首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The two microspecies were Taraxacum sellandii Dahlst., which usually occurs in heavily fertilized grasslands, and Taraxacum nordstedtii Dahlst., which on the whole is restricted to undisturbed and mineral-poor habitats. Growth response curves were established, depicting the relative yield of (whole) plant tissue water and the internal K+ concentration (on a whole plant basis). The critical K+ concentration, i.e. the lowest [K+]i associated with maximal growth, was derived from the response curve. T. nordstedtii , the microspecies with the low maximal growth, showed a distinctly lower critical K+ concentration than T. sellandii. A relationship between growth potential and critical K+ concentration is proposed. Responses to a declining [K+]i differed between the two microspecies. The roots of T. nordstedtii stopped functioning as a sink for inulin, and mobilized additional carbohydrates for maintaining osmotic potential and growth. The productive strategy of the fast-growing T. sellantlii is lacking such a mechanism to buffer effects of a declining [K+]i.
Various changes were noted as regards the internal concentrations of other inorganic ions, measured as a function of [K+]i, With declining [K+]i, internal NO-3 decreased considerably in shoot and roots, especially in T. nordstedtii , while Mg2+ accumulated, especially in the roots of T. sellandii. The interactions between growth potential and the accumulation of inorganic ions are discussed.  相似文献   

2.
Growth and mineral status of 9 Taraxacum microspecies were studied under mineral stress conditions, using a flowing solution of low nutrient concentration. Relative growth rate of (whole) plant dry weight, leaf area, and (whole) plant tissue water were used to describe growth. For 4 microspecies, specific uptake rates of NO3, H2PO4, K+, Mg2+ and Ca2+ were investigated.
The applied nutrient condition clearly discriminated between the studied Taraxacum microspecies. With respect to relative growth rate, 3 groups of microspecies could be distinguished: T. nordstedtii > T. lancidens, T. adamii, T. hollandicum, T. taeniatum > T. sellandii, T. eudontum, T. ekmanii, T. ancistrolobum . These categories coincided well with the mineral ecology of the microspecies, going from infertile to fertile sites.
T. nordstedtii , a microspecies of infertile sites, was most efficient in absorbing NO3, H2PO4 and K+. T. sellandii and T. eudontum , both occurring in fertile grasslands, showed poor uptake performances for all studied ions. In all Taraxacum microspecies studied, except T. eudontum , internal N concentration appeared to limit growth. Efficiencies in N use, at sub-optimal internal N concentrations, varied with the mineral habitat of the microspecies studied. T. nordstedtii , from infertile sites, and T. sellandii , from fertile sites, were established as high and low extremes, respectively.  相似文献   

3.
Plants of Taraxacum sellandii Dahlst., a microspecies adapted to fertile, and Taraxacum nordstedtii Dahlst., adapted to infertile soils, were cultured hydroponically, either on a complete nutrient solution or on one deprived of nitrogen, phosphorus, or potassium ions. For all four treatments, the growth and internal mineral concentration of the plants was monitored. For plants cultured on a complete nutrient solution, the uptake rates of nitrate, phosphate, and potassium ions were determined. Luxury consumption of the three macronutrients was computed as the excess of ion absorption over the ion uptake rates minimally required to sustain maximum growth. In these calculations the critical N, P, or K+ concentrations, earlier derived, were used as parameters describing the mineral status minimally required to allow maximum growth. Efficiency in use of the three macroelements at various levels of mineral accumulation was also computed. Finally, the response to phosphate starvation as related to phosphate uptake capacity and the accumulation of P was investigated.
The physiological properies investigated provide a causal background for the superior adaptation of T. nordstedtii as compared to T. sellandii to infertile sites. Taraxacum nordstedtii had a higher relative luxury consumption of NO3, H2PO-4, and K+, a higher efficiency in N and P use at N– and (severe) P-deficiency, respectively; and, after phosphate starvation, a relatively high preservation of phosphate uptake capacity and an enlargement of P storage. In combination with the low potential growth, luxury consumption will be particularly effective in T. nordstedtii in preventing or minimizing mineral deficiency. The distribution of minerals between cytoplasm and vacuoles as a factor in mineral use efficiency is discussed.  相似文献   

4.
Terrestrial ecosystems respond to an increased concentration of atmospheric CO2. While elevated atmospheric CO2 has been shown to alter plant growth and productivity, it also affects ecosystem structure and function by changing below-ground processes. Knowledge of how soil microbiota respond to elevated atmospheric CO2 is of paramount importance for understanding global carbon and nutrient cycling and for predicting changes at the ecosystem-level. An increase in the atmospheric CO2 concentration not only alters the weight, length, and architecture of plant roots, but also affects the biotic and abiotic environment of the root system. Since the concentration of CO2 in soil is already 10–50 times higher than that in the atmosphere, it is unlikely that increasing atmospheric CO2 will directly influence the rhizosphere. Rather, it is more likely that elevated atmospheric CO2 will affect the microbe–soil–plant root system indirectly by increasing root growth and rhizodeposition rates, and decreasing soil water deficit. Consequently, the increased amounts and altered composition of rhizosphere-released materials will have the potential to alter both population and community structure, and activity of soil- and rhizosphere-associated microorganisms. This occurrence could in turn affect plant health and productivity and plant community structure. This review covers current knowledge about the response of soil microbes to elevated concentrations of atmospheric CO2.  相似文献   

5.
The effect of Zn on growth, chlorophyll a fluorescence, net photosynthetic rate, gas exchange, water content and mineral concentrations (Zn, Mn and Mg) in ryegrass infected with or free from Neotyphodium lolii was studied by addition of ZnSO4 (0–20 m M ) to the nutrient solution. Zn induced a decrease in growth of plants at 1, 5 and 10 m M and cessation of growth at 20 m M ZnSO4. From 1 to 10 m M , the decrease was less pronounced in the presence of the endophytic fungus than in its absence. The growth limitation was due to an accumulation of Zn in leaves. From 8 to 15 days, the presence of the fungus in the plant led to a limitation of the Zn concentration in the leaves (24–32% lower with N. lolii than without). This restriction of Zn concentrations in leaves also had a beneficial effect on photosystem II (PSII) activities, net photosynthetic rate and internal CO2 concentration. Particularly at 1 and 5 m M , the quantum yield of electron flow throughout PSII was greater in the presence of the fungus than in its absence and at 5 and 10 m M , the internal CO2 concentration was maintained at a normal level. Compared with the endophyte-free ryegrass, the symbiotic plants showed higher values of total dry weight and tiller number, indicating a tolerance to environmental Zn stress.  相似文献   

6.
Relations between shoot to root dry weight ratio (S : R), total plant dry weight (DW), shoot and plant N concentration and leaf soluble protein concentration were examined for pea ( Pisum sativum L.), common bean ( Phaseolus vulgaris L.) and wheat ( Triticum aestivum L.) under different nutrient deficiencies. A regression model incorporating leaf soluble protein concentration and plant DW could explain greater than 80% of the variation in S : R within and between treatments for pea supplied different concentrations of NO3 or NH4+ in solid substrate; pea and bean supplied different concentrations of N, P, K and Mg in liquid culture; and wheat supplied different concentrations of N, P, K, Mg, Ca and S in liquid culture. Addition of shoot or plant N concentration to the model explained little more of the variation in S : R. It is concluded that results are consistent with the proposal that macronutrient effects on S : R are primarily mediated through their effects on protein synthesis and growth.  相似文献   

7.
Abstract. The above-ground standing crop and nutrient concentrations in plant material were examined in 45 stands of mire vegetation in the Biebrza peatland, Poland. The stands included flood-plains, rich fens, transitional fens and bogs. The pattern in nutrient concentrations in the above-ground plant material resembled the pattern in nutrient concentrations in peatwater and peat which had been investigated in an earlier study. Concentrations of N were quite uniform along the gradient. P-concentrations were highest in the transitional fen. Critical nutrient concentrations were defined on the basis of a review of nutrient concentrations in plant material from peatlands in which a fertilization experiment had been carried out. Defined critical values for phanerogams were: 13-14 and 0.7 mg/g dry wt for N and P respectively. Concentrations lower than these values indicate deficiency. P/N ratios ≥ 0.07 indicate N-deficiency and P/N ratios ≤ 0.04 — 0.05 indicate P-deficiency. According to these values the Biebrza fens and bogs appear to be primarily deficient in N. The growth of the flood-plain vegetation does not appear to be restricted by nutrients.  相似文献   

8.
The total resistances to CO2 uptake by Sticta latifrons Rich, and Pseudocyphellaria amphisticta Kremp. were separated into transport and carboxylation components by calculation after transformation of net photosynthesis rate against CO2 concentration curves into a linear form. The use of this technique circumvented the problem of measuring the internal CO2 concentration of the lichen thalli. Both species exhibited an increase in transport resistance at high thallus water contents and an increase in both transport and carboxylation resistances at low water contents. At low and intermediate water contents internal transport resistances were larger than carboxylation resistances when measured at limiting CO2 concentrations. However, at ambient CO2 concentrations carboxylation processes were the dominant factors limiting photosynthesis at all, except the high, water contents.  相似文献   

9.
The contribution of the extramatrical mycelium to N and P nutrition of mycorrhizal Norway spruce ( Picea abies (L.) Karst.) was investigated. Seedlings either inoculated with Paxillus involutus (Batsch) Fr. or non-mycorrhizal were grown in a two compartment sand culture system where hyphae were separated from roots by a 45 μm nylon net. Nutrient solution of the hyphal compartment contained either 1.8 m m NH4+ and 0.18 m m H2PO4 or no N and P. Aluminium added to the hyphal compartment as a tracer of mass flow was not detected in the plant compartment, indicating that measurements of N and P transfer by the mycelium were not biased by solute movement across the nylon net.
The addition of N and P to the hyphal compartment markedly increased dry weight, N and P concentration and N and P content of mycorrhizal plants. Calculating uptake from the difference in input and output of nutrient in solution confirmed a hyphal contribution of 73% and 76% to total N and P uptake, respectively. Hyphal growth was increased at the site of nutrient solution input.  相似文献   

10.
1. Echinochloa polystachya forms extensive monotypic stands on the lower levels of the Amazon floodplains. During its annual growth cycle c. 100t (dry mass) ha–1 of biomass is formed as the floodplain is being submerged (December–September) and a phase of death and decomposition occurs when the water has retreated (October–November). This study examines the mineral nutrient dynamics of this plant and its potential significance to the nutrient status of the floodplain.
2. Echinochloa polystachya was sampled monthly from a study site in the central Amazon. N, P and K contents for different plant organs were determined and net uptake calculated from concurrent measurements of dry matter production and turnover.
3. Leaf N, P and K contents were c. 20, 1·7 and 19gkg–1, values typical of nutrient-replete stands of C4 plants. Stem concentrations were c. 12% of those of the leaves. Net N and P uptake followed the rise in the river level, whilst K appeared independent of water level.
4. The vegetation accumulated 377, 51 and 1136kgha–2 of N, P and K, respectively, during the growth phase. Over a possible 5000km2 of these stands in the Várzea, this represents a massive sequestration of nutrients in the flood phase and a high release during the following low-water period. It is suggested that the E. polystachya stands could have a role in maintaining the nutrient status of the Amazon floodplain.  相似文献   

11.
Bailey  J.S.  Beattie  J.A.M.  Kilpatrick  D.J. 《Plant and Soil》1997,197(1):127-135
Herbage analysis offers a definitive means of determining the N, P, K and S status of perennial ryegrass swards. Unfortunately, the results of such analyses can be difficult to interpret, simply because the minimum or 'critical' concentration of a nutrient in plant tissue for optimum growth, varies both with crop age and with changes in the concentrations of other nutrients. The Diagnosis and Recommendation Integrated System (DRIS) could help to improve the reliability of such interpretations. Diagnoses made using DRIS are based on relative rather than on absolute concentrations of nutrients in plant tissue, and as such should be comparatively independent of crop age.The aim of this study was to establish and test DRIS methodology for high-yielding perennial ryegrass swards. Because of prohibitive costs, setting up a whole new series of field experiments to evaluate DRIS model parameters for perennial ryegrass was out of the question. Instead, the diagnostic norms and associated coefficients of variation for the model were evaluated using data from a single (large) multi-factorial glasshouse experiment.Of the nutrient ratios selected to form the diagnostic norms, K/N and S/N had the clearest physiological rationale, whereas those involving Ca and Mg in combination with N, P, K and S appeared to have little physiological basis. It was reasoned, though, that because Ca and Mg uptake by plants are largely passive processes (ultimately governed by plant growth), the DRIS indices for these nutrients, together reflected the degree to which growth may be limited by non-nutritional (environmental) factors relative to nutritional ones. Both indices were combined to form a single reference (Ri) index. Without such an internal reference, plant growth could be limited by multiple nutrient deficiencies, and yet N, P, K and S indices might all be close to, or equal to zero (i.e. the optimum), simply because the absolute concentrations of each nutrient (while low) had been in the correct state of balance. Moreover, by effectively using Ca and Mg as internal reference parameters in DRIS, 'nutrient concentrations' which previously formed the basis of the critical value approach, were essentially incorporated into the DRIS model, thus combining the strengths of the two diagnostic approaches; the only difference being that Ca and Mg, and not dry matter, were the internal references against which the levels of the major nutrients were compared.  相似文献   

12.
Dry weight (DW) and nitrogen (N) accumulation and allocation were measured in isolated plants of Danthonia richardsonii (Wallaby Grass) for 37 d following seed imbibition. Plants were grown at ≈ 365 or 735 μ L L–1 CO2 with N supply of 0·05, 0·2 or 0·5 mg N plant–1 d–1. Elevated CO2 increased DW accumulation by 28% (low-N) to 103% (high-N), following an initial stimulation of relative growth rate. Net assimilation rate and leaf nitrogen productivity were increased by elevated CO2, while N concentration was reduced. N uptake per unit root surface area was unaffected by CO2 enrichment. The ratio of leaf area to root surface area was decreased by CO2 enrichment. Allometric analysis revealed a decrease in the shoot-N to root-N ratio at elevated CO2, while the shoot-DW to root-DW ratio was unchanged. Allometric analysis showed leaf area was reduced, while root surface area was unchanged by elevated CO2, indicating a down-regulation of total plant capacity for carbon gain rather than a stimulation of mineral nutrient acquisition capacity. Overall, growth in elevated CO2 resulted in changes in plant morphology and nitrogen use, other than those associated simply with changing plant size and non-structural carbohydrate content.  相似文献   

13.
The effect of varied supply of P (2.5× 10−5 to 6× 10−4 M) and Zn (0 to 10−6 M) on uptake and concentrations of P and Zn was studied in cotton ( Gossypium hirsutum L. cv. Deltapine 15/21) grown in nutrient solution under controlled environmental conditions. At a given Zn supply, increasing levels of P had no significant effect on the concentrations of total Zn in plants. However, increasing levels of P induced or enhanced visual Zn deficiency symptoms when the Zn concentration in the nutrient solution was low. The concentrations of water-soluble Zn in roots and shoots constituted 60% of the total Zn concentrations for plants grown with low P and 30% for plants grown with high P. The concentration of water-soluble Zn in leaves, but not total Zn, was closely correlated with visual Zn deficiency symptoms, levels of chlorophyll, super oxide dismutase and membrane permeability. The critical deficiency concentration of water-soluble Zn in cotton leaves was in the range of 6 to 7 μg (g dry weight)−1 or about 1.0 μg (g fresh weight)−1. The results show that high P concentrations in plant tissue decrease the physiological availability of Zn. Water-soluble Zn in the tissue appears to be a suitable indicator for Zn nutritional status in general and phosphorus-induced Zn deficiency in particular. Also in field-grown orange trees (Citrus sinensis) visual Zn deficiency symptoms in leaves were closely related to the concentration of water-soluble Zn.  相似文献   

14.
The response to aluminium concentrations was evaluated for birch seedlings ( Betula pendula Roth, formerly Betula verrucosa Ehrh.) by using a growth technique that provides stable internal concentrations of nutrients in plants. Aluminium was added as aluminium nitrate and aluminium chloride and pH was kept at 3.8±0.2 by adding HCl or NaOH. The seedlings were grown in two different series of nutrient treatments, either with near-optimum conditions (relative addition rate 25% day−1) or with constant nutrient stress (relative addition rate 10% day−1) before the aluminium addition. Growth reduction occurred at aluminium concentrations greater than 3 m M , and lethal effects at aluminium concentrations greater than 15 m M . In plants subjected to near-optimum conditions before aluminium addition, the internal nutrient concentrations decreased with increasing aluminium concentration for all macronutrients. The concentration of the macronutrients N, K and P decreased gradually with increasing aluminium concentration, while the concentration of Ca and Mg decreased fairly abruptly when aluminium concentrations exceeded 1 m M . The same tendency was observed in nutrient stressed birch seedlings, but the pattern was more scattered. Relative growth rate of the seedlings was not affected by a low Ca/Al ratio. In all treatments, the molar Ca/Al ratio in/on the roots was below 0.2 at the end of the experiments. As decrease in growth occurs only at high aluminium concentrations, there is no reason to suggest that aluminium in acid soils is growth limiting for natural birch stands.  相似文献   

15.
Under elevated levels of atmospheric CO2, leaf N concentration usually decreases due to dilution of N by excess carbon. Thus, the larger the growth response to elevated CO2, the larger the decrease in leaf N concentration should be. This should, in turn, lead to a proportional decline in litter N concentration and litter decomposition rate. Thus, we hypothesize a trade-off between a plant's growth response to elevated CO2 and subsequent litter decomposability. We tested this hypothesis by measuring the growth response, green leaf and leaf litter chemistry and litter respiration of six plant species grown under ambient and elevated atmospheric CO2 concentrations in the greenhouse.
Growth response increased in the order Calluna vulgaris2 and litter decomposability. This implies that the productivity response of plant species to elevated CO2 is, in general, uncoupled from the decomposition response.  相似文献   

16.
1. Bracken ( Pteridium aquilinum ) is an important fern with a global distribution. Little is known of the response of this species to elevated CO2. We investigated the effects of high CO2 (570 compared with 370 μmol mol–1) with and without an increased nutrient supply (a combined N, P, K application) on the growth and physiology of bracken, growing in containers in controlled-environment glasshouses, over two full growing seasons. Results of growth and physiology determinations are reported for the second season.
2. Elevated CO2 had little impact on the growth or allocation of dry mass in bracken. No significant changes were detected in dry mass of the total plant or any of the organs: rhizomes, roots and fronds. In contrast to the small effects of high CO2, the high nutrient treatment caused a three-fold stimulation of total plant dry mass and an increase in the allocation of dry mass to above ground when compared with low nutrient controls.
3. Net photosynthetic rates in saturating light were increased by both high CO2 and nutrient treatments, particularly in spring months (May and June). Growth in elevated CO2 did not cause a down-regulation in light-saturated rates of photosynthesis. The increased carbon gain in the high CO2 treatments was accompanied, in the low-nutrient plants, by higher concentrations of carbohydrates. However, in high-nutrient plants the CO2 treatment did not cause an accumulation of carbohydrates. The absence of a growth response to elevated CO2 in bracken despite significant increases in photosynthesis requires further investigation.  相似文献   

17.
Concentrations of N, P, S, Na, K, Mg, Ca, Mn, Fe, Cu, Cd, Zn, Pb, Al, and AIA (acid insoluble ash) m mosses (three Sphagnum species and Tomenthypnum nitens, all hummock species) from a variety of mires, both ombrotrophic and minerotrophic, in the coastal western and central parts of Canada are considered in relation to surface water pH and concentrations of Na+, K+, Mg2+, Ca2+, Cl, and SO42- Distinct west-east concentration gradients were present for most elements in both mosses and water, but there were correlations between surface water and moss concentrations only for Ca and Mg
On ombrotrophic sites and sites characterized by poor fen vegetation, wet deposition is the main source of elements in the surface water On rich fen sites, additional Ca and Mg from surrounding soils change the elemental proportions We conclude that hydrochemically the limit between poor and rich fen sites is more decisive than between bog and fen The increase in Ca may give brown mosses a competitive advantage over Sphagnum
Moss concentrations of Na and Mg are the only ones decreasing inland The constancy or inland increase of moss elemental concentrations may depend on either an increasing atmospheric supply (e g Pb), differences in moss growth rates (especially N, P, and K) or site conditions related to the water regime (e g Fe and Al)  相似文献   

18.
Causes of differences in photosynthetic nitrogen-use efficiency (PNUE), the rate of photosynthesis per unit leaf N, were investigated in four species. These were in order of decreasing PNUE; the two herbs Galinsoga ciliata and Origanum vulgare , and the two trees Populus nigra and Quercus robur . Plants were grown in pots outdoors at three levels of nutrient availability. The light- and CO2 response of gas exchange of leaves were measured, and their nitrogen and chlorophyll contents were determined. Furthermore, the internal conductance for CO2 diffusion was estimated. Nutrients did not have a large effect on PNUE except in Galinsoga . Leaf mass per unit area was negatively correlated with PNUEmax, which is likely to be partly caused by N present in cell wall proteins among other non-photosynthetic N compounds. The trees had a larger fraction of photosynthetic N in light harvesting components compared to the herbs. This contributed also substantially to the difference in PNUE at light saturation (PNUEmax) between the two groups, but not for PNUE calculated for an overcast day. Intercellular CO2 concentration was high in Galinsoga and Populus , which contributed significantly to their higher PNUEmax, particularly at low nutrient availability. The large gradient in CO2 concentration between intercellular spaces and chloroplasts was another factor that explained a substantial part of the differences in PNUEmax between Quercus and the other species that had smaller gradients. Stomatal and internal conductances for CO2 explained most of the difference in PNUEmax between Quercus and Populus at high nutrient availability for which these data were available.  相似文献   

19.
Abstract: A continuous dual 13CO2 and 15NH415NO3 labelling experiment was undertaken to determine the effects of ambient (350μmol mol-1) or elevated (700μmol mol-1) atmospheric CO2 concentrations on C and N uptake and allocation within 3-year-old beech ( Fagus sylvatica L.) during leafing. After six weeks of growth, total carbon uptake was increased by 63 % (calculated on total C content) under elevated CO2 but the carbon partitioning was not altered. 56 % of the new carbon was found in the leaves. On a dry weight basis was the content of structural biomass in leaves 10 % lower and the lignin content remained unaffected under elevated as compared to ambient [CO2]. Under ambient [CO2] 37 %, and under elevated [CO2] 51 %, of the lignin C of the leaves derived from new assimilates. For both treatments, internal N pools provided more than 90 % of the nitrogen used for leaf-growth and the partitioning of nitrogen was not altered under elevated [CO2]. The C/N ratio was unaffected by elevated [CO2] at the whole plant level, but the C/N ratio of the new C and N uptake was increased by 32 % under elevated [CO2].  相似文献   

20.
We investigated the extent to which plant water and nutrient status are affected by intraspecific competition intensity and microsite quality in a monodominant tussock grassland. Leaf gas exchange and stable isotope measurements were used to assess the water relations of Stipa tenacissima tussocks growing along a gradient of plant cover and soil depth in a semi-arid catchment of Southeast Spain. Stomatal conductance and photosynthetic rate decreased with increasing intensity of competition during the wet growing season, leading to foliar δ 18O and δ 13C enrichment. A high potential for runoff interception by upslope neighbours exerted strong detrimental effects on the water and phosphorus status of downslope S. tenacissima tussocks. Foliar δ 15N values became more enriched with increasing soil depth. Multiple stepwise regression showed that competition potential and/or rhizosphere soil depth accounted for large proportions of variance in foliar δ 13C, δ 18O and δ 15N among target tussocks (57, 37 and 64%, respectively). The results presented here highlight the key role that spatial redistribution of resources (water and nutrients) by runoff plays in semi-arid ecosystems. It is concluded that combined measurement of δ 13C, δ 18O and nutrient concentrations in bulk leaf tissue can provide insight into the intensity of competitive interactions occurring in natural plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号