首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu ZZ  Burton LJ 《Theriogenology》1998,50(6):905-915
In a previous study we showed that estrus synchronization with 2 treatments of PGF2 alpha 13 d apart reduced conception rate at the synchronized estrus and that this reduction occurred mainly in cows in the early luteal phase at the second PGF2 alpha treatment. The objective of the present study was to determine the efficacy of a synchronization regimen in which PGF2 alpha was administered during the mid- to late-luteal phase to cows that had previously been synchronized with progesterone. Spring-calving cows from 6 dairy herds were used in this study. On Day -32 (Day 1 = the start of the breeding season), cows that had calved 2 or more weeks ago were randomly assigned to a synchronization (S, n = 732) or control (C, n = 731) group. Cows in Group S were treated with an intravaginal progesterone device (CIDR) for 12 d from Day -32 to Day -20, while those in Group C were left untreated. Similar percentages of cows in Group S (80.6%) and C (82.9%) had cycled by Day -7. The CIDR treatment synchronized the onset of estrus, resulting in 92.9% of cows in estrus being detected within 7 d after CIDR removal. Cows in Group S that had cycled by Day -7 were treated with PGF2 alpha (25 mg, i.m., Lutalyse) on Day -2. Cows in both groups that were anestrous on Day -7 were treated with a combination of progesterone and estradiol benzoate (EB) to induce estrus and ovulation (CIDR and a 10 mg EB capsule on Day -7, CIDR removal on Day -2, and injection of 1 mg EB 48 h after CIDR removal). The PGF2 alpha treatment synchronized the onset of estrus in 87.5% of the cows. Group S and C cows had similar conception rates to first (61.0 vs 58.3%) and second (58.4 vs 60.9%) AI; similar pregnancy rates over the AI period (82.8 vs 79.2%) and over the whole breeding season (91.9 vs 90.6%); and required a similar number of services per pregnancy to AI (1.7 vs 1.8). The interval from the start of the breeding season to conception for cows conceiving to AI or to combined AI and natural mating was shorter (P < 0.001) by 5.7 and 6.2 d, respectively, for the Group S cows. It is concluded that the treatment regimen tested in the present study achieved satisfactory estrus synchronization, had no detrimental effect on fertility at the synchronized estrus, and shortened the interval from start of the breeding season to conception.  相似文献   

2.
A GnRH analogue was used to synchronize ovarian follicular development prior to an injection of PGF(2alpha) for the synchronization of estrus in lactating Holstein cows. On Day 12 (estrus = Day 0) of the experimental cycle, cows (n = 8) were injected with 8 mug Buserelin (BUS group), followed by 25 mg PGF(2alpha) 7 d later (Day 19). Control cows (n = 7) received PGF(2alpha) on Day 12 (PGF group). Ovaries were scanned daily via ultrasonography, and plasma progesterone and estradiol concentrations were determined. Sizes of all visible follicles were recorded. Follicles were classified as small (3 to 5 mm), medium (6 to 9 mm), or large (>/= 10 mm). Between Days 12 and 16 of the cycle, the number of large follicles in PGF cows remained unchanged (1.2), whereas in the BUS group, the number of large follicles decreased from 1.3 on Day 12 to 0.5 on Day 15. Only 4 of 7 PGF cows ovulated a second-wave dominant follicle. In the BUS group, 7 of 8 cows ovulated a GnRH analogue induced dominant follicle that was first identified on Day 15. During the follicular phase (last 5 d prior to estrus), plasma progesterone declined in association with CL regression in both groups, and estradiol concentrations increased, reaching higher (P<.0.05) preovulatory peak concentration in BUS cows than in PGF cows (14.0 +/- 1.0 vs 10.4 +/- 1.1 pg/ml). The number of medium-size follicles was smaller and the number of small-size follicles tended to be higher in BUS cows than in the PGF-treated group. On the day of estrus, the size of the ovulatory follicle (16.1 vs 13.3 mm) and the size difference between the ovulatory and second largest follicle (11.4 vs 6.2 mm) were both larger in BUS cows than in PGF-treated cows, suggesting a more potent dominance effect of the ovulatory follicle in the BUS cows. This study suggests that a GnRH analogue can alter follicular development prior to synchronization of estrus with an injection of PGF(2alpha) in lactating dairy cows.  相似文献   

3.
The use of CIDR-B or PRID in combination with prostaglandin F2alpha (PGF2alpha) for synchronizing estrus in embryo transfer recipients was evaluated in 2 experiments. In Experiment 1, virgin heifers (n=263) were synchronized using either a PRID (including estradiol benzoate capsule) or a CIDR-B in a combined program in which devices were inserted on Day 1, an injection of prostaglandin was given on Day 6, and devices were withdrawn on Day 7. The interval from device removal to the onset of estrus was significantly shorter for CIDR-B than for PRID-treated animals (50.44 vs 55.50 hours; P<0.003). The CIDR-B treatment resulted in a similar degree of synchrony to the PRID treatment (74.0 vs 70.4%; P=0.68). InExperiment 2, cows (n=95) and heifers (n=93) were allocated at random to be synchronized using a PRID (excluding estradiol benzoate capsule) plus PGF2alpha or a CIDR-B device plus PGF2alpha. The devices were inserted on Day 1, an injection of prostaglandin was given on Day 10 and the devices were removed on Day 12. Estrus was observed earlier following the CIDR-B treatment (43.50 vs 47.04 hours; P=0.01), but the degree of synchrony was similar (76.2 vs 76.3%; P>0.10) for the CIDR-B and PRID-treated animals. In both experiments, there were no significant differences in the proportions of animals observed in estrus, selected as embryo transfer recipients, or which achieved pregnancy consequent on embryo transfer between those synchronized using CIDR-B or PRID regimens. We conclude that the CIDR-B is a suitable device for synchronizing estrus in embryo transfer recipients.  相似文献   

4.
Two experiments (Experiment 1, 185 cows in 1996/97; Experiment 2, 168 cows in 1997/98) were conducted with Prim Holstein dairy cattle in the Mayenne region of France to investigate subestrus. Cows which had not been observed in estrus since calving were allocated alternately to treatment groups between 60 and 90 d post partum as follows: Experiment 1-Group 1: GnRH (Day 0, 100 micrograms i.m.), PGF2 alpha (Day 7, 25 mg i.m.), GnRH (Day 9, 100 micrograms i.m.) and AI (Day 10); Group 2: PGF2 alpha (Day 0, 25 mg i.m.), AI at estrus, or, if estrus was not observed, a second PGF2 alpha injection on Day 13, and AI on Day 16 and Day 17. Treatments in Experiment 2 were as follows: Group 1: as Experiment 1-Group 1 but AI at the observed estrus after Day 0, or at Day 10 if estrus was not observed; Group 2: as Experiment 1--Group 2, however, if a second PGF2 alpha injection was given on Day 13, AI at the observed estrus. Progesterone was measured in serum at Day 0 and in milk at AI. Pregnancy diagnosis was performed by measuring bovine pregnancy-specific protein B (bPSPB; Day 50 +/- 3) and confirmed by ultrasonography when the result was doubtful. In Experiment 1, farmers observed 47/101 (46.9%) Group 1 cows in estrus, 33/91 cows on Day 10 and 10 cows before Day 10. The progesterone concentrations were compatible with estrus in 69/86 (80%) cows on Day 10. In Group 2, 36/83 (43.4%) cows were inseminated after the first PGF2 alpha injection. After the second PGF2 alpha injection, only 29/43 (67%) cows had a low progesterone concentration at AI. Pregnancy rates were 36.1 and 32.5% for Groups 1 and 2, respectively. In Experiment 2, estrus was observed in 31/93 (33.7%) Group 1 cows. In Group 2, 51/75 (66%) cows were inseminated after the first injection of PGF2 alpha, 13/75 (17.3%) cows after the second injection, while 11/75 (14.7%) were not observed in estrus. Pregnancy rates were 53.7 and 53.3% in Groups 1 and 2, respectively. In conclusion, it is recommended that subestrus be treated with PGF2 alpha followed by AI at the observed estrus when estrus detection is good, while the use of GnRH + PGF2 alpha + GnRH is recommended when estrus detection is poor.  相似文献   

5.
Considering that there is limited information about the preovulatory LH surge in Zebu cattle (Bos indicus), the purpose of the present work was to assess the LH surge in Nelore cows during the estrous cycle and after ovarian superestimulation of ovarian follicular development with FSH. This information is particularly important to improve superovulatory protocols associated with fixed-time artificial insemination. Nelore cows (n=12) had their estrus synchronized with an intravaginal device containing progesterone (CIDR-B) associated with estradiol benzoate administration (EB, 2.5 mg, i.m., Day 0). Eight days later all animals were treated with PGF2alpha (Day 8) in the morning (8:00 h) and at night, when CIDR devices were removed (20:00 h). Starting 38h after the first PGF2alpha injection, blood sampling and ovarian ultrasonography took place every 4h, during 37 consecutive hours. Frequent handling may have resulted in a stress-induced suppression of LH secretion resulting in only 3 of 12 cows having ovulations at 46.7+/-4.9 and 72.3+/-3.8 h, respectively, after removal of CIDR-B. Thirty days later, the same animals received the described hormonal treatment associated with FSH (Folltropin), total dose=200 mg) administered twice a day, during 4 consecutive days, starting on Day 5. Thirty-six hours after the first injection of PGF2alpha, to minimize stress, only seven blood samples were collected at 4h interval each, and ultrasonography was performed every 12 h until ovulation. In 11 of 12 cows (92%) the LH surge and ovulation were observed 34.6+/-1.6 and 59.5+/-1.9 h, respectively, after removal of progesterone source. The maximum values for LH in those animals were 19.0+/-2.6 ng/ml (mean+/-S.E.M.). It is concluded that, in Nelore cows submitted to a ovarian superstimulation protocol, the LH surge occurs approximately 35 h after removal of intravaginal device containing progesterone, and approximately 12h before the LH surge observed after an induced estrus without ovarian superstimulation.  相似文献   

6.
Prevention of high plasma progesterone concentrations in the early postpartum period may improve fertility. Our objective was to determine whether a Deslorelin implant (DESL; 2100 microg, s.c.) would reduce secretion of LH and alter follicle dynamics, plasma concentrations of progesterone, estradiol and PGF2alpha metabolite (PGFM) in postpartum dairy cows. Cows received DESL on Day 7 postpartum (Day 7, n=8) or were untreated (Control, n=9). All cows were injected with GnRH (100 microg, i.m.) on Day 14 to assess LH response. A protocol for synchronization of ovulation with timed AI was initiated on Day 60 (GnRH [Day 60], CIDR [Day 60 to Day 67], PGF2alpha [Day 67, 25 mg and Day 68, 15 mg], GnRH [Day 69] , AI [Day 70]). The LH response to injection of GnRH on Day 14 was blocked in animals treated with DESL. Numbers of Class 1 (<6 mm) follicles were unaffected (P > 0.05) whereas numbers of Class 2 (6 to 9 mm) (P < 0.01) and Class 3 (>9 mm) follicles were less (P < 0.01) in DESL cows between Day 7 and Day 21. From Day 22 to Day 60, DESL-treated cows had more of Class 1 follicles and less Class 2 (P < 0.01) and Class 3 (P < 0.01) follicles, and lower plasma concentrations of progesterone and estradiol (P < 0.01). Concentrations of PGFM between Day 7 and Day 42 were not affected by treatment (P > 0.05). All cows ovulated in response to GnRH on Day 69. Subsequent luteal phase increases in plasma progesterone concentrations (Day 70 to Day 84) did not differ. The use of the DESL implant associated with PGF2alpha given 14 days later suppressed ovarian activity and caused plasma progesterone concentrations to remain < 1 ng/mL between Day 22 and Day 51. The DESL implant did not affect milk production.  相似文献   

7.
Two experiments were carried out to assess the efficacy of estrus detection and fertility in Zebu cattle after synchronization with prostaglandin F2a or a progestagen. The first experiment compared estrus detection rates and fertility following insemination in 42 cows previously synchronized with either 25 mg of PGF2a or with a 6 mg of Norgestomet implant plus 5 mg i.m. of estradiol valerate (SMB). Differences were observed in the percentage of cows detected in estrus (54 vs 95%, respectively, P < 0.05), but not in fertility at the first synchronized estrus (26 vs 15%), nor in the detection rate and fertility at the subsequent estrous period (38 v 47%). The second experiment evaluated the efficacy of estrus detection at different time intervals in 30 cows, comparing estrus synchronized with PGF2a with the subsequent estrous period. The observation periods were continuous, day and night, for 100 h both after PGF2a treatment and from Day 18 of the treatment cycle (Period 1). In addition, the animals were administered PGF2a again on Day 10 of the second cycle and observed continuously from 0600 to 1800 h, and from Day 18 of the treatment cycle (Period 2). Finally, the same treatment regimen was used except that the observation was between 0600 to 0700 h and 1800 to 1900 h (Period 3). No differences were obtained in the percentage of cows detected in estrus in the synchronized and nonsynchronized groups (average 75%); however, accuracy in the detection of estrus in Period 3 differed in the nonsynchronized and synchronized estrus groups by 40% (P < 0.05) compared with the other two, more intense observation periods.  相似文献   

8.
Three experiments were conducted, using multiparous crossbred beef cows, to test the ability of exogenous prostaglandin F(2alpha) (PGF) and/or naloxone to reduce the duration of the postpartum interval to estrus and to improve subsequent reproductive performance. In each experiment, postpartum cows were assigned to treatments by calving date. In Experiment 1, cows (n=44) were assigned to 1 of 4 treatment groups: 1) control, 2) PGF on Day 25 post partum, 3) 400 mg naloxone (3 doses) at 12-h intervals on Day 30 post partum, and 4) PGF on Day 25 followed by 3 400-mg doses naloxone at 12-h intervals on Day 30 post partum. In Experiment 2, cows (n=126) were assigned either to 1) control or 2) PGF on Day 30 post partum In Experiment 3, cows (n=67) were again assigned to 1 of 4 treatments 1) control, 2) PGF on Day 30 post partum, 3) PGF on Day 40 post partum, and 4) PGF on Day 30 and 40 post partum. Serum progesterone was used to determine the postpartum interval to estrus in Experiments 1 and 3. In all 3 experiments, serum progesterone was used to determine the proportion of cows that had reestablished estrous cycles at the start of breeding. Pregnancy rate and calving interval were analyzed for all trials. Naloxone had no effect (P > 0.20) on any reproductive variable measured. The postpartum interval to estrus was similar (P > 0.30) for PGF-treated and control cows in Experiments 1 and 3. The proportion of cows cycling at the start of breeding and the calving interval were not affected (P > 0.20) by PGF treatment in any of the experiments. Only the administration of PGF on Day 40 post partum in Experiment 3 improved (P=0.04) the subsequent pregnancy rate. Analysis of data pooled across experiments showed that the pregnancy rate was higher (P=0.03) for cows treated with PGF than for control cows (91.4 and 72.9%, respectively). It was concluded that administration of PGF during the early postpartum period improves subsequent reproductive function in beef cows.  相似文献   

9.
Simultaneous injections of prostaglandin F2alpha (PGF) and gonadotropin releasing hormone (GnRH) or saline were given to 32 diestrous dairy cows to test the ability of GnRH to improve estrous and ovulation synchrony beyond that of PGF alone. Cows were randomly assigned to receive PGF on Day 8 or Day 10 of the estrous cycle (estrus = Day 0), and all cows were further assigned to simultaneous injection of GnRH or saline. Corpus luteum (CL) regression, return to estrus and follicular activity were monitored by plasma progesterone assay, twice-daily estrous detection and ultrasonographic examination, respectively. Plasma progesterone concentrations declined to <1.0 ng/ml at 24 hours after PGF in all cows and were not affected by GnRH. Gonadotropin releasing hormone inducted premature ovulation or delayed return to estrus in 7 of 8 cows treated with PGF/GnRH on Day 8 and 3 of 8 cows treated with PGF/GnRH on Day 10. Further, cows with premature GnRH-induced ovulations failed to develop and maintain a fully functional CL, and all returned to estrus 7 to 13 days after the induced ovulation. These data indicate that GnRH administered simultaneously with a luteolytic dose of PGF disrupts follicular dynamics and induces premature ovulation or delays normal return to estrus and, therefore, does not improve the synchrony of estrus and ovulation achieved with PGF alone.  相似文献   

10.
To determine the threshold of prostaglandin F2 alpha (PGF2 alpha)-stimulated oxytocin secretion from the ovine corpus luteum, low levels of PGF2 alpha (5-100 pg/min) were infused into the ovarian arterial blood supply of sheep with ovarian autotransplants. PGF2 alpha was infused for six sequential 10-min periods at hourly intervals, 6, 12, or 24 days after estrus (n = 3 for each day). Each cycle day was studied during a separate cycle. Oxytocin and progesterone in ovarian venous and carotid arterial plasma was measured by radioimmunoassay, and secretion rates were determined (venous-arterial concentration x plasma flow). In animals treated on Day 6, 5 pg/min PGF2 alpha caused a significant release of oxytocin (p less than 0.01), whereas in animals treated on Day 12, this threshold was 40 pg/min (p less than 0.05). In animals treated on Day 24, the threshold for oxytocin release was greater than 100 pg/min. PGF2 alpha did not significantly change ovarian blood flow or progesterone secretion rate on any day (p greater than 0.05). To determine residual luteal oxytocin after each threshold experiment, 5 mg PGF2 alpha was given i.m. to all animals. Significantly more oxytocin was released by Day 6 than by Day 12 and Day 24 corpora lutea, and by Day 12 than by Day 24 corpora lutea (1.2 micrograms, 0.7 microgram, and 0.3 microgram, respectively; p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Following observation of estrus, 134 Holstein heifers were given injections of Prostaglandin F(2)alpha (PGF(2)alpha) between Days 5 and 10 of their cycle (estrus = Day 0). They were then randomly assigned to either a group receiving 400 mug of estradiol benzoate (E(2)B) 40 h or maintained as controls. Heifers observed in estrus within 120 h of PGF(2)alpha administration were inseminated (approximately 12 h after initial observation of estrus). Blood samples for progesterone determination were drawn from the coccygeal vein on Days 15 and 21 after insemination. Pregnancy was confirmed by palpation per rectum between Days 5.0 and 60 post insemination. When control and treated heifers were compared it was found that a higher percentage of heifers treated with E(2)B exhibited estrus after PGF(2)alpha, but there had been no effect on subsequent progesterone concentrations or pregnancy rates.  相似文献   

12.
In the present study we investigated the effect of hCG administration on Day 7 (Day 0 = day of standing estrus) to ovulate the dominant follicle of the first wave and the associated increase in progesterone concentration on subsequent superovulatory response in dairy cows. Twenty cyclic lactating cows were allocated at random to 2 groups: control (n = 10) and hCG-treated (n = 10). The ovaries of each cow were scanned using an ultrasound scanner on Day 7, to confirm the presence of the dominant follicle and thereafter every other day until embryo recovery. All cows received a total dose of 400 mg Folltropin-V in decreasing amounts for 5 days (Days 9 to 13) and 35 mg PGF(2alpha) on Day 12. In addition, the treated cows received 1000 IU hCG on Day 7. All cows were inseminated twice during estrus, and the embryos were collected 7 days later by a nonsurgical procedure. Blood smaples were taken at different times of the treatment period for progesterone determination. All cows possessed a dominant follicle at Day 7, and all but one of the hCG-treated cows ovulated the dominant follicle and formed an accessory corpus luteum. Plasma progesterone concentrations were significantly higher (P<0.01) in hCG-treated cows than control cows on the first day of Folltropin treatment and on the day of PGF(2alpha) injection. The mean number of follicles at estrus, the number of ovulations, the total number of embryos and the number of transferable embryos were not different (P>0.05) between control and hCG-treated cows.  相似文献   

13.
The present study was developed to determine if administration of progesterone, early in the estrous cycle of the cow, stimulated an advanced pulsatile release of PGF2 alpha from the uterine endometrium resulting in a decreased interestrous interval. Twenty-three cyclic beef cows were randomly assigned to receive either sesame oil or progesterone (100 mg) on Day 1, 2, 3 and 4 of the estrous cycle. Peripheral plasma concentrations of progesterone and the metabolite of prostaglandin F2 alpha, 15-keto-13,14-dihydro-prostaglandin F2 alpha (PGFM) were measured by radioimmunoassay. Administration of exogenous progesterone increased peripheral plasma concentration of progesterone in treated (3.67 ng/ml) compared to control (1.28 ng/ml) cows from Day 2 through 5 of the estrous cycle. Progesterone administration shortened the interestrous interval (16.7 d) compared to controls (21.6 d). The shortened interestrous intervals in treated cows resulted from an earlier decline in peripheral plasma progesterone. Decline of peripheral plasma progesterone concentrations is coincident with an increased pulsatile release of PGFM in both progesterone treated and control cows. Results indicate that administration of exogenous progesterone stimulates an earlier maturation of endometrial development, causing an advanced release of PGF2 alpha which shortens the interestrous interval of the cow.  相似文献   

14.
Synchronization of estrus with progestins in cows has been reported to inhibit nitric oxide (NO) and endothelin-1 (ET-1)-stimulated bovine luteal PGE secretion without affecting prostaglandin F2alpha (PGF2alpha) secretion in vitro [Weems YS, Randel RD, Tatman S, Lewis A, Neuendorff DA, Weems CW. Does estrous synchronization affect corpus luteum (CL) function? Prostaglandins Other Lipid Mediat 2004;74:45-59]. Two experiments were conducted to determine the effects of NO donors, endothelin-1 (ET-1), and NO synthase (NOS) inhibitors on bovine caruncular endometrial secretion of PGE and PGF2alpha in vitro. In Experiment 1, estrus was synchronized in Brahman cows with Synchromate-B ear implants, which contained the synthetic progestin norgestamet. Days 14-15 caruncular endometrial slices were weighed, diced, and incubated in vitro with treatments. Treatments (100 ng/ml) were: Vehicle (control), l-NAME (NOS inhibitor), l-NMMA (NOS inhibitor), DETA (control), DETA-NONOate (NO donor), sodium nitroprusside (NO donor), or ET-1. In Experiment 2, estrus was synchronized in Brahman cows with either Lutalyse (PGF2alpha) or a controlled intravaginal drug releasing device (CIDR-containing progesterone) or estrus was not synchronized. Days 14-15 caruncular endometrial slices were weighed, diced, and incubated in vitro with treatments. Treatments (100 ng/ml) were: vehicle, l-NAME, l-NMMA, DETA, DETA-NONOate, sodium nitroprusside, SNAP (NO donor) or ET-1. Tissues were incubated in M-199 for 1h without treatments and with treatments for 4 and 8h in both experiments. Media were analyzed for concentrations of PGE and PGF2alpha by radioimmunoassay (RIA). Hormone data in Experiments 1 and 2 were analyzed by 2x7 and 3x2x8 factorial design for ANOVA, respectively. Concentrations of PGE and PGF2alpha in media increased (P< or =0.05) from 4 to 8 h regardless of treatment group in Experiment 1, but did not differ (P> or =0.05) among treatments. In Experiment 2, concentrations of PGE and PGF2alpha increased (P< or =0.05) with time in all treatment groups of all three synchronization regimens. DETA-NONOate, SNAP, and sodium nitroprusside (NO donors) and ET-1 increased caruncular endometrial (P< or =0.05) secretion of PGE2 in unsynchronized and Lutalyse synchronized cows, but not when estrus was synchronized with a CIDR (P> or =0.05). No treatment increased (P> or =0.05) PGF2alpha in any synchronization regimen. It is concluded that norgestamet in Synchromate-B ear implants or progesterone in a CIDR alters NO or ET-1-induced secretion of PGE by bovine caruncular endometrium and could interfere with implantation by altering the PGE:PGF2alpha ratio resulting in increased embryonic losses during early pregnancy.  相似文献   

15.
We wished to compare the effect of summer heat stress on pregnancy rate in cows that were inseminated at a set interval associated with a synchronized ovulation vs those inseminated upon routine estrus detection. The study was carried out on a commercial dairy farm in Florida from May to September 1995. Lactating dairy cows were given PGF2 alpha (25 mg i.m.) at 30 + 3 d postpartum and randomly assigned to be inseminated at a set time (Timed group) or when estrus was detected (Control group). Cows in the Timed group were synchronized by sequential administration of Buserelin (8 micrograms i.m.) on Day 0 at 1600 h, PGF2 alpha (25 mg i.m.) on Day 7 at 1600 h and Buserelin (8 micrograms i.m.) on Day 9 at 1600 h. They were inseminated on Day 10 between 0800 and 0900 h (Day 9 + 16 h). Cows in the Control group were given PGF2 alpha at 57 + 3 d postpartum and inseminated when detected in estrus. Estrus detection or insemination rate for control insemination cows was 18.1 +/- 2.5% versus 100% for time inseminated cows (P < 0.01). Mean interval from PGF2 alpha to insemination was shorter for time inseminated cows (3 +/- 2.1 d < 35.5 +/- 1.9 d; P < 0.01). Pregnancy rate was greater for time inseminated cows (13.9 +/- 2.6 > 4.8 +/- 2.5%; P < 0.01) as was overall pregnancy rate by 120 d postpartum (27.0 +/- 3.6 > 16.5 +/- 3.5%; P < 0.05). Number of days open for cows conceiving by 120 d postpartum was less for time inseminated cows (77.6 +/- 3.8 < 90.0 +/- 4.2 d; P < 0.05), as was interval to first service (58.7 +/- 2.1 < 91.0 +/- 1.9 d; P < 0.01). Services per conception were greater for time inseminated cows (1.63 +/- 0.10 > 1.27 +/- 0.11; P < 0.05). The timed insemination program did improve group reproductive performance. However, the timed insemination program will not protect the embryo from temperature-induced embryonic mortality, but management limitations induced by heat stress on estrus detection are eliminated. An economical evaluation of the timed insemination program indicates an increase in net revenue per cow with implementation of timed insemination for first service during the summer months.  相似文献   

16.
Ovarian follicular dynamics and steroid secretion patterns were monitored in postpartum beef cows that were synchronized for estrus with melengestrol acetate (MGA) or prostaglandin F(2alpha) (PGF) prior to superovulation. Twenty-four muhiparous Angus cows were stratified by number of days postpartum to an MGA or PGF treatment prior to superovulation. Cows in the MGA group were fed 0.5 mg MGA/d for 14 d in a grain carrier. Superstitnulatory treatments began 14 d after withdrawal of MGA from feed or 11 d after administering a single injection of 500 microg cloprostenol (PGF). Supersthnulatory treatments (FSH) were administered twice daily in decreasing doses (7.5, 5, 5, 2.5 mg) over 4 d. Sixty and 72 h after initiating the superstimulatory treatments, all cows were treated with 750 microg and 500 microg PGF, respectively Cows were inseminated at 0, 12, and 24 h from the onset of standing estrus with semen from 2 proven sires. Cows within treatment were inseminated with 1, 2 and 1 (single) or 2, 4 and 2 units (double) of semen at the designated insemination times. Blood sampling and transrectal ultrasonography of ovaries were performed daily beginning 2 d prior to the initiation of FSH treatment and were continued through embryo recovery. Ovaries were examined daily to determine the number and size of follicles. Plasma samples were analyzed for progesterone and estradiol. Follicles were counted and categorized based on a 5 to 9 mm range or >/= 10 mm. At the end of superovulatory treatment there were more (P /= 10 mm among cows that were estrus synchronized with MGA (75 +/- 1.2) than with PGF (3.9 +/- 1.2) These differences were reflected in higher (P 相似文献   

17.
18.
Human chorionic gonadotrophin (hCG) plus PGF2 alpha was compared with GnRH plus PGF2 alpha for estrus synchronization of dairy cows. There were 3 treatments: GnRH analog (Buserelin, 12.6 micrograms) plus PGF2 alpha analog (Cloprostenol, 150 micrograms) 6 d later (GnRH + PGF[Day 6]); hCG (2000 IU) plus PGF2 alpha 9 d later (hCG + PGF[Day 9]); and hCG plus PGF2 alpha 6 d later (hCG + PGF[Day 6]). Treatment occurred either Days 55 to 90 or Days 91 to 135 post partum. For responses during the first 10 d after PGF2 alpha administration, estrus synchronization (P = 0.24), efficacy (percentage of treated pregnant; P = 0.20) and conception (percentage of inseminated pregnant; P = 0.23) rates were not different among the 3 treatments. Cows treated between Days 55 and 90 had a higher rate (P < 0.05) of detected estrus during this period (69% for GnRH + PG [Day 6], 70% for hCG + PGF[Day 9] and 72% for hCG + PGF[Day 6]) compared with cows treated between Days 91 and 135 (52% for GnRH + PGF[Day 6], 50% for hCG + PGF[Day 9] and 57% for hCG + PGF[Day 6]). Efficacy of treatment was higher (P < 0.05) in animals treated between Days 55 and 90 (54% for GnRH + PGF[Day 6], 56% for hCG + PGF[Day 9] and 63% for hCG + PGF [Day 6]) compared to animals treated between Days 91 and 135 (36% for GnRH + PGF[Day 6], 35% for hCG + PGF[Day 9] and 47% for hCG + PGF[Day 6]). There were no significant differences in conception between Days 51 and 90 and Days 91 and 135. The interval between parturition-first AI with conception was significantly (P < 0.001) shorter in GnRH + PGF (Day 6; 106 d), hCG + PGF (Day 9; 109 d) and hCG + PGF (Day 6; 103 d) treated cattle than in 106 untreated animals (136 d). Thus, GnRH plus PGF2 alpha or hCG plus PGF2 alpha treatments elicited similar effects in estrus synchronization, treatment efficacy, and conception rate in post-partum dairy cows.  相似文献   

19.
It is well known that prostaglandin F(2alpha) (PGF(2alpha)) is a physiological luteolysine, and that its pulsatile release from the endometrium is a luteolytic signal in many species. There is now clear evidence that the vasoactive peptides endothelin-1 (ET-1) and angiotensin II (Ang II) interact with PGF(2alpha) in the luteolytic cascade during PGF(2alpha)-induced luteolysis in the cow. Thus, we investigated the local secretion of PGF(2alpha), ET-1, and Ang II in the corpus luteum (CL) and their real-time relationships during spontaneous luteolysis in the cow. For this purpose, an in vivo microdialysis system (MDS) implanted in the CL was utilized to observe local secretion changes within the CL microenvironment. Each CL of cyclic Holstein cows (n = 6) was surgically implanted with MDS capillary membranes (18 lines/6 cows) on Day 15 (estrus = Day 0) of the estrous cycle. The concentrations of PGF(2alpha), ET-1, Ang II, and progesterone (P) in the MDS samples were determined by enzyme immunoassays. The intraluteal PGF(2alpha) secretion slightly increased from 12 h after the onset of luteolysis (0 h) and drastically increased (by about 300%) from 24 h. Intraluteal ET-1 secretion increased from 12 h. Intraluteal Ang II secretion was elevated from 0 h and was maintained at high levels (about 180%) toward estrus. In each MDS lines (in the same microenvironment) within the regressing CL, the local releasing profiles of PGF(2alpha), ET-1, and Ang II CL positively correlated with each other (P < 0.05) at high proportions in 18 MDS lines (PGF(2alpha) vs. ET-1, 44.4%; PGF(2alpha) vs. Ang II, 55.6%; ET-1 vs. Ang II, 38.9%). In contrast, there was no clear relationship among these substances released into different MDS lines implanted in the same CL (with different microenvironments). In conclusion, we propose that the increase of PGF(2alpha), ET-1, and Ang II within the CL during luteolysis is a common phenomenon for both PGF(2alpha)-induced and spontaneous luteolysis. Moreover, this study illustrated the in vivo relationships in intraluteal release among PGF(2alpha), ET-1, and Ang II during spontaneous luteolysis in the cow. The data suggest that these vasoactive substances may interact with each other in a local positive feedback manner to activate their secretion in the regressing CL, thus accelerating and completing luteolysis.  相似文献   

20.
Change in morphology of the corpus luteum (CL) and patterns of progesterone and estradiol secretion after treatment with melengestrol acetate (MGA) were monitored in postpartum beef cows. Twenty Angus cows were randomly assigned to MGA or MGA + prostaglandin F(2alpha) (PGF) treatments. All cows were fed 0.5 mg of MGA per cow per day for 14 d. The MGA-treated cows (n = 10) were allowed to return to estrus spontaneously at the second estrus after withdrawal of MGA from the feed. The MGA + PGF-treated cows (n = 10) received an injection containing 25 mg of PGF(2alpha) 17 d after the last feeding of MGA. Cycle 1 was defined as the first luteal phase after MGA feeding and Cycle 2 represented the subsequent cycle or luteal phase after PGF. Blood sampling and transrectal ultrasonography of the ovaries was done daily through the completion of 2 estrous cycles upon removal of MGA from the feed. Blood samples were analyzed for plasma progesterone and estradiol concentrations. Area of CL and fluid-filled cavities within each CL were determined by ultrasonography. Concentrations of progesterone and area of CL were similar between cycles and treatments. Estradiol concentrations were higher (P < 0.05) in Cycle 2 than in Cycle 1. Fluid-filled cavities were larger (P < 0.001) in Cycle 1 than in Cycle 2 for both mid-luteal (Days 5 to 9) and late-luteal (Days 10 to 14) phases. Multiple CL (2 or more during 1 cycle) were observed in 5 cows. Progesterone concentrations and total area of luteal tissue did not change with respect to treatment or cycle, but CL morphology was altered in the first cycle after MGA treatment. Of the 19 cows that ovulated after withdrawal of MGA, 3 experienced a short luteal phase. These data characterize changes that occur among cows that are fed melengestrol acetate during the postpartum period and enhance observations from prior studies regarding MGA use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号