首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Summary In wild-type bacteria, S-adenosylmethionine (SAM) synthetase activity was repressed by growth in methionine. MetJ regulatory mutants had elevated activities which did not show this repression. Two metK mutants with normal regulation of the methionine biosynthetic enzymes had elevated Km's (methionine) for SAM synthetase while five metK mutants with constitutive methionine enzymes showed no measurable SAM synthetase activity. One mutant, metK X 721, similar in phenotype to these five had a wild-type level of SAM synthetase in conditions where SAM decarboxylase activity was blocked. By using an F-factor carrying the metK region of the genome, this mutant was shown to complement six other metK mutants.These results indicate that SAM or a derivative of it, rather than methionine itself, is the co-repressor of the methionine system, regulatory abnormalities resulting from the absence or reduction of the amount of SAM formed by the SAM synthetase reaction. As SAM is essential for bacteria it is likely that there is some alternative biosynthetic route for SAM.  相似文献   

2.
The problems inherent in the enzymatic and chemical synthesis of (SAM) led us to develop an efficient, simple method for the synthesis of large amounts of labeled SAM. Previously, we reported that the problem of product inhibition of E. coli SAM synthetase encoded by the metK gene was successfully overcome in the presence of sodium p-toluenesulfonate (pTsONa). This research has now been expanded to demonstrate that product inhibition of this enzyme can also be overcome by adding a high concentration of β-mercaptoethanol (βME), acetonitrile, or urea. In addition, a recombinant strain of E. coli has been constructed that expresses the yeast SAM synthetase encoded by the sam2 gene. The yeast enzyme does not have the problem of product inhibition seen with the E. coli enzyme. Complete conversion of 10 mM methionine to SAM was achieved in incubations with either the recombinant yeast enzyme and 1 molar potassium ion or the E. coli enzyme in the presence of additives such as βME, acetonitrile, urea, or pTsONa. The recombinant yeast SAM synthetase was used to generate SAM in situ for use in the multi-enzymatic synthesis of precorrin 2.  相似文献   

3.
S-Adenosylmethionine (SAM) is synthesized via the metabolic reaction involving adenosine triphosphate and l-methionine that is catalyzed by the enzyme S-adenosyl-l-methionine synthetase (SAM-s) and encoded by the gene metK. In the present study, metK with the absence of introns from Saccharomyces cerevisiae was introduced into Streptomyces actuosus, a nosiheptide (Nsh) producer. Intracellular SAM levels were determined by high-pressure liquid chromatography. Through optimizing the nutrient content of the medium, it was shown that increased SAM production induced by the overexpression of SAM-s leads to an increase in the intracellular cysteine pool and overproduction of Nsh in S. actuosus. This investigation shows that increased SAM promotes the elevated production of the non-ribosomal thiopeptide Nsh in Streptomyces sp.  相似文献   

4.
The effects of mutations occurring at three independent loci, eth2, eth3, and eth10, were studied on the basis of several criteria: level of resistance towards two methionine analogues (ethionine and selenomethionine), pool sizes of free methionine and S-adenosyl methionine (SAM) under different growth conditions, and susceptibility towards methionine-mediated repression and SAM-mediated repression of some enzymes involved in methionine biosynthesis (met group I enzymes). It was shown that: (i) the level of resistance towards both methionine analogues roughly correlates with the amount of methionine accumulated in the pool; (ii) the repressibility of met group I enzymes by exogenous methionine is either abolished or greatly lowered, depending upon the mutation studied; (iii) the repressibility of the same enzymes by exogenous SAM remains, in at least three mutants studied, close to that observed in a wild-type strain; (iv) the accumulation of SAM does not occur in the most extreme mutants either from endogenously overproduced or from exogenously supplied methionine: (v) the two methionine-activating enzymes, methionyl-transfer ribonucleic acid (tRNA) synthetase and methionine adenosyl transferase, do not seem modified in any of the mutants presented here; and (vi) the amount of tRNAmet and its level of charging are alike in all strains. Thus, the three recessive mutations presented here affect methionine-mediated repression, both at the level of overall methionine biosynthesis which results in its accumulation in the pool, and at the level of the synthesis of met group I enzymes. The implications of these findings are discussed.  相似文献   

5.
The enzyme S-adenosylmethionine (SAM) synthetase, the Escherichia coli metK gene product, produces SAM, the cell’s major methyl donor. We show here that SAM synthetase activity is induced by leucine and repressed by Lrp, the leucine-responsive regulatory protein. When SAM synthetase activity falls below a certain critical threshold, the cells produce long filaments with regularly distributed nucleoids. Expression of a plasmid-carried metK gene prevents filamentation and restores normal growth to the metK mutant. This indicates that lack of SAM results in a division defect.  相似文献   

6.
S-Adenosylmethionine (SAM) synthetase of yeast and hyphal-phase cells of the dimorphic fungusCandida albicans was characterized by kinetic analysis and response to inhibitors. The enzyme from yeast-phase cells has a Km of 0.17 mM for methionine, 0.14 mM for ATP, and is inhibited (in vitro) by dimethyl-sulfoxide, methionine sulfone, and methionine sulfoxide. The hyphal-phase SAM synthetase has a Km of 0.06 mM for methionine, 0.02 mM for ATP, and its activity (in vitro) is enhanced by the substances that inhibit the yeast-phase enzyme. These data strongly suggest that isozymes of SAM synthetase are present inC. albicans and that they are possibly morphology specific. In vivo studies revealed that synthesis of the enzyme is repressed by the addition of methionine to the growth medium and that specific activity of the enzyme increases when intracellular SAM levels are lowered. In addition, it was shown that the increase in specific activity seen during yeast hypha morphogenesis and in yeast cells grown in a methionine-free medium involves de novo protein synthesis.  相似文献   

7.
Using a minimal medium containing a methionine analog together with a small amount of S-adenosylmethionine (SAM), many SAM requiring mutants which responded only to SAM and not to methionine, S-adenosylhomocysteine, or homocysteine were efficiently isolated from Corynebacterium glutamicum TLD-140 after mutagenesis. Among them, SAM-14 and SAM-19 selected from selenomethionine resistant mutants were subjected to further investigation. Both mutants were unable to grow in a minimal medium and had no detectable activity of SAM synthetase. Both mutants acquired higher resistance to methionine hydroxamate and ethionine as well as to selenomethionine than TLD-140 and produced l-methionine in a medium.

Homoserine-O-transacetylase in SAM-19 was subject to full repression by the addition of excess SAM to the growth medium and was not repressed under SAM limitation, whereas addition of excess l-methionine under SAM limitation caused a partial repression of the enzyme. SAM synthetase as well as l-methionine biosynthetic enzymes in a methionine auxotroph of C. glutamicum was repressed by the addition of l-methionine to the growth medium.

These results suggest that SAM is implicated in the repression of l-methionine synthesizing enzymes in C. glutamicum.  相似文献   

8.
The sole biosynthetic route to S-adenosylmethionine, the primary biological alkylating agent, is catalysed by S-adenosylmethionine synthetase (ATP: L -methionine S-adenosyltransferase). In Escherichia coli and Sal-monella typhimunum numerous studies have located a structural gene (metK) for this enzyme at 63min on the chromosomal map. We have now identified a second structural gene for S-adenosylmethionine synthetase in E. coli by DNA hybridization experiments with metK as the probe; we denote this gene as metX. The metX gene is located adjacent to metK with the gene order speA metK metX speC. The metK and metX genes are separated by ~0.8kb. The metK and the metX genes are oriented convergently as indicated by DNA hybridization experiments using sequences from the 5′ and 3′ ends of metK. The metK gene product is detected immunochemically only in cells growing in minimal media, whereas the metX gene product is detected immunochemically in cells grown in rich media at all growth phases and in stationary phase in minimal media. Mutants in metK or metX were obtained by insertion of a kanamycin resistance element into the coding region of the cloned metK gene (metK:: kan), followed by use of homologous recombination to disrupt the chromosomal metK or metX gene. The metK::kan mutant thus prepared does not grow on minimal media but does grow normally on rich media, while the corresponding metX::kan mutant does not grow on rich media although it grows normally on minimal media. These results indicate that metK expression is essential for growth of E. coli on minimal media and metX expression is essential for growth on rich media. Our results demonstrate that Ado Met synthetase has an essential cellular and/or metabolic function. Furthermore, the growth phenotypes, as well as immunochemical studies, demonstrate that the two genes that encode S-adenosylmethionine synthetase isozymes are differentially regulated. The mutations in metK and metX are highly unstable and readily yield kanamycin-resistant cells in which the chromosomal location of the kanamycin-resistance element has changed.  相似文献   

9.
A special strain of Saccharomyces cerevisiae responded to a supplement of S-n-propyl-l-homocysteine in the culture medium by synthesizing S-adenosyl-(S-n-propyl)l-homycysteine, the S-n-propyl analogue of S-adenosylmethionine. S-n-Butyl-l-homocysteine reacted sparingly with this strain, but S-isopropyl-l-homocysteine failed to form detectable quantities of the corresponding S-adenosylsulfonium were compound. The S-n-propyl compound was isolated by extraction of the cells, followed by ion-exchange chromatography, which separated it from endogenous S-adenosylmethionine. The structure was determined by hydrolytic procedures leading to overlapping fragments of known structure, 5′-n-propylthioadenosine and S-n-propyl-l-homocysteine. The new sulfonium compound was examined for its activity as n-propyl donor by substituting it for S-adenosylmethionine in methyltransferase systems. Enzymatic transpropylation was observed with S-adenosylmethionine: l-homocysteine S-methyltransferase (EC 2.1.1.10). Its rate was low in the S-adenosylmethionine: N-acetylserotonin O-methyltransferase system (EC 2.1.1.4), and below recognition with S-adenosylmethionine: guanidonoacetate methyltransferase (EC 21.1.2) and S-adnosylmethionine: histame N-methyltransferase (EC 2.1.1.8).  相似文献   

10.
A recombinant Pichia pastoris MutS expressing SAM2 gene of Saccharomyces cerevisiae was cultured for S-adenosylmethionine (SAM) accumulation. Effect of the amount of methanol added (0.5%, 1.0%, 2.0%, 3.0%, 4.0%, 6.0%, 10.0%, and 12.0%) and cell densities (9.57, 13.47, 21.74, 30.90, and 41.24 g/L dry cell weight (DCW)) on yield of SAM was found in flask cultivations. In flask experiments, maximal yield of SAM (1.29 g/L) was obtained at 2.0% methanol added and 30.90 g/L DCW which gave the maximal methanol consumption rate. Conjunct effect of amount of methanol added and cell density was found through Origin 7.0 (7.0 Microcal, USA). Scale up in 3.7 L bioreactor, 51% specific yield of SAM was enhanced at 0.6% methanol compared to that of 0.1% methanol. In fed-batches of different cell densities at 0.6% methanol, maximal yield of SAM was 8.66 g/L at 100 g/L DCW with 64% yield of SAM enhanced again. Methanol consumption rate at 100 g/L DCW was 4.81 mL/L h. Maintenance coefficient of 100 g/L DCW was lower than that of others significantly, although methanol consumption rate of 90 g/L DCW was higher (5.07 mL/L h) than that of 100 g/L DCW.  相似文献   

11.
The production of antibiotics in different Streptomyces strains has been reported to be stimulated by the external addition of S-adenosylmethionine (SAM) and by overexpression of the SAM synthetase gene metK. We investigated the influence of SAM addition, and of the expression of SAM biosynthetic genes, on the production of the aminocoumarin antibiotic novobiocin in the heterologous producer strain Streptomyces coelicolor M512 (nov-BG1). External addition of SAM did not influence novobiocin accumulation. However, overexpression of a SAM synthase gene stimulated novobiocin formation, concomitant with an increase of the intracellular SAM concentration. Streptomyces genomes contain orthologs of all genes required for the SAM cycle known from mammals. In contrast, most other bacteria use a different cycle for SAM regeneration. Three secondary metabolic gene clusters, coding for the biosynthesis of structurally very different antibiotics in different Streptomyces strains, were found to contain an operon comprising all five putative genes of the SAM cycle. We cloned one of these operons into an expression plasmid, under control of a strong constitutive promoter. However, transformation of the heterologous novobiocin producer strain with this plasmid did not stimulate novobiocin production, but rather showed a detrimental effect on cell viability in the stationary phase and strongly reduced novobiocin accumulation.  相似文献   

12.
Summary S-adenosyl-l-methionine (AdoMet) is synthesized by transfer of the adenosyl moiety of ATP to the sulfur atom of methionine. This reaction is catalysed by AdoMet synthetase. In all eukaryotic organisms studied so far, multiple forms of AdoMet synthetases have been reported and from their recent study, it appears that AdoMet synthetase is an exceptionally well conserved enzyme through evolution. In Saccharomyces cerevisiae, we have demonstrated the existence of two AdoMet synthetases encoded by genes SAM1 and SAM2. Yeast, which is able to concentrate exogenously added AdoMet, is thus a particularly useful biological system to understand the role and the physiological significance of the preservation of two almost identical AdoMet synthetases. The analysis of the expression of the two SAM genes in different genetic backgrounds during growth under different conditions shows that the expression of SAM1 and SAM2 is regulated differently. The regulation of SAM1 expression is identical to that of other genes implicated in AdoMet metabolism, where as SAM2 shows a specific pattern of regulation. A careful analysis of the expression of the two genes and of the variations in the methionine and AdoMet intracellular pools during the growth of different strains lead us to postulate the existence of two different AdoMet pools, each one suppplied by a different AdoMet synthetase but in equilibrium with each other. This could be a means of storing AdoMet whenever this metabolite is overproduced, thus avoiding the degradation of a metabolite the synthesis of which is energetically expensive.  相似文献   

13.
Environmental inputs such as stress can modulate plant cell metabolism, but the detailed mechanism remains unclear. We report here that FERONIA (FER), a plasma membrane receptor‐like kinase, may negatively regulate the S‐adenosylmethionine (SAM) synthesis by interacting with two S‐adenosylmethionine synthases (SAM1 and SAM2). SAM participates in ethylene, nicotianamine and polyamine biosynthetic pathways and provides the methyl group for protein and DNA methylation reactions. The Arabidopsis fer mutants contained a higher level of SAM and ethylene in plant tissues and displayed a dwarf phenotype. Such phenotype in the fer mutants was mimicked by over‐expressing the S‐adenosylmethionine synthetase in transgenic plants, whereas sam1/2 double mutant showed an opposite phenotype. We propose that FER receptor kinase, in response to environmental stress and plant hormones such as auxin and BR, interacts with SAM synthases and down‐regulates ethylene biosynthesis.  相似文献   

14.
S-Adenosylmethionine (SAM) is an important metabolite that participates in many reactions as a methyl group donor in all organisms, and has attracted much interest in clinical research because of its potential to improve many diseases, such as depression, liver disease, and osteoarthritis. Because of these potential applications, a more efficient means is needed to produce SAM. Accordingly, we developed a positive selection method to isolate SAM-accumulating yeast in this study. In Saccharomyces cerevisiae, one of the main reactions consuming SAM is thought to be the methylation reaction in the biosynthesis of ergosterol that is catalyzed by Erg6p. Mutants with deficiencies in ergosterol biosynthesis may accumulate SAM as a result of the reduction of SAM consumption in ergosterol biosynthesis. We have applied this method to isolate SAM-accumulating yeasts with nystatin, which has been used to select mutants with deficiencies in ergosterol biosynthesis. SAM-accumulating mutants from S. cerevisiae K-9 and X2180-1A were efficiently isolated through this method. These mutants accumulated 1.7–5.5 times more SAM than their parental strains. NMR and GC-MS analyses suggested that two mutants from K-9 have a mutation in the erg4 gene, and erg4 disruptants from laboratory strains also accumulated more SAM than their parental strains. These results indicate that mutants having mutations in the genes for enzymes that act downstream of Erg6p in ergosterol biosynthesis are effective in accumulating SAM.  相似文献   

15.
《FEBS letters》1993,330(3):307-311
Mammalian S-adenosylmethionine (AdoMet) synthetase exists as two isozymes, liver-type and kidney(non-hepatic)-type enzymes. The developmental expression of these two isozyme proteins has been investigated in rat liver using immunohistochemical techniques. The liver-type AdoMet synthetase is expressed only in adult liver, but not in fetal liver. On the other hand, the kidney-type AdoMet synthetase is predominantly expressed in fetal liver and faintly detected in adult liver. It was also found that both isozymes were localized to the hepatocytes of rat liver. These results clearly show that AdoMet synthetase isozymes are developmentally regulated within hepatocytes. In addition, in rat kidney we have shown that the kidney-type AdoMet synthetase is predominantly localized to the distal tubule.  相似文献   

16.
17.
Summary DL-seleno-methionine resistant mutants of Cephalosporium acremonium were isolated which have an enhanced capacity to utilized sulfate for the synthesis of cephalosporin C. Of these mutants, one designated as SMR-I3 produced three-fold more cephalosporin C from sulfate than its parent CW19. Mutant SMR-I3 required less dl-methionine for maximal synthesis of cephalosporin C, but an excess of dl-methionine inhibited the synthesis of the antibiotic. Furthermore, the mutant accumulated excessive methionine in the amino acid pool and possessed superior activity for sulfate uptake. These observations indicate that in the mutant SMR-I3, the biosynthesis of methionine from sulfate is very active and excess methionine becomes available for the synthesis of cephalosporin C.  相似文献   

18.
A total of 20Bacillus subtilis F29-3 mutants defective in fengycin biosynthesis was obtained by Tn917 mutagenesis. Cloning and mapping results showed that the transposon in these mutants was inserted in eleven different locations on the chromosome. We were able to use the chromosomal sequence adjacent to the transposon as a probe to screen for cosmid clones containing the fengycin biosynthesis genes. One of the clones obtained, pFC660, was 46 kb long. Eight transposon insertion sites were mapped within this plasmid. Among the eleven different mutants analyzed, four mutants had Tn917 inserted in regions which encoded peptide sequences similar to part of gramicidin S synthetase, surfactin synthetase, and tyrocidine synthetase. Our results suggest that fengycin is synthesized nonribosomally by the multienzyme thiotemplate mechanism.  相似文献   

19.
Candida albicans is a major human fungal pathogen, causing superficial, as well as life‐threatening invasive infections. Therefore, it has to adequately sense and respond to the host defense by expressing appropriate virulence attributes. The most important virulence factor of C. albicans is the yeast‐to‐hyphae morphogenetic switch, which can be induced by numerous environmental cues, including the amino acid methionine. Here, we show an essential role for methionine permease Mup1 in methionine‐induced morphogenesis, biofilm formation, survival inside macrophages and virulence. Furthermore, we demonstrate that this process requires conversion of methionine into S‐adenosyl methionine (SAM) and its decarboxylation by Spe2. The resulting amino‐propyl group is then used for biosynthesis of polyamines, which have been shown to activate adenylate cyclase. Inhibition of the SPE2 SAM decarboxylase gene strongly impairs methionine‐induced morphogenesis on specific media and significantly delays virulence in the mouse systemic infection model system. Further proof of the connection between methionine uptake and initial metabolism and the cAMP‐PKA pathway was obtained by showing that both Mup1 and Spe2 are required for cAMP production in response to methionine. Our results suggest that amino acid transport and further metabolism are interesting therapeutic targets as inhibitors of this may prevent the morphogenetic switch, thereby preventing virulence.  相似文献   

20.
Summary Random Tn5 mutagenesis of antibiotic-resistant derivatives of Rhizobium phaseoli CFN42 yielded several independent mutants that were sensitive to methionine sulfoximine (MSs), a specific inhibitor of glutamine synthetase (GS). These MSs mutants were analyzed for GSI and GSII activities and for their symbiotic properties. Four classes of MSs mutants have been distinguished. Class I strains are impaired in their synthesis of glutamine and in their symbiotic properties. Class II strains have wild type levels of GSI and GSII activities but have a reduced capacity to fix nitrogen. Class III strains have lost GSII activity, but their symbiotic properties are wild type. In class IV mutants neither glutamine synthesis nor symbiotic properties are affected. Mutants of classes I, III, and IV all have the Tn5 inserted into the chromosome, whereas in class II mutants the Tn5 is located in plasmid p42e, a plasmid different from the previously identified symbiotic plasmid p42d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号