have previously demonstrated that the Rhizobium meliloti large plasmid pRmeGR4b carries the gene locus nodule formation efficiency (nfe) which is responsible for nodulation efficiency and competitive ability of strain GR4 on alfalfa roots. In this study we report that expression of nfe-lacZ fusions in Escherichia coli is activated in the presence of the cloned nifA gene of R. meliloti. This activation was found to be oxygen sensitive and to require the E. coli ntrA gene product. In contrast to the R. meliloti nifA, the cloned nifA gene of Klebsiella pneumoniae was able to activate expression of nfe in aerobically grown cells of both E. coli and R. meliloti. Hybridization experiments did not show homology to nfe in four R. meliloti wild-type strains tested. These strains were uncompetitive when coinoculated with a GR4 derivative carrying plasmid pRmeGR4b, but were competitive when coinoculated with a GR4 derivative carrying a single transposon mutation into the nfe region. When nfe DNA was introduced into the four wild-type strains, a significant increase in the competitive ability of two of them was observed, as deduced from their respective percentages of alfalfa root nodule occupancy in two-strains coinoculation experiments.  相似文献   

7.
Summary DNA fragments carrying the recA genes of Rhizobium meliloti and Rhizobium leguminosarum biovar viciae were isolated by complementing a UV-sensitive recA Escherichia coli strain. Sequence analysis revealed that the coding region of the R. meliloti recA gene consists of 1044 by coding for 348 amino acids whereas the coding region of the R. leguminosarum bv. viciae recA gene has 1053 bp specifying 351 amino acids. The R. meliloti and R. leguminosarum bv. viciae recA genes show 84.8% homology at the DNA sequence level and of 90.1% at the amino acid sequence level. recA mutant strains of both Rhizobium species were constructed by inserting a gentamicin resistance cassette into the respective recA gene. The resulting recA mutants exhibited an increased sensitivity to UV irradiation, were impaired in their ability to perform homologous recombination and showed a slightly reduced growth rate when compared with the respective wild-type strains. The Rhizobium recA strains did not have altered symbiotic nitrogen fixation capacity. Therefore, they represent ideal candidates for release experiments with impaired strains.The accession numbers: X59956 R. LEGUMINOSARUM REC A ALAS-DNA; X59957 R. MELITOTI REC A ALAS-DNA  相似文献   

8.
9.
Summary The presence of combined nitrogen in the soil suppresses the formation of nitrogen-fixing root nodules by Rhizobium. We demonstrate that bacterial genes determining early nodulation functions (nodABC) as well as the regulatory gene nodD3 are under nitrogen (NH 4 + ) control. Our results suggest that the gene product of nodD3 has a role in mediating the ammonia regulation of early nod genes. The general nitrogen regulatory (ntr) system as well as a chromosomal locus mutated in Rhizobium meliloti were also found to be involved in the regulation of nod gene expression. A R. meliloti mutant with altered sensitivity to ammonia regulation was isolated, capable of more efficient nodulation of alfalfa than the wild-type strain in the presence of 2 mM ammonium sulfate.  相似文献   

10.
Tn5 mutants of Rhizobium meliloti L5.30 defective in motility (Mot-) were isolated and compared to the parent with respect to the nodulation activity. Each of the mutants was able to generate normal nodules on the alfalfa (Medicago sativa) but had slightly delayed nodule formation. Coinoculation of lucerne with wild type Mot+ and Mot- cells in the wide range of ratios resulted in nodules occupied in the majority by a motile strain suggesting that motility is a factor involved in the competition for nodule formation.  相似文献   

11.
12.
13.
Summary One well-defined competitive interaction amongst rhizobia is that between compatible and non-compatible strains of Rhizobium leguminosarum with respect to the nodulation of some primitive pea genotypes. The Middle Eastern pea cv Afghanistan is nodulated effectively can R. leguminosarum TOM, but its capacity to nodulate can be blocked if a mixed inoculation is made with R. leguminosarum PF2. This PF2 phenotype (Cnb) is encoded by its symbiotic plasmid and cosmid clones thereof. We found that Cnb is also encoded by the well-characterized Sym plasmid pRL1JI of R. leguminosarum strain 248. We have isolated and characterized a 6.9 kb HindIII fragment of pSymPF2 which confers the Cnb+ phentoype on other (Cnb) rhizobia. A Tn5 site-directed Cnb mutant was constructed by homogenotization and was also found to be Nod on the European pea cv Rondo. DNA hybridization and complementation analysis indicated that the 6.9 kb Cnb+ fragment contained the nodD, nodABC and nodFE operons. Analysis of the Cnb phenotype of nod::Tn5 alleles of pRL1JI showed that mutations of nodC, nodD or nodE all abolished Cnb activity whereas mutants in nodI and nodJ reduced activity to 50% of the wild-type level.  相似文献   

14.
Seven bean rhizobial strains EBRI 2, 3, 21, 24, 26, 27 and 29 identified as Rhizobium etli, and EBRI 32 identified as Rhizobium gallicum, isolated from Egyptian soils and which nodulated Phaseolus vulgaris efficiently, were subjected to hybridization with a nifH probe in order to estimate the copy number of this gene. Seven strains (EBRI 2, 3, 21, 24, 26, 27 and 29) which were only able to nodulate Phaseolus vulgaris, contained three copies of the nifH gene, consistent with their identification as Rhizobium etli bv. phaseoli. Only one strain (EBRI 32) which nodulated both Phaseolus vulgaris and Leucaena leucocephala, had one copy of nifH gene. This confirmed the classification of this strain as Rhizobium gallicum bv. gallicum.  相似文献   

15.
16.
17.
The fixLJ genes of Rhizobium leguminosarum biovar phaseoli CNPAF512 were identified by DNA hybridization of a genomic library with an internal fragment of the Rhizobium meliloti fixJ gene. The nucleotide sequence was determined and the corresponding amino acid sequence was aligned with the amino acid sequences of the FixL proteins of R. meliloti, Bradyrhizobium japonicum and Azorhizobium caulinodans. While the FixJ protein and the carboxy-terminal part of the FixL protein are highly homologous to the other FixL and FixJ proteins, the homology in the central heme-binding, oxygen-sensing domain and in the amino-terminal domain of FixL is very low. The R. leguminosarum bv. phaseoli FixL protein does not contain the heme-binding motif defined for the previously described FixL proteins. R. leguminosarum bv. phaseoli fixLJ and fixJ mutants were constructed. These mutants can still fix nitrogen, albeit at a reduced level. Expression analysis of nifA-gusA and nifH-gusA fusions in the constructed mutants revealed that the R. leguminosarum bv. phaseoli fixLJ genes are involved in microaerobic nifH expression but not in nifA expression.The nucleotide sequence data reported will appear in the EMBL, Genbank and DDBJ Nucleotide Sequence Databases under the accession number U27314  相似文献   

18.
Summary A 6.7 kb HindIII fragment from the Sym-plasmid of strain NGR234 was found to code a nodD-like gene flanked by two loci which were required for siratro host range. Transfer of the 6.7 kb fragment from NGR234 to R. trifolii strain ANU843 conferred extended host range ability to this strain on siratro plants but not to other plants normally nodulated by strain NGR234. Tn5 mutagenesis of the 6.7 kb fragment showed that insertions located into loci flanking the nodD-like gene abolished the extended host range phenotype. A hybridization probe spanning one of the host specificity loci was shown to hybridize to three specific bands in the NGR234 genome. Complementation and DNA hybridization data showed that the nodD-like gene of strain NGR234 was functionally similar to that in R. trifolii. The introduction to R. trifolii of the 6.7 kb HindIII fragment containing Tn5 insertions located in the nodD-like gene did not abolish the ability to extend the host range of R. trifolii to siratro plants. However, transfer of the 6.7 kb HindIII to R. trifolii derivatives containing Tn5 insertions into either nodA, B or C or other R. trifolii nod genes failed to confer siratro nodulation to these recipients. Reconstruction experiments showed that the 6.7 kb fragment from strain NGR234 and the 14 kb nodulation region of R. trifolii could induce the nodulation of siratro plants when introduced together into Sym-plasmid-cured Rhizobium strains.  相似文献   

19.
Summary Using cloned Rhizobium phaseoli nodulation (nod) genes as hybridization probes homologous restriction fragments were detected in the genome of the slow-growing soybean symbiont, Bradyrhizobium japonicum strain 110. These fragments were isolated from a cosmid library, and were shown to lie 10 kilobasepairs (kb) upstream from the nifA and fixA genes. Specific nod probes from Rhizobium leguminosarum were used to identify nodA-, nodB-, and nodC-like sequences clustered within a 4.5 kb PstI fragment. A mutant was constructed in which the kanamycin resistance gene from Tn5 was inserted into the nodA homologous B. japonicum region. This insertion was precisely located, by DNA sequencing, to near the middle of the nodA gene. B. japonicum mutants carrying this insertion were completely nodulation deficient (Nod-).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号