首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosphingolipids (GSL) are glycosylated polar lipids in cell membranes essential for development of vertebrates as well as Drosophila. Mutants that impair enzymes involved in biosynthesis of GSL sugar chains provide a means to assess the functions of the sugar chains in vivo. The Drosophila glycosyltransferases Egghead and Brainiac are responsible for the 2nd and 3rd steps of GSL sugar chain elongation. Mutants lacking these enzymes are lethal and the nature of the defects that occur has suggested that GSL might impact on signaling by the Notch and EGFR pathways. Here we report on characterization of enzymes involved in the 4th and 5th steps of GSL sugar chain elongation in vitro and explore the biological consequences of removing the enzymes involved in step 4 in vivo. Two beta4-N-Acetylgalactosyltransferase enzymes can carry out step 4 (beta4GalNAcTA and beta4GalNAcTB), and while they may have overlapping activity, the mutants produce distinct phenotypes. The beta4GalNAcTA mutant displays behavioral defects, which are also observed in viable brainiac mutants, suggesting that proper locomotion and coordination primarily depend on GSL elongation. beta4GalNAcTB mutant animal shows ventralization of ovarian follicle cells, which is caused by defective EGFR signaling between the oocyte and the dorsal follicle cells to specify dorsal fate. GSL sequentially elongated by Egh, Brn and beta4GalNAcTB in the oocyte contribute to this signaling pathway. Despite the similar enzymatic activity, we provide evidence that the two enzymes are not functionally redundant in vivo, but direct distinct developmental functions of GSL.  相似文献   

2.
Haines N  Stewart BA 《Genetics》2007,175(2):671-679
Adult Drosophila mutant for the glycosyltransferase beta1,4-N-acetlygalactosaminyltransferase-A (beta4GalNAcTA) display an abnormal locomotion phenotype, indicating a role for this enzyme, and the glycan structures that it generates, in the neuromuscular system. To investigate the functional role of this enzyme in more detail, we turned to the accessible larval neuromuscular system and report here that larvae mutant for beta4GalNAcTA display distinct nerve and muscle phenotypes. Mutant larvae exhibit abnormal backward crawling, reductions in nerve terminal bouton number, decreased spontaneous transmitter-release frequency, and short, wide muscles. This muscle shape change appears to result from hypercontraction since the individual sarcomeres are shorter in mutant muscles. Analysis of muscle calcium signals showed altered calcium handling in the mutant, suggesting a mechanism by which hypercontraction could occur. All of these phenotypes can be rescued by a transgene carrying the beta4GalNAcTA genomic region. Tissue-specific expression, using the Gal4-UAS system, reveals that neural expression rescues the mutant crawling phenotype, while muscle expression rescues the muscle defect. Tissue-specific expression did not appear to rescue the decrease in neuromuscular junction bouton number, suggesting that this defect arises from cooperation between nerve and muscle. Altogether, these results suggest that beta4GalNAcTA has at least three distinct functional roles.  相似文献   

3.
The Drosophila genes fringe and brainiac exhibit sequence similarities to glycosyltransferases. Drosophila and mammalian fringe homologs encode UDP-N-acetylglucosamine:fucose-O-Ser beta1,3-N-acetylglucosaminyltransferases that modulate the function of Notch family receptors. The biological function of brainiac is less well understood. brainiac is a member of a large homologous mammalian beta3-glycosyltransferase family with diverse functions. Eleven distinct mammalian homologs have been demonstrated to encode functional enzymes forming beta1-3 glycosidic linkages with different UDP donor sugars and acceptor sugars. The putative mammalian homologs with highest sequence similarity to brainiac encode UDP-N-acetylglucosamine:beta1,3-N-acetylglucosaminyltransferases (beta3GlcNAc-transferases), and in the present study we show that brainiac also encodes a beta3GlcNAc-transferase that uses beta-linked mannose as well as beta-linked galactose as acceptor sugars. The inner disaccharide core structures of glycosphingolipids in mammals (Galbeta1-4Glcbeta1-Cer) and insects (Manbeta1-4Glcbeta1-Cer) are different. Both disaccharide glycolipids served as substrates for brainiac, but glycolipids of insect cells have so far only been found to be based on the GlcNAcbeta1-3Manbeta1-4Glcbeta1-Cer core structure. Infection of High Five(TM) cells with baculovirus containing full coding brainiac cDNA markedly increased the ratio of GlcNAcbeta1-3Manbeta1-4Glcbeta1-Cer glycolipids compared with Galbeta1-4Manbeta1-4Glcbeta1-Cer found in wild type cells. We suggest that brainiac exerts its biological functions by regulating biosynthesis of glycosphingolipids.  相似文献   

4.
The GalNAcbeta1,4GlcNAc (LacdiNAc or LDN) structure is a more common structural feature in invertebrate glycoconjugates when compared with the Galbeta1,4GlcNAc structure. Recently, beta1,4-N-acetylgalactosaminyltransferase (beta4GalNAcT) was identified in some invertebrates including Drosophila. However, the LDN structure has not been reported in Drosophila, and the biological function of LDN remains to be determined. In this study, we examined acceptor substrate specificity of Drosophila beta4GalNAcTA by using some N- and O-glycans on glycoproteins and neutral glycosphingolipids (GSLs). GalNAc was efficiently transferred toward N-glycans, O-glycans, and the arthro-series GSLs. Moreover, we showed that dbeta4GalNAcTA contributed to the synthesis of the LDN structure in vivo. The dbeta4GalNAcTA mRNA was highly expressed in the developmental and adult neuronal tissues. Thus, these results suggest that dbeta4GalNAcTA acts on the terminal GlcNAc residue of some glycans for the synthesis of LDN, and the LDN structure may play a role in the physiological or neuronal development of Drosophila.  相似文献   

5.
Drosophila melanogaster β4GalNAcTB mutant flies revealed that this particular N-acetylgalactosaminyltransferase is predominant in the formation of lacdiNAc (GalNAcβ1,4GlcNAc)-modified glycolipids, but enzymatic activity could not be confirmed for the cloned enzyme. Using a heterologous expression cloning approach, we isolated β4GalNAcTB together with β4GalNAcTB pilot (GABPI), a multimembrane-spanning protein related to Asp-His-His-Cys (DHHC) proteins but lacking the DHHC consensus sequence. In the absence of GABPI, inactive β4GalNAcTB is trapped in the endoplasmic reticulum (ER). Coexpression of β4GalNAcTB and GABPI generates the active enzyme that is localized together with GABPI in the Golgi. GABPI associates with β4GalNAcTB and, when expressed with an ER retention signal, holds active β4GalNAcTB in the ER. Importantly, treatment of isolated membrane vesicles with Triton X-100 disturbs β4GalNAcTB activity. This phenomenon occurs with multimembrane-spanning glycosyltransferases but is normally not a property of glycosyltransferases with one membrane anchor. In summary, our data provide evidence that GABPI is required for ER export and activity of β4GalNAcTB.  相似文献   

6.
The Drosophila genes, brainiac and egghead, encode glycosyltransferases predicted to act sequentially in early steps of glycosphingolipid biosynthesis, and both genes are required for development in Drosophila. egghead encodes a beta4-mannosyltransferase, and brainiac encodes a beta3-N-acetylglucosaminyltransferase predicted by in vitro analysis to control synthesis of the glycosphingolipid core structure, GlcNAcbeta1-3Manbeta1-4Glcbeta1-Cer, found widely in invertebrates but not vertebrates. In this report we present direct in vivo evidence for this hypothesis. egghead and brainiac mutants lack elongated glycosphingolipids and exhibit accumulation of the truncated precursor glycosphingolipids. Furthermore, we demonstrate that despite fundamental differences in the core structure of mammalian and Drosophila glycosphingolipids, the Drosophila egghead mutant can be rescued by introduction of the mammalian lactosylceramide glycosphingolipid biosynthetic pathway (Galbeta1-4Glcbeta1-Cer) using a human beta4-galactosyltransferase (beta4Gal-T6) transgene. Conversely, introduction of egghead in vertebrate cells (Chinese hamster ovary) resulted in near complete blockage of biosynthesis of glycosphingolipids and accumulation of Manbeta1-4Glcbeta1-Cer. The study demonstrates that glycosphingolipids are essential for development of complex organisms and suggests that the function of the Drosophila glycosphingolipids in development does not depend on the core structure.  相似文献   

7.
8.
Drosophila melanogaster has two β4-N-acetylgalactosaminyltransferases, β4GalNAcTA and β4GalNAcTB, that are able to catalyse the formation of lacdiNAc (GalNAcβ,4GlcNAc). LacdiNAc is found as a structural element of Drosophila glycosphingolipids (GSLs) suggesting that β4GalNAcTs contribute to the generation of GSL structures in vivo. Mutations in Egghead and Brainaic, enzymes that generate the β4GalNAcT trisaccharide acceptor structure GlcNAcβ,3Manβ,4GlcβCer, are lethal. In contrast, flies doubly mutant for the β4GalNAcTs are viable and fertile. Here, we describe the structural analysis of the GSLs in β4GalNAcT mutants and find that in double mutant flies no lacdiNAc structure is generated and the trisaccharide GlcNAcβ,3Manβ,4GlcβCer accumulates. We also find that phosphoethanolamine transfer to GlcNAc in the trisaccharide does not occur, demonstrating that this step is dependent on prior or simultaneous transfer of GalNAc. By comparing GSL structures generated in the β4GalNAcT single mutants we show that β4GalNAcTB is the major enzyme for the overall GSL biosynthesis in adult flies. In β4GalNAcTA mutants, composition of GSL structures is indistinguishable from wild-type animals. However, in β4GalNAcTB mutants precursor structures are accumulating in different steps of GSL biosynthesis, without the complete loss of lacdiNAc, indicating that β4GalNAcTA plays a minor role in generating GSL structures. Together our results demonstrate that both β4GalNAcTs are able to generate lacdiNAc structures in Drosophila GSL, although with different contributions in vivo, and that the trisaccharide GlcNAcβ,3Manβ,4GlcβCer is sufficient to avoid the major phenotypic consequences associated with the GSL biosynthetic defects in Brainiac or Egghead.  相似文献   

9.
The proteins encoded by the EXT1, EXT2, and EXTL2 genes, members of the hereditary multiple exostoses gene family of tumor suppressors, are glycosyltransferases required for the heparan sulfate biosynthesis. Only two homologous genes, rib-1 and rib-2, of the mammalian EXT genes were identified in the Caenorhabditis elegans genome. Although heparan sulfate is found in C. elegans, the involvement of the rib-1 and rib-2 proteins in heparan sulfate biosynthesis remains unclear. In the present study, the substrate specificity of a soluble recombinant form of the rib-2 protein was determined and compared with those of the recombinant forms of the mammalian EXT1, EXT2, and EXTL2 proteins. The present findings revealed that the rib-2 protein was a unique alpha1,4-N-acetylglucosaminyltransferase involved in the biosynthetic initiation and elongation of heparan sulfate. In contrast, the findings confirmed the previous observations that both the EXT1 and EXT2 proteins were heparan sulfate copolymerases with both alpha1,4-N-acetylglucosaminyltransferase and beta1,4-glucuronyltransferase activities, which are involved only in the elongation step of the heparan sulfate chain, and that the EXTL2 protein was an alpha1,4-N-acetylglucosaminyltransferase involved only in the initiation of heparan sulfate synthesis. These findings suggest that the biosynthetic mechanism of heparan sulfate in C. elegans is distinct from that reported for the mammalian system.  相似文献   

10.
Importin alpha's mediate nuclear transport by linking nuclear localization signal (NLS)-containing proteins to importin beta1. Animal genomes encode three conserved groups of importin alpha's, alpha1's, alpha2's, and alpha3's, each of which are competent to bind classical NLS sequences. Using Drosophila melanogaster we describe the isolation and phenotypic characterization of the first animal importin alpha1 mutant. Animal alpha1's are more similar to ancestral plant and fungal alpha1-like genes than to animal alpha2 and alpha3 genes. Male and female importin alpha1 (Dalpha1) null flies developed normally to adulthood (with a minor wing defect) but were sterile with defects in gametogenesis. The Dalpha1 mutant phenotypes were rescued by Dalpha1 transgenes, but not by Dalpha2 or Dalpha3 transgenes. Genetic interactions between the ectopic expression of Dalpha1 and the karyopherins CAS and importin beta1 suggest that high nuclear levels of Dalpha1 are deleterious. We conclude that Dalpha1 performs paralog-specific activities that are essential for gametogenesis and that regulation of subcellular Dalpha1 localization may affect cell fate decisions. The initial expansion and specialization of the animal importin alpha-gene family may have been driven by the specialized needs of gametogenesis. These results provide a framework for studies of the more complex mammalian importin alpha-gene family.  相似文献   

11.
Amphiphysin family members are implicated in synaptic vesicle endocytosis, actin localization and one isoform is an autoantigen in neurological autoimmune disorder; however, there has been no genetic analysis of Amphiphysin function in higher eukaryotes. We show that Drosophila Amphiphysin is localized to actin-rich membrane domains in many cell types, including apical epithelial membranes, the intricately folded apical rhabdomere membranes of photoreceptor neurons and the postsynaptic density of glutamatergic neuromuscular junctions. Flies that lack all Amphiphysin function are viable, lack any observable endocytic defects, but have abnormal localization of the postsynaptic proteins Discs large, Lethal giant larvae and Scribble, altered synaptic physiology, and behavioral defects. Misexpression of Amphiphysin outside its normal membrane domain in photoreceptor neurons results in striking morphological defects. The strong misexpression phenotype coupled with the mild mutant and lack of phenotypes suggests that Amphiphysin acts redundantly with other proteins to organize specialized membrane domains within a diverse array of cell types.  相似文献   

12.
UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnT I) and UDP-N-acetylglucosamine:alpha-6-D-mannoside beta-1,2-N-acetylglucosaminyltransferase II (GnT II) are key enzymes in the synthesis of Asn-linked hybrid and complex glycans. We have cloned cDNAs from Caenorhabditis elegans for three genes homologous to mammalian GnT I (designated gly-12, gly-13 and gly-14) and one gene homologous to mammalian GnT II. All four cDNAs encode proteins which have the domain structure typical of previously cloned Golgi-type glycosyltransferases and show enzymatic activity (GnT I and GnT II, respectively) on expression in transgenic worms. We have isolated worm mutants lacking the three GnT I genes by the method of ultraviolet irradiation in the presence of trimethylpsoralen (TMP); null mutants for GnT II have not yet been obtained. The gly-12 and gly-14 mutants as well as the gly-14;gly-12 double mutant displayed wild-type phenotypes indicating that neither gly-12 nor gly-14 is necessary for worm development under standard laboratory conditions. This finding and other data indicate that the GLY-13 protein is the major functional GnT I in C. elegans. The mutation lacking the gly-13 gene is partially lethal and the few survivors display severe morphological and behavioral defects. We have shown that the observed phenotype co-segregates with the gly-13 deletion in genetic mapping experiments although a second mutation near the gly-13 gene cannot as yet be ruled out. Our data indicate that complex and hybrid N-glycans may play critical roles in the morphogenesis of C. elegans, as they have been shown to do in mice and men.  相似文献   

13.
Proteins present in the seminal fluid of Drosophila melanogaster (accessory gland proteins Acps) contribute to female postmating behavioral changes, sperm storage, sperm competition, and immunity. Consequently, male-female coevolution and host-pathogen interactions are thought to underlie the rapid, adaptive evolution that characterizes several Acp-encoding genes. We propose that seminal fluid proteases are likely targets of selection due to their demonstrated or potential roles in between-sex interactions and immune processes. We use within- and between-species sequence data for 5 predicted protease-encoding Acp loci to test this hypothesis. Our polymorphism-based analyses find evidence for positive selection at 2 genes, both of which encode predicted serine protease homologs. One of these genes, CG6069, also shows evidence for consistent selection on a subset of codons over a deeper evolutionary time scale. The second gene, CG9997, was previously shown to be essential for normal sperm usage, suggesting that sexual selection may underlie its history of adaptation.  相似文献   

14.
15.
Gao Z  Ruden DM  Lu X 《Current biology : CB》2003,13(24):2175-2178
Sperm of both mammals and invertebrates move toward specific sites in the female reproductive tract. However, molecular mechanisms for sperm to follow directional cues are unknown. Here, we report genetic analysis of Drosophila Pkd2 at 33E3 (Pkd2, CG6504), which encodes a Ca(2+)-activated, nonselective cation channel homologous to the human Pkd2 autosomal dominant polycystic kidney disease (ADPKD) gene. The PKD2 family of genes has been implicated in sensory responses through protein localization on primary cilia of epithelia and neurons. In renal tubules, cilium-associated PKD2 appears to mediate Ca(2+) influx in response to fluid flow, and the loss of fluid sensation probably contributes to cyst growth and ADPKD. Sperm tails or flagella are specialized cilia essential for movement. Drosophila Pkd2 is abundantly associated with the tail and the acrosome-containing head region of mature sperm. Targeted disruption of Pkd2 results in male sterility without affecting spermatogenesis. The mutant sperm are motile but fail to swim into the storage organs in the female. Rare mutant sperm that reach the storage organs are able to fertilize the egg and produce viable progeny. Our data demonstrate that the Drosophila PKD2 cation channel operates in sperm for directional movement inside the female reproductive tract.  相似文献   

16.
Palmitoylation is the post-translational addition of a palmitate moiety to a cysteine residue through a covalent thioester bond. The addition and removal of this modification is controlled by both palmitoyl acyl-transferases and thioesterases. Using bioinformatic analysis, we identified 22 DHHC family palmitoyl acyl-transferase homologs in the Drosophila genome. We used in situ hybridization,RT-PCR, and published FlyAtlas microarray data to characterize the expression patterns of all 22 fly homologs. Our results indicate that all are expressed genes, but several, including CG1407, CG4676, CG5620, CG6017/dHIP14, CG6618, CG6627 and CG17257 appear to be enriched in neural tissues suggesting that they are important for neural function. Furthermore, we have found that several may be expressed in a sex-specific manner with adult male specific expression of CG4483 and CG17195. Using tagged versions of the DHHC genes, we demonstrate that fly DHHC proteins are primarily located in either the Golgi Apparatus or Endoplasmic Reticulum in S2 cells, except for CG1407, which was found on the plasma membrane. We also characterized the subcellular localization and expression of the three known thioesterases: Palmitoyl-protein Thioesterase 1 (Ppt1), Palmitoyl-protein Thioesterase 2 (Ppt2)and Acyl-protein Thioesterase 1 (APT1). Our results indicate that Ppt1 and Ppt2 are the major lysosomal thioesterases while APT1 is the likely cytoplasmic thioesterase. Finally, in vivo rescue experiments show that Ppt2 expression cannot rescue the neural inclusion phenotypes associated with loss of Ppt1, further supporting distinct functions and substrates for these two thioesterases. These results will serve as the basis for a more complete understanding of the protein palmitoylome's normal cellular functions in the fly and will lead to further insights into the molecular etiology of diseases associated with the mis-regulation of palmitoylation.  相似文献   

17.
The recent completion of the Drosophila genome sequence opens new avenues for neurobiology research. We screened the fly genome sequence for homologs of mammalian genes implicated directly or indirectly in exocytosis and endocytosis of synaptic vesicles. We identified fly homologs for 93% of the vertebrate genes that were screened. These are on average 60% identical and 74% similar to their vertebrate counterparts. This high degree of conservation suggests that little protein diversification has been tolerated in the evolution of synaptic transmission. Finally, and perhaps most exciting for Drosophila neurobiologists, the genomic sequence allows us to identify P element transposon insertions in or near genes, thereby allowing rapid isolation of mutations in genes of interest. Analysis of the phenotypes of these mutants should accelerate our understanding of the role of numerous proteins implicated in synaptic transmission.  相似文献   

18.
The proteins encoded by all of the five cloned human EXT family genes (EXT1, EXT2, EXTL1, EXTL2, and EXTL3), members of the hereditary multiple exostoses gene family of tumor suppressors, are glycosyltransferases required for the biosynthesis of heparan sulfate. In the Caenorhabditis elegans genome, only two genes, rib-1 and rib-2, homologous to the mammalian EXT genes have been identified. Although rib-2 encodes an N-acetylglucosaminyltransferase involved in initiating the biosynthesis and elongation of heparan sulfate, the involvement of the protein encoded by rib-1 in the biosynthesis of heparan sulfate remains unclear. Here we report that RIB-1 is indispensable for the biosynthesis and for embryonic morphogenesis. Despite little individual glycosyltransferase activity by RIB-1, the polymerization of heparan sulfate chains was demonstrated when RIB-1 was coexpressed with RIB-2 in vitro. In addition, RIB-1 and RIB-2 were demonstrated to interact by pulldown assays. To investigate the functions of RIB-1 in vivo, we depleted the expression of rib-1 by deletion mutagenesis. The null mutant worms showed reduced synthesis of heparan sulfate and embryonic lethality. Notably, the null mutant embryos showed abnormality at the gastrulation cleft formation stage or later and arrested mainly at the 1-fold stage. Nearly 100% of the embryos died before L1 stage, although the differentiation of some of the neurons and muscle cells proceeded normally. Similar phenotypes have been observed in rib-2 null mutant embryos. Thus, RIB-1 in addition to RIB-2 is indispensable for the biosynthesis of heparan sulfate in C. elegans, and the two cooperate to synthesize heparan sulfate in vivo. These findings also show that heparan sulfate is essential for post-gastrulation morphogenic movement of embryonic cells and is indispensable for ensuring the normal spatial organization of differentiated tissues and organs.  相似文献   

19.
《Fly》2013,7(4):198-214
Palmitoylation is the post-translational addition of a palmitate moiety to a cysteine residue through a covalent thioester bond. The addition and removal of this modification is controlled by both palmitoyl acyl-transferases and thioesterases. Using bioinformatic analysis, we identified 22 DHHC family palmitoyl acyl-transferase homologs in the Drosophila genome. We used in situ hybridization, RT-PCR, and published FlyAtlas microarray data to characterize the expression patterns of all 22 fly homologs. Our results indicate that all are expressed genes, but several, including CG1407, CG4676, CG5620, CG6017/dHIP14, CG6618, CG6627, and CG17257 appear to be enriched in neural tissues suggesting that they are important for neural function. Furthermore, we have found that several may be expressed in a sex-specific manner with adult male-specific expression of CG4483 and CG17195. Using tagged versions of the DHHC genes, we demonstrate that fly DHHC proteins are primarily located in either the Golgi Apparatus or Endoplasmic Reticulum in S2 cells, except for CG1407, which was found on the plasma membrane. We also characterized the subcellular localization and expression of the three known thioesterases: Palmitoyl-protein Thioesterase 1 (Ppt1), Palmitoyl-protein Thioesterase 2 (Ppt2), and Acyl-protein Thioesterase 1 (APT1). Our results indicate that Ppt1 and Ppt2 are the major lysosomal thioesterases while APT1 is the likely cytoplasmic thioesterase. Finally, in vivo rescue experiments show that Ppt2 expression cannot rescue the neural inclusion phenotypes associated with loss of Ppt1, further supporting distinct functions and substrates for these two thioesterases. These results will serve as the basis for a more complete understanding of the protein palmitoylome’s normal cellular functions in the fly and will lead to further insights into the molecular etiology of diseases associated with the mis-regulation of palmitoylation.  相似文献   

20.
An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control   总被引:13,自引:0,他引:13  
Rad51 is a conserved protein essential for recombinational repair of double-stranded DNA breaks (DSBs) in somatic cells and during meiosis in germ cells. Yeast Rad51 mutants are viable but show meiosis defects. In the mouse, RAD51 deletions cause early embryonic death, suggesting that in higher eukaryotes Rad51 is required for viability. Here we report the identification of SpnA as the Drosophila Rad51 gene, whose sequence among the five known Drosophila Rad51-like genes is most closely related to the Rad51 homologs of human and yeast. DmRad51/spnA null mutants are viable but oogenesis is disrupted by the activation of a meiotic recombination checkpoint. We show that the meiotic phenotypes result from an inability to effectively repair DSBs. Our study further demonstrates that in Drosophila the Rad51-dependent homologous recombination pathway is not essential for DNA repair in the soma, unless exposed to DNA damaging agents. We therefore propose that under normal conditions a second, Rad51-independent, repair pathway prevents the lethal effects of DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号