首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor recycling involves two endosome populations, peripheral early endosomes and perinuclear recycling endosomes. In polarized epithelial cells, either or both populations must be able to sort apical from basolateral proteins, returning each to its appropriate plasma membrane domain. However, neither the roles of early versus recycling endosomes in polarity nor their relationship to each other has been quantitatively evaluated. Using a combined morphological, biochemical, and kinetic approach, we found these two endosome populations to represent physically and functionally distinct compartments. Early and recycling endosomes were resolved on Optiprep gradients and shown to be differentially associated with rab4, rab11, and transferrin receptor; rab4 was enriched on early endosomes and at least partially depleted from recycling endosomes, with the opposite being true for rab11 and transferrin receptor. The two populations were also pharmacologically distinct, with AlF4 selectively blocking export of transferrin receptor from recycling endosomes to the basolateral plasma membrane. We applied these observations to a detailed kinetic analysis of transferrin and dimeric IgA recycling and transcytosis. The data from these experiments permitted the construction of a testable, mathematical model which enabled a dissection of the roles of early and recycling endosomes in polarized receptor transport. Contrary to expectations, the majority (>65%) of recycling to the basolateral surface is likely to occur from early endosomes, but with relatively little sorting of apical from basolateral proteins. Instead, more complete segregation of basolateral receptors from receptors intended for transcytosis occurred upon delivery to recycling endosomes.  相似文献   

2.
The epithelial cell-specific adaptor complex AP-1B is crucial for correct delivery of many transmembrane proteins from recycling endosomes to the basolateral plasma membrane. Subsequently, membrane fusion is dependent on the formation of complexes between SNARE proteins located at the target membrane and on transport vesicles. Although the t-SNARE syntaxin 4 has been localized to the basolateral membrane, the v-SNARE operative in the AP-1B pathway remained unknown. We show that the ubiquitously expressed v-SNARE cellubrevin localizes to the basolateral membrane and to recycling endosomes, where it colocalizes with AP-1B. Furthermore, we demonstrate that cellubrevin coimmunoprecipitates preferentially with syntaxin 4, implicating this v-SNARE in basolateral fusion events. Cleavage of cellubrevin with tetanus neurotoxin (TeNT) results in scattering of AP-1B localization and missorting of AP-1B-dependent cargos, such as transferrin receptor and a truncated low-density lipoprotein receptor, LDLR-CT27. These data suggest that cellubrevin and AP-1B cooperate in basolateral membrane trafficking.  相似文献   

3.
We present a biochemical and morphological characterization of recycling endosomes containing the transferrin receptor in the epithelial Madin-Darby canine kidney cell line. We find that recycling endosomes are enriched in molecules known to regulate transferrin recycling but lack proteins involved in early endosome membrane dynamics, indicating that recycling endosomes are distinct from conventional early endosomes. We also find that recycling endosomes are less acidic than early endosomes because they lack a functional vacuolar ATPase. Furthermore, we show that recycling endosomes can be reached by apically internalized tracers, confirming that the apical endocytic pathway intersects the transferrin pathway. Strikingly, recycling endosomes are enriched in the raft lipids sphingomyelin and cholesterol as well as in the raft-associated proteins caveolin-1 and flotillin-1. These observations may suggest that a lipid-based sorting mechanism operates along the Madin-Darby canine kidney recycling pathway, contributing to the maintenance of cell polarity. Altogether, our data indicate that recycling endosomes and early endosomes differ functionally and biochemically and thus that different molecular mechanisms regulate protein sorting and membrane traffic at each step of the receptor recycling pathway.  相似文献   

4.
Efficient postendocytic membrane traffic in polarized epithelial cells is thought to be regulated in part by the actin cytoskeleton. RhoA modulates assemblies of actin in the cell, and it has been shown to regulate pinocytosis and phagocytosis; however, its effects on postendocytic traffic are largely unexplored. To this end, we expressed wild-type RhoA (RhoAWT), dominant active RhoA (RhoAV14), and dominant inactive RhoA (RhoAN19) in Madin-Darby canine kidney (MDCK) cells expressing the polymeric immunoglobulin receptor. RhoAV14 expression stimulated the rate of apical and basolateral endocytosis, whereas RhoAN19 expression decreased the rate from both membrane domains. Polarized basolateral recycling of transferrin was disrupted in RhoAV14-expressing cells as a result of increased ligand release at the apical pole of the cell. Degradation of basolaterally internalized epidermal growth factor was slowed in RhoAV14-expressing cells. Although apical recycling of immunoglobulin A (IgA) was largely unaffected in cells expressing RhoAV14, transcytosis of basolaterally internalized IgA was severely impaired. Morphological and biochemical analyses demonstrated that a large proportion of IgA internalized from the basolateral pole of RhoAV14-expressing cells remained within basolateral early endosomes and was slow to exit these compartments. RhoAN19 and RhoAWT expression had little effect on these postendocytic pathways. These results indicate that in polarized MDCK cells activated RhoA may modulate endocytosis from both membrane domains and postendocytic traffic at the basolateral pole of the cell.  相似文献   

5.
Most epithelial cells contain two AP-1 clathrin adaptor complexes. AP-1A is ubiquitously expressed and involved in transport between the TGN and endosomes. AP-1B is expressed only in epithelia and mediates the polarized targeting of membrane proteins to the basolateral surface. Both AP-1 complexes are heterotetramers and differ only in their 50-kD mu1A or mu1B subunits. Here, we show that AP-1A and AP-1B, together with their respective cargoes, define physically and functionally distinct membrane domains in the perinuclear region. Expression of AP-1B (but not AP-1A) enhanced the recruitment of at least two subunits of the exocyst complex (Sec8 and Exo70) required for basolateral transport. By immunofluorescence and cell fractionation, the exocyst subunits were found to selectively associate with AP-1B-containing membranes that were both distinct from AP-1A-positive TGN elements and more closely apposed to transferrin receptor-positive recycling endosomes. Thus, despite the similarity of the two AP-1 complexes, AP-1A and AP-1B exhibit great specificity for endosomal transport versus cell polarity.  相似文献   

6.
The mechanism of transport of membrane proteins from the trans-Golgi to the cell surface is still poorly understood. Previous studies suggested that basolateral membrane proteins, such as the transferrin receptor and the asialoglycoprotein receptor H1, take an indirect route to the plasma membrane via an intracellular, most likely endosomal intermediate. To define this compartment we developed a biochemical assay based on the very definition of endosomes. The assay is based on internalizing anti-H1 antibodies via the endocytic cycle of the receptor itself. Internalized antibody formed immune complexes with newly synthesized H1, which had been pulse-labeled with [(35)S]sulfate and chased out of the trans-Golgi for a period of time that was insufficient for H1 to reach the surface. Hence, antibody capture occurred intracellularly. Double-immunofluorescence labeling demonstrated that antibody-containing compartments also contained transferrin and thus corresponded to early and recycling endosomes. The results therefore demonstrate an intracellular intersection of the exocytic and endocytic pathways with implications for basolateral sorting.  相似文献   

7.
We have characterized the polarity of the transferrin receptor in the epithelial Madin-Darby canine kidney (MDCK) cell line. The receptor is present in approximately 165,000 copies per cell, migrates as a diffuse band upon SDS gel electrophoresis with Mr 90,000, displays a dissociation constant for diferritransferrin at neutral pH of approximately 2 nM, and is active in essentially all of the cells of the population. Transferrin-mediated 55Fe uptake was used to measure the polarity of active transferrin receptors in filter-grown MDCK cells. The ratio of basolateral to apical receptors was approximately 800:1 for the high resistance strain I MDCK cells (typically greater than 2,000 ohm X cm2) and approximately 300:1 for the lower resistance strain II cells (less than 350 ohm X cm2). In combination with morphometric data this shows that a difference in resistance between these two strains is not reflected in a significant difference in cell surface polarity. We used the recycling of transferrin receptor in filter-grown MDCK cells to evaluate the accuracy of the sorting of a basolateral protein during endocytosis. Monitoring the amount of apically released 125I-labeled transferrin after application of 55Fe- and 125I-labeled transferrin to the basolateral surface provided a sensitive assay of the accuracy of sorting during recycling of the receptor from endosomes to the plasma membrane. The accuracy of transferrin receptor sorting (greater than 99.88%) during a single cycle of transit between the endosome and the plasma membrane is sufficient to maintain the high level of polarity of the cell.  相似文献   

8.
Polarized epithelial cells sort newly synthesized and recycling plasma membrane proteins into distinct trafficking pathways directed to either the apical or basolateral membrane domains. While the trans‐Golgi network is a well‐established site of protein sorting, increasing evidence indicates a key role for endosomes in the initial trafficking of newly synthesized proteins. Both basolateral and apical proteins have been shown to traverse endosomes en route to the plasma membrane. In particular, apical proteins traffic through either subapical early or recycling endosomes. Here we use the SNAP tag system to analyze the trafficking of the apical protein gp135, also known as podocalyxin. We show that newly synthesized gp135 traverses the apical recycling endosome, but not the apical early endosomes (AEEs). In contrast, post‐endocytic gp135 is delivered to the AEE before recycling back to the apical membrane. The pathways pursued by the newly synthesized and recycling gp135 populations do not detectably intersect, demonstrating that the biosynthetic and post‐endocytic pools of this protein are subjected to distinct sorting processes.   相似文献   

9.
In epithelial cells, endocytosed transferrin and its receptor, which cycle basolaterally, have been shown to transit through recycling endosomes which can also be accessed by markers internalized from the apical surface. In this work, we have used an in vitro assay to follow transfer of an endocytosed marker from apical or basolateral early endosomes to recycling endosomes labeled with transferrin. We show that calmodulin (CaM) function is necessary for transfer and identified myr4, a member of the unconventional myosin superfamily known to use CaM as a light chain, as a possible target protein for CaM. Since myr4 is believed to act as an actin-based mechanoenzyme, we tested the role of polymerized actin in the assay. Our data show that conditions which either prevent actin polymerization or induce the breakdown of existing filaments strongly inhibit interactions between recycling endosomes and either set of early endosomes. Altogether, our data indicate that trafficking at early steps of the endocytic pathway in Madin–Darby Canine Kidney cells depends on the actin-based mechanoenzyme myr4, its light chain CaM, and polymerized actin.  相似文献   

10.
We investigate, in this study, the potential involvement of an acto-myosin-driven mechanism in endocytosis of polarized cells. We observed that depolymerization of actin filaments using latrunculin A decreases the rate of transferrin recycling to the basolateral plasma membrane of Caco-2 cells, and increases its delivery to the apical plasma membrane. To analyze whether a myosin was involved in endocytosis, we produced, in this polarized cell line, truncated, non-functional, brush border, myosin I proteins (BBMI) that we have previously demonstrated to have a dominant negative effect on endocytosis of unpolarized cells. These non-functional proteins affect the rate of transferrin recycling and the rate of transepithelial transport of dipeptidyl-peptidase IV from the basolateral plasma membrane to the apical plasma membrane. They modify the distribution of internalized endocytic tracers in apical multivesicular endosomes that are accessible to fluid phase tracers internalized from apical and basolateral plasma membrane domains. Altogether, these observations suggest that an acto-myosin-driven mechanism is involved in the trafficking of basolaterally internalized molecules to the apical plasma membrane.  相似文献   

11.
Previously we described clathrin-coated buds on tubular early endosomes that are distinct from those at the plasma membrane and the trans-Golgi network. Here we show that these clathrin-coated buds, like plasma membrane clathrin-coated pits, contain endogenous dynamin-2. To study the itinerary that is served by endosome-derived clathrin-coated vesicles, we used cells that overexpressed a temperature-sensitive mutant of dynamin-1 (dynamin-1(G273D)) or, as a control, dynamin-1 wild type. In dynamin-1(G273D)-expressing cells, 29-36% of endocytosed transferrin failed to recycle at the nonpermissive temperature and remained associated with tubular recycling endosomes. Sorting of endocytosed transferrin from fluid-phase endocytosed markers in early endosome antigen 1-labeled sorting endosomes was not inhibited. Dynamin-1(G273D) associated with accumulated clathrin-coated buds on extended tubular recycling endosomes. Brefeldin A interfered with the assembly of clathrin coats on endosomes and reduced the extent of transferrin recycling in control cells but did not further affect recycling by dynamin-1(G273D)-expressing cells. Together, these data indicate that the pathway from recycling endosomes to the plasma membrane is mediated, at least in part, by endosome-derived clathrin-coated vesicles in a dynamin-dependent manner.  相似文献   

12.
Contrary to most other epithelia, trophoblasts in the human placenta, which form the physical barrier between the fetal and the maternal blood circulation, express high numbers of transferrin receptors on their apical cell surface. This study describes the establishment of a polarized trophoblast-like cell line BeWo, which exhibit a high expression of transferrin receptors on the apex of the cells. Cultured on permeable filter supports, BeWo cells formed a polarized monolayer with microvilli on their apical cell surface. Across the monolayer a transepithelial resistance developed of approximately 600 omega.cm2 within 4 d. Depletion of Ca2+ from the medium decreased the resistance to background levels, showing its dependence on the integrity of tight junctions. Within the same period of time the secretion of proteins became polarized. In addition, the compositions of integral membrane proteins at the apical and basolateral plasma membrane domains were distinct as determined by domain-selective iodination. Similar to placental trophoblasts, binding of 125I-labeled transferrin to BeWo monolayers revealed that the transferrin receptor was expressed at both plasma membrane domains. Apical and basolateral transferrin receptors were found in a 1:2 surface ratio and exhibited identical dissociation constants and molecular weights. After uptake, transferrin recycled predominantly to the domain of administration, indicating separate recycling pathways from the apical and basolateral domain. This was confirmed by using diaminobenzidine cytochemistry, a technique by which colocalization of endocytosed 125I-labeled and HRP-conjugated transferrin can be monitored. No mixing of the two types of ligands was observed, when both ligands were simultaneously internalized for 10 or 60 min from opposite domains, demonstrating that BeWo cells possess separate populations of apical and basolateral early endosomes. In conclusion, the trophoblast-like BeWo cell line can serve as a unique model to compare the apical and basolateral endocytic pathways of a single ligand, transferrin, in polarized epithelial cells.  相似文献   

13.
Fully conformed Major Histocompatibility Class I molecules are complexes of heavy chain non-covalently associated with the peptide and beta-2-microglobulin. Conformational change in the extracellular domain of heavy chain leads to their disassembly and formation of open conformers, a process that physiologically occurs in normal cells and results in their presence at the cell surface. In this study we characterized endosomal trafficking of open conformers of a murine class I allele in order to examine whether conformational change in the extracellular domain of a membrane glycoprotein determines its endosomal sorting. Open conformers segregated from their fully conformed counterparts at the plasma membrane and in endosomes by sequestration in lipid-organized membrane environment. Consequently, open conformers constitutively internalized via distinct clathrin-independent endocytic carriers and converged into "classical" early endosomes together with transferrin receptor and cholera-toxin B subunit. In early endosomes, open conformers were excluded from recycling and diverted towards late endosomes. Due to lack of recycling, open conformers were constitutively internalized at a higher rate than full conformed proteins. Concanamycin A, methyl-β-cyclodextrin and sphingomyelinase treatment prevented segregation of open conformers in vacuolar early endosomes indicating that acidic endosomal environment and membrane composition are critical for the maintenance of the sorting mechanism. In the absence of endosomal acidification open conformers partitioned into lipid disordered membrane composition of early endosomes. Thus, our data suggest for the existence of a lipid-dependent mechanism in the endosomal system that distinguish membrane proteins based on conformation of their extracellular domain.  相似文献   

14.
Clathrin and the epithelial-specific clathrin adaptor AP-1B mediate basolateral trafficking in epithelia. However, several epithelia lack AP-1B, and mice knocked out for AP-1B are viable, suggesting the existence of additional mechanisms that control basolateral polarity. Here, we demonstrate a distinct role of the ubiquitous clathrin adaptor AP-1A in basolateral protein sorting. Knockdown of AP-1A causes missorting of basolateral proteins in MDCK cells, but only after knockdown of AP-1B, suggesting that AP-1B can compensate for lack of AP-1A. AP-1A localizes predominantly to the TGN, and its knockdown promotes spillover of basolateral proteins into common recycling endosomes, the site of function of AP-1B, suggesting complementary roles of both adaptors in basolateral sorting. Yeast two-hybrid assays detect interactions between the basolateral signal of transferrin receptor and the medium subunits of both AP-1A and AP-1B. The basolateral sorting function of AP-1A reported here establishes AP-1 as a major regulator of epithelial polarity.  相似文献   

15.
EMBO J 32 15, 2125–2139 doi:10.1038/emboj.2013.130; published online June072013Protein sorting pathways control correct delivery of membrane proteins to specific compartments of the plasma membrane and are required to maintain the physiological functions in all epithelia. Most clathrin-dependent cargoes require the adaptor protein complexes AP-1A and AP-1B for proper sorting to the basolateral plasma membrane. In this issue of The EMBO Journal, Perez Bay et al (2013) shed light on the mechanism of basal-to-apical protein transport, or transcytosis, of the transferrin receptor in natively AP-1B-deficient epithelia. In AP-1B-deficient epithelia, the transferrin receptor transcytoses through the apical recycling endosome, and requires Rab11. Furthermore, they characterize a novel and specific role for the endosomal microtubule motor Kinesin KIF16B in transferrin receptor apical transport. These findings constitute the first characterization of a specific microtubule motor involved in basal-to-apical transcytosis in epithelia.Epithelial cells present a compartmentalized plasma membrane, where the composition of each compartment is tightly controlled by a precise protein and lipid sorting machinery (Folsch, 2008). The two most conspicuous compartments are the apical and basolateral domains, which generate and segregate from each other through the formation of apically localized junctional complexes. Protein sorting mechanisms ensure delivery of newly synthesized or recycled, protein components to their proper localization in either the apical or basolateral plasma membrane domains. Vectorial transport of proteins requires sorting determinants that are present in the cytoplasmic, transmembrane or extracellular domains. Most of the information that we have about these sorting determinants comes from the basolateral traffic, which depends on clathrin adaptor proteins (APs) AP-1A/B, AP-3 and AP-4 (Gonzalez and Rodriguez-Boulan, 2009). Specific APs bind to cytoplasmic sorting motifs in transmembrane proteins and recruit clathrin-coat components, which sequentially induce membrane curvature, clathrin oligomerization, vesicle budding and fission (Ohno, 2006; Hirst et al, 2011). Mammalian cells present five different AP complexes (AP1–5), each constituted by a heterotetramer of one α-, γ-, δ-, ɛ- or ζ-subunit, one β(1–5) subunit, one σ(1–5) subunit and one μ(1–5) subunit. How these clathrin-coated vesicles deliver membranes to precise compartments in the cell to regulate protein sorting is still poorly understood. The AP1 complex is a key regulator of basolateral polarity (Folsch et al, 1999; Gan et al, 2002; Gravotta et al, 2012). The AP1 complex μ-subunit presents two isoforms μ1A and μ1B, which define the formation of two different complexes, AP-1A and AP-1B, both required for basolateral polarity. AP-1A is ubiquitously expressed in different tissues and localizes mainly to the trans-Golgi network. In contrast, AP-1B is primarily localized to common recycling endosomes (CRE) and is specifically expressed in the majority of epithelial tissues, with the remarkable exception of retinal pigment epithelium and the proximal convoluted tubule in the nephron, which sort most of the basolateral cargo to the apical surface.A wide array of model membrane proteins requires AP-1B to properly localize to the basolateral membrane, including the low-density lipoprotein receptor (LDLR), the VSV-G protein and the transferrin receptor (TfR). Furthermore, the expression of μ1B in μ1B-deficient epithelial cell line LLC-PK1 is sufficient to prevent apical sorting of TfR, indicating that AP-1B is a main player in this clathrin-mediated basolateral sorting pathway. Interestingly, the results of the present study suggest that transcytosis (a membrane trafficking pathway that transports apical or basolateral proteins to the opposite domain in the plasma membrane) is the main mechanism for apical transport of clathrin-dependent cargoes in AP-1B-deficient cells. Basal-to-apical transcytosis of the polymeric IgA receptor (pIgAR) is the best-known transcytotic pathway, and requires several steps in which the receptor complex traverses multiple compartments before reaching a Rab11-positive apical recycling compartment, from where it is sorted to the apical plasma membrane (Golachowska et al, 2010). Polymeric IgA receptor transcytosis requires the function of cytoskeletal proteins for its correct delivery to the apical membrane, including microtubules and actin binding motors. However, no specific microtubule motor has ever been described associated with transcytosis.In the present study, Perez Bay et al (2013) analyse how the TfR is transported to the apical membrane in μ1B-deficient epithelia using as model system the retinal pigment epithelium cell line, which lacks AP-1B, and MDCK cells. They show that basolateral administration of labelled Tf results in its endocytosis and transcytosis towards the apical membrane in AP-1B-depleted MDCK cells, following a pathway that involves Rab11-positive apical recycling endosomes (AREs), and requires Rab11 for its correct delivery. Additionally, they find that TfR transport into AREs depends on microtubules and the kinesin KIF16B, a specific microtubule motor present in the CRE (Figure 1). KIF16B is a plus-end microtubule motor that binds to PtdIns(3)P and GTP-bound Rab14 and regulates the distribution of early endosomes (Hoepfner et al, 2005; Ueno et al, 2011). Surprisingly though, apical transport of pIgAR is not affected by the expression of a KIF16B-dominant negative mutant, which suggests that assembly of KIF16B/TfR carriers occurs downstream of cargo separation during transcytosis. It is also tempting to speculate that more than one transcytosis pathways are at play, and while TfR uses the KIF16B-dependent pathway, pIgAR is transported through a KIF16B independent mechanism. This article is the first study of KIF16B in epithelial cells, and the first showing involvement of a microtubule motor in transcytosis, more than 20 years after the pioneering studies that characterized the role of microtubules in this process (Hunziker et al, 1990).Open in a separate windowFigure 1KIF16B controls basal-to-apical transcytosis of transferrin receptor in AP-1B-deficient epithelia. In AP-1B-expressing epithelia (such as MDCK cells), transferrin receptor (TfR) is endocytosed and sorted to common recycling endosomes, where AP-1B-clathrin-vesicles assemble and transport the protein to the basolateral plasma membrane. In AP-1B-deficient epithelia (such as RPE cells), internalized TfR is instead sorted by the plus-end directed microtubule motor KIF16B towards the ARE, and then transcytosed to the apical plasma membrane through a Rab11-regulated pathway. Polymeric IgA receptor is internalized into the same basolateral endosomes, but it uses a KIF16B-independent pathway to reach the apical membrane.As a whole, this paper represents a significant advance in our understanding of the protein sorting machinery in epithelial cells, and importantly, opens new questions that will be addressed in future studies. First, is the KIF16B-dependent recycling/sorting pathway required for other cargoes, especially in AP-1B-positive epithelia? Second, why TfR, but not pIgAR, requires KIF16B for correct sorting? Although KIF16B is not required for pIgAR transcytosis, its transport route still requires microtubules, thus opening the possibility for discovery of additional microtubule motors involved in transcytosis. And finally, what is the mechanism of KIF16B binding to TfR-positive recycling endosomes? It is possible that the mechanism depends on the activation of Rab14, which has been characterized as a regulator of lipid-raft transport from the Golgi apparatus to recycling endosomes (Ueno et al, 2011).  相似文献   

16.
Polar auxin transport, which depends on polarized subcellular distribution of AUXIN RESISTANT 1/LIKE AUX1 (AUX1/LAX) influx carriers and PIN-FORMED (PIN) efflux carriers, mediates various processes of plant growth and development. Endosomal recycling of PIN1 is mediated by an adenosine diphosphate (ADP)ribosylation factor (ARF)-GTPase exchange factor protein, GNOM. However, the mediation of auxin influx carrier recycling is poorly understood. Here, we report that overexpression of OsAGAP, an ARF-GTPase-activating protein in rice, stimulates vesicle transport from the plasma membrane to the Golgi apparatus in protoplasts and transgenic plants and induces the accumulation of early endosomes and AUX1. AUX1 endosomes could partially colocalize with FM4-64 labeled early endosome after actin disruption. Furthermore, OsAGAP is involved in actin cytoskeletal organization, and its overexpression tends to reduce the thickness and bundling of actin filaments. Fluorescence recovery after photobleaching analysis revealed exocytosis of the AUX1 recycling endosome was not affected in the OsAGAP overexpression cells, and was only slightly promoted when the actin filaments were completely disrupted by Lat B. Thus, we propose that AUX1 accumulation in the OsAGAP overexpression and actin disrupted cells may be due to the fact that endocytosis of the auxin influx carrier AUX1 early endosome was greatly promoted by actin cytoskeleton disruption.  相似文献   

17.
Recycling of endocytosed membrane proteins involves passage through early endosomes and recycling endosomes. Previously, we demonstrated a role for clathrin-coated vesicles in transferrin receptor recycling. These clathrin-coated vesicles are formed from recycling endosomes in a process that was inhibited in dynamin-1(G273D)-overexpressing cells. Here we show a second transferrin recycling pathway, which requires phosphatidylinositol 3-kinase activity. Two unrelated phosphatidylinositol 3-kinase inhibitors, LY294002 and wortmannin, retained endocytosed transferrin in early endosomes but did not affect transfer through recycling endosomes. The inhibitory effects of LY294002 and dynamin-1(G273D) on transferrin recycling were additive. In combination with brefeldin A, a drug that prevents the formation of clathrin-coated buds at recycling endosomes, LY294002 inhibited transferrin recycling synergistically. Collectively, these data indicate two distinct recycling pathways. One pathway involves transfer from early endosomes to recycling endosomes, from where clathrin/dynamin-coated vesicles provide for further transport, whereas the other route bypasses recycling endosomes and requires phosphatidylinositol 3-kinase activity.  相似文献   

18.
When fluid-phase markers are internalized from opposite poles of polarized Madin-Darby canine kidney cells, they accumulate in distinct apical and basolateral early endosomes before meeting in late endosomes. Recent evidence suggests that significant mixing of apically and basolaterally internalized membrane proteins occurs in specialized apical endosomal compartments, including the common recycling endosome and the apical recycling endosome (ARE). The relationship between these latter compartments and the fluid-labeled apical early endosome is unknown at present. We report that when the apical recycling marker, membrane-bound immunoglobulin A (a ligand for the polymeric immunoglobulin receptor), and fluid-phase dextran are cointernalized from the apical poles of Madin-Darby canine kidney cells, they enter a shared apical early endosome (相似文献   

19.
The small GTPase rab4 is associated with early endosomes and regulates membrane recycling in fibroblasts. rab4 is present in epithelial cells; however, neither its localization nor function has been established in this cell type. We transfected Madin-Darby canine kidney cells with rab4, the GTPase-deficient mutant rab4Q67L, and the dominant negative mutant rab4S22N that poorly binds guanine nucleotides. Confocal immunofluorescence microscopy showed that rab4 was concentrated on internal structures at the lateral side of the cell around the nucleus. Quantitative immunoelectron microscopy revealed that the majority of rab4 was localized in the upper third of the cytoplasm. In cell surface binding experiments with (125)I-transferrin, we found a redistribution of transferrin receptor from the basolateral to the apical plasma membrane in cells expressing rab4 and rab4Q67L. After accumulation of transferrin at 16 degrees C in basolateral early endosomes, rab4 and rab4Q67L increased the amount of apically targeted transferrin receptor. A qualitatively similar effect was obtained in control cells treated with brefeldin A. The effects of brefeldin A and rab4 on apical targeting of transferrin receptor were not additive, suggesting that brefeldin A and rab4 may act in the same transport pathway from common endosomes.  相似文献   

20.
Quantitative confocal microscopic analyses of living, polarized MDCK cells demonstrate different pH profiles for apical and basolateral endocytic pathways, despite a rapid and extensive intersection between the two. Three-dimensional characterizations of ligand trafficking demonstrate that the apical and basolateral endocytic pathways share early, acidic compartments distributed throughout the medial regions of the cell. Polar sorting for both pathways occurs in these common endosomes as IgA is sorted from transferrin to alkaline transcytotic vesicles. While transferrin is directly recycled from the common endosomes, IgA is transported to a downstream apical compartment that is nearly neutral in pH. By several criteria this compartment appears to be equivalent to the previously described apical recycling endosome. The functional significance of the abrupt increase in lumenal pH that accompanies IgA sorting is not clear, as disrupting endosome acidification has no effect on polar sorting. These studies provide the first detailed characterizations of endosome acidification in intact polarized cells and clarify the relationship between the apical and basolateral endocytic itineraries of polarized MDCK cells. The extensive mixing of apical and basolateral pathways underscores the importance of endocytic sorting in maintaining the polarity of the plasma membrane of MDCK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号