首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anesthetized dogs with thoracotomy were injected with Evans blue dye and were exposed acutely (5 min) to wood smoke inhalation. Thin slices from freeze-dried samples were photographed and assessed for periarterial and perivenous cuff area and for blue coloration with a score of 0 to 5. Bloodless extravascular lung water (EVLW) was also measured. The smoke-exposed animals were compared with controls and with animals exposed to alloxan or to high-pressure-induced pulmonary edema. EVLW at 2 h after smoke (6.46 +/- 0.80) was above control value (4.30 +/- 0.63) but not different from the alloxan (6.13 +/- 0.70) or high-pressure (6.88 +/- 1.30) groups. Despite the similarity in EVLW in the edematous lungs, there were marked differences in the intensity of blue color and size of cuffing around arteries and veins: the smoke, alloxan, and high-pressure groups had blue color scores of 1.0 +/- 0.1, 2.9 +/- 0.3, and 0.3 +/- 0.1, respectively. These scores indicated a large increase in microvascular permeability to proteins in the alloxan group, a moderate increase in the smoke group, and minimal change in the high-pressure group. The perivascular cuff area was largest in the alloxan group and moderate in the smoke and high-pressure groups. The cuff area was higher for arteries than for veins in all groups except the 0.5-h smoke group. We conclude that smoke inhalation causes a moderate increase in permeability and EVLW compared with alloxan. The extravascular lung water accumulates preferentially around the arteries, but the size of the perivascular cuff is not similar for all causes of pulmonary edema.  相似文献   

2.
Histological studies provide evidence that the bronchial veins are a site of leakage in histamine-induced pulmonary edema, but the physiological importance of this finding is not known. To determine if a lung perfused by only the bronchial arteries could develop pulmonary edema, we infused histamine for 2 h in anesthetized sheep with no pulmonary arterial blood flow to the right lung. In control sheep the postmortem extravascular lung water volume (EVLW) in both the right (occluded) and left (perfused) lung was 3.7 +/- 0.4 ml X g dry lung wt-1. Following histamine infusion, EVLW increased to 4.4 +/- 0.7 ml X g dry lung wt-1 in the right (occluded) lung (P less than 0.01) and to 5.3 +/- 1.0 ml X g dry wt-1 in the left (perfused) lung (P less than 0.01). Biopsies from the right (occluded) lungs scored for the presence of edema showed a significantly higher score in the lungs that received histamine (P less than 0.02). Some leakage from the pulmonary circulation of the right lung, perfused via anastomoses from the bronchial circulation, cannot be excluded but should be modest considering the low pressures in the pulmonary circulation following occlusion of the right pulmonary artery. These data show that perfusion via the pulmonary arteries is not a requirement for the production of histamine-induced pulmonary edema.  相似文献   

3.
Smoke inhalation can produce acute pulmonary edema. Previous studies have shown that the bronchial arteries are important in acute pulmonary edema occurring after inhalation of a synthetic smoke containing acrolein, a common smoke toxin. We hypothesized that inhalation of smoke from burning cotton, known to contain acrolein, would produce in sheep acute pulmonary edema that was mediated by the bronchial circulation. We reasoned that occluding the bronchial arteries would eliminate smoke-induced pulmonary edema, whereas occlusion of the pulmonary artery would not. Smoke inhalation increased lung lymph flow from baseline from 2.4 +/- 0.7 to 5.6 +/- 1.2 ml/0.5 h at 30 min (P < 0.05) to 9.1 +/- 1 ml/0.5 h at 4 h (P < 0.05). Bronchial artery ligation diminished and delayed the rise in lymph flow with baseline at 2.8 +/- 0.7 ml/0.5 h rising to 3.1 +/- 0. 8 ml/0.5 h at 30 min to 6.5 +/- 1.5 ml/0.5 h at 240 min (P < 0.05). Wet-to-dry ratio was 4.1 +/- 0.2 in control, 5.1 +/- 0.3 in smoke inhalation (P < 0.05), and 4.4 +/- 0.4 in bronchial artery ligation plus smoke-inhalation group. Smoke inhalation after occlusion of the right pulmonary artery resulted in a wet-to-dry ratio after 4 h in the right lung of 5.5 +/- 0.8 (P < 0.05 vs. control) and in the left nonoccluded lung of 5.01 +/- 0.7 (P < 0.05). Thus the bronchial arteries may be major contributors to acute pulmonary and airway edema following smoke inhalation because the edema occurs in the lung with the pulmonary artery occluded but not in the lungs with bronchial arteries ligated.  相似文献   

4.
We investigated the contribution of the bronchial blood flow to the lung lymph flow (QL) and lung edema formation after inhalation injury in sheep (n = 18). The animals were equally divided into three groups and chronically prepared by implantation of cardiopulmonary catheters and a flow probe on the common bronchial artery. Groups 1 and 2 sheep were insufflated with 48 breaths of cotton smoke while group 3 received only room air. Just before injury, the bronchial artery of group 2 animals was occluded. The occlusion was maintained for the duration of the 24-h study period. At the end of the investigation, samples of lung were taken for determination of blood-free wet weight-to-dry weight ratio (W/D). Inhalation injury induced a sevenfold increase in QL in group 1 (7 +/- 1 to 50 +/- 9 ml/h; P less than 0.05) but only a threefold increase in group 2 (10 +/- 2 to 28 +/- 7 ml/h; P less than 0.05). The mean W/D value of group 1 animals was 23% higher than that of group 2 (5.1 +/- 0.4 vs. 3.9 +/- 0.2; P less than 0.05). Our data suggest that the bronchial circulation contributes to edema formation in the lung that is often seen after the acute lung injury with smoke inhalation.  相似文献   

5.
Pulmonary edema can follow smoke inhalation and is believed to be due to the multiple chemical toxins in smoke, not the heat. We have developed a synthetic smoke composed of aerosolized charcoal particles to which one toxin at a time can be added to determine whether it produces pulmonary edema. Acrolein, a common component of smoke, when added to the synthetic smoke, produced a delayed-onset pulmonary edema in dogs in which the extravascular lung water (EVLW) as detected by a double-indicator technique began to rise after 42 +/- 2 (SE) min from 148 +/- 16 to 376 +/- 60 ml at 165 min after smoke exposure. The resulting pulmonary edema was widespread macroscopically but appeared focal microscopically with fibrin deposits in alveoli adjacent to small bronchi and bronchioles. Bronchial vessels were markedly dilated and congested. Monastral blue B when injected intravenously leaked into the walls of the bronchial vessels down to the region of the small bronchioles (less than or equal to 0.5 mm ID) of acrolein-smoke-exposed dogs but not into the pulmonary vessels. Furthermore, ligation of the bronchial arteries delayed the onset of pulmonary edema (87 +/- 3 min, P less than 0.05) and lessened the magnitude (232 +/- 30 ml, P less than 0.05) at 166 +/- 3 min after acrolein-smoke exposure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We investigated the effect of positive end-expiratory pressure (PEEP) on the extravascular thermal volume of the lung (ETV) determined by the thermal-dye technique in three canine models of pulmonary edema created by injection of alpha-naphthylthiourea (ANTU) or oleic acid (OA) into the pulmonary circulation or intrabronchial instillation of hydrochloric acid (HCl). ETV was determined before, during, and after ventilation with 14 cmH2O PEEP, and final ETV was compared with the extravascular lung mass (ELM) determined postmortem. Final ETV correctly estimated ELM in 12 animals with ANTU injury, ETV/ELM = 1.04 +/- 0.13, but underestimated after HCl injury (n = 5), ETV/ELM = 0.61 +/- 0.23, and OA injury (n = 6), ETV/ELM = 0.73 +/- 0.19. Whereas PEEP had no consistent effect on extravascular thermal volume in ANTU edema, there was a reversible increase in ETV during PEEP in animals with HCl or OA injury and underestimation of ELM. The increase in ETV during PEEP averaged 9.3 +/- 3.8 ml/kg (62 +/- 42%) over the mean of the pre- and post-PEEP values after HCl injury (P less than 0.01) and 6.7 +/- 4.4 ml/kg (47 +/- 35%) after OA injury (P less than 0.02). There was an inverse correlation between the change in ETV during PEEP and the ETV/ELM ratio for animals with HCl and OA injury (r = -0.94). We conclude that PEEP produces a reversible increase in ETV in some models of lung injury by allowing for distribution of thermal indicator through a larger fraction of the lung water and that this response may be useful to detect underestimation when gravimetric measurements are not available.  相似文献   

7.
Infusion of Escherichia coli endotoxin (0.12-1.5 micrograms/kg) into unanesthetized sheep causes transient pulmonary hypertension and several hours of increased lung vascular permeability, after which sheep recover. To produce enough lung injury to result in pulmonary edema with respiratory failure, we infused larger doses of E. coli endotoxin (2.0-5.0 micrograms/kg) into 11 chronically instrumented unanesthetized sheep and continuously measured pulmonary arterial, left atrial and aortic pressures, dynamic lung compliance, lung resistance, and lung lymph flow. We intermittently measured arterial blood gas tensions and pH, made interval chest radiographs, and calculated postmortem extravascular bloodless lung water-to-dry lung weight ratio (EVLW/DLW). Of 11 sheep 8 developed respiratory failure; 7 died spontaneously 6.3 +/- 1.1 h, and one was killed 10 h after endotoxin infusion. All sheep that had a premortem room air alveolar-arterial gradient in partial pressure of O2 (PAo2-Pao2) greater than 42 Torr (58 +/- 5 (SE) Torr) died. Of eight sheep that had radiographs made, six developed radiographically evident interstitial or interstitial and alveolar edema. Pulmonary artery pressure rose from base line 22 +/- 2 to 73 +/- 3 cmH2O and remained elevated above baseline levels until death. There was an initial fourfold decrease in dynamic compliance and sixfold increase in pulmonary resistance; both variables remained abnormal until death. EVLW/DLW increased with increasing survival time after endotoxin infusion, suggesting that pulmonary edema accumulated at the same rate in all fatally injured sheep, regardless of other variables. The best predictor of death was a high PAo2-Pao2. The marked increase in pulmonary resistance and decrease in dynamic compliance occurred too early after endotoxin infusion (15-30 min) to be due to pulmonary edema. The response to high-dose endotoxin in sheep closely resembles acute respiratory failure in humans following gram-negative septicemia. Respiratory failure and death in this model were not due to pulmonary edema alone.  相似文献   

8.
Neutropenia was produced in goats by injection of either nitrogen mustard, (1.5 mg/kg) or hydroxyurea (200 mg X kg-1 X day-1). A nitrogen mustard (M + E) group (n = 6), a hydroxyurea (H + E) group (n = 5), and a control (E) group (n = 7) were given 1-h infusions of endotoxin (5 micrograms/kg total dose), then monitored for up to 5 h. Postmortem extravascular lung water (EVLW) was significantly higher in the M + E group (14.2 +/- 4.4 ml/kg) and the E group (11.9 +/- 3.9 ml/kg) when compared with a normal control (6.6 +/- 1.3 ml/kg) group that did not receive endotoxin. EVLW in a group made neutropenic with nitrogen mustard (6.7 +/- 1.3 ml/kg) and the H + E (7.9 +/- 1.5 ml/kg) groups were not statistically different from each other or from normal controls. Circulating neutrophil counts averaged 32 +/- 42 cells/microliter in the M + E group and 180 +/- 210 cells/microliter in the H + E group. Only minimal histological changes were seen in the H + E group, but the E and M + E lungs had severe pulmonary edema. We conclude that neutrophils are not required for increased EVLW and decreased arterial O2 partial pressure after endotoxin infusion, and hydroxyurea prevents at least part of the pulmonary edema after endotoxin by a mechanism that is not neutrophil dependent.  相似文献   

9.
Synthetic smoke with acrolein but not HCl produces pulmonary edema   总被引:2,自引:0,他引:2  
The chemical toxins in smoke and not the heat are responsible for the pulmonary edema of smoke inhalation. We developed a synthetic smoke composed of carbon particles (mean diameter of 4.3 microns) to which toxins known to be in smoke, such as HCl or acrolein, could be added one at a time. We delivered synthetic smoke to dogs for 10 min and monitored extravascular lung water (EVLW) accumulation thereafter with a double-indicator thermodilution technique. Final EVLW correlated highly with gravimetric values (r = 0.93, P less than 0.01). HCl in concentrations of 0.1-6 N when added to heated carbon (120 degrees C) and cooled to 39 degrees C produced airway damage but no pulmonary edema. Acrolein, in contrast, produced airway damage but also pulmonary edema, whereas capillary wedge pressures remained stable. Low-dose acrolein smoke (less than 200 ppm) produced edema in two of five animals with a 2- to 4-h delay. Intermediate-dose acrolein smoke (200-300 ppm) always produced edema at an average of 147 +/- 57 min after smoke, whereas high-dose acrolein (greater than 300 ppm) produced edema at 65 +/- 16 min after smoke. Thus acrolein but not HCl, when presented as a synthetic smoke, produced a delayed-onset, noncardiogenic, and peribronchiolar edema in a roughly dose-dependent fashion.  相似文献   

10.
We compared the effect of crystalloid to colloid fluid infusion on extravascular lung water (EVLW) in hypoproteinemic dogs. Plasmapheresis was used to decrease plasma colloid osmotic pressure (COP) to less than 40% of its base-line level. Five animals were then infused with 0.9% sodium chloride (saline), five with 5% human serum albumin (albumin), and five with 6% hydroxyethyl starch (hetastarch) to increase the pulmonary arterial occlusive pressure by 10 Torr in comparison to the postplasmapheresis level for a 5-h study interval. On completion of the procedure, the lungs were harvested and EVLW measured by the blood-free gravimetric technique. Three to six times the volume of saline compared with albumin or hetastarch (P less than 0.001) was infused. In the saline animals, COP was decreased to 3.3 +/- 1.3 Torr, whereas COP was increased to 18.1 +/- 1.4 Torr in albumin animals (P less than 0.001) and 20.1 +/- 1.6 Torr in the hetastarch group (P less than 0.001). The saline-treated dogs developed gross signs of systemic edema. The EVLW was 8.1 +/- 0.9 ml/kg in saline animals compared with 5.3 +/- 2.1 ml/kg in the albumin (P less than 0.05) and 4.1 +/- 1.4 ml/kg in the hetastarch (P less than 0.01) groups. These data indicate that crystalloid fluid infusion during hypoproteinemia is associated with the development of both systemic and pulmonary edema.  相似文献   

11.
To investigate how fast and to what extent superior vena caval hypertension (SVCH) increases lung water in acute increased-permeability state, we studied the time course of lung water accumulation for 3 h in anesthetized dogs under different treatments: 1) controls without intervention (5 dogs), 2) SVCH alone (5 dogs), 3) mild lung microvascular injury induced by low-dose alloxan (75 mg/kg) alone (5 dogs), and 4) SVCH coupled with low-dose alloxan (5 dogs). Neither low-dose alloxan alone nor SVCH alone [superior vena caval pressure (Psvc) = 11.0 +/- 3.1 (SD) mmHg] increased lung water significantly. The SVCH coupled with low-dose alloxan (Psvc = 11.3 +/- 2.7 mmHg) doubled extravascular lung thermal volume measured by the thermal-dye dilution technique within 1 h (5.3 +/- 0.9 ml/kg at base line and 10.9 +/- 4.7 ml/kg at 1 h), then remained unchanged (12.5 +/- 5.7 ml/kg at 3 h). This increase in lung water was confirmed by gravimetric method (5.69 +/- 1.71 g/g blood-free dry wt). We conclude that SVCH is one of the factors that may promote lung water accumulation in increased-permeability state.  相似文献   

12.
We tested the accuracy, sensitivity, and reproducibility of a new lung water computer, based on the thermal conductivity technique, in 22 anesthetized closed-chest ventilated sheep with different treatments: 1) controls (n = 8), 2) 0.05 ml/kg of oleic acid + 100 ml/kg of lactated Ringer solution (n = 6), and 3) airway instillation of saline [3.1 +/- 1.3 (SD) g/kg, n = 8]. After 4 h, we determined the extravascular lung water gravimetrically. We found a significant overall correlation between the final extravascular lung thermal volume and the gravimetric extravascular lung mass (P < 0.001). Although the average ratio of extravascular lung thermal volume to extravascular lung mass was 0.97 +/- 0.25 ml/g for all groups, the computer overestimated extravascular lung mass in controls by 10% (17 g) and underestimated it in sheep with oleic acid by 15% (95 g) and in sheep with airway instillation by 8% (37 g). The computer also underestimated the small quantities of saline placed via the airway in the alveolar space by 75% (61 g). Reproducibility of three consecutive measurements was 4.3% (SE). We conclude that the thermal conductivity technique has an ability to detect the baseline extravascular lung mass but has a poor ability to detect an accurate increment of the extravascular lung water under poor tissue perfusion in anesthetized ventilated sheep.  相似文献   

13.
The systemic blood flow to the airways of the left lung was determined by the radioactive microsphere technique before and 17 h after smoke inhalation in six conscious sheep (smoke group) and six sheep insufflated with air alone (sham group). Smoke inhalation caused a sixfold increase in systemic blood flow to the lower trachea (baseline 10.6 +/- 1.7 vs. injury 60.9 +/- 16.1 ml.min-1.100 g-1) and an 11- to 14-fold increase to the intrapulmonary central airways (baseline range 9.5 +/- 1.9 to 13.5 +/- 3.7 ml.min-1.100 g-1 vs. injury 104.6 +/- 32.2 to 187.3 +/- 83.6 ml.min-1.100 g-1). There was a trend for this hyperemic response to be greater as airway diameter decreased from the trachea to 2-mm-diam central airways. In airways smaller than 2 mm, the hyperemic response appeared to diminish. The total systemic blood flow to whole lung is predominantly to small peripheral airways and showed no significant increase from its baseline level of 17.5 +/- 3.7 ml.min-1.100 g-1 in the lung homogenate. Occlusion of the bronchoesophageal artery decreased central airway blood flow 60-80% and peripheral airway blood flow 40-60% in both the sham and the smoke groups.  相似文献   

14.
Smoke inhalation injuries are the leading cause of mortality from burn injury. Airway obstruction due to mucus plugging and bronchoconstriction can cause severe ventilation inhomogeneity and worsen hypoxia. Studies describing changes of viscoelastic characteristics of the lung after smoke inhalation are missing. We present results of a new smoke inhalation device in sheep and describe pathophysiological changes after smoke exposure. Fifteen female Merino ewes were anesthetized and intubated. Baseline data using electrical impedance tomography and multiple-breath inert-gas washout were obtained by measuring ventilation distribution, functional residual capacity, lung clearance index, dynamic compliance, and stress index. Ten sheep were exposed to standardized cotton smoke insufflations and five sheep to sham smoke insufflations. Measured carboxyhemoglobin before inhalation was 3.87 +/- 0.28% and 5 min after smoke was 61.5 +/- 2.1%, range 50-69.4% (P < 0.001). Two hours after smoke functional residual capacity decreased from 1,773 +/- 226 to 1,006 +/- 129 ml and lung clearance index increased from 10.4 +/- 0.4 to 14.2 +/- 0.9. Dynamic compliance decreased from 56.6 +/- 5.5 to 32.8 +/- 3.2 ml/cmH(2)O. Stress index increased from 0.994 +/- 0.009 to 1.081 +/- 0.011 (P < 0.01) (all means +/- SE, P < 0.05). Electrical impedance tomography showed a shift of ventilation from the dependent to the independent lung after smoke exposure. No significant change was seen in the sham group. Smoke inhalation caused immediate onset in pulmonary dysfunction and significant ventilation inhomogeneity. The smoke inhalation device as presented may be useful for interventional studies.  相似文献   

15.
The pulmonary edema of smoke inhalation is caused by the toxins of smoke and not the heat. We investigated the potential of smoke consisting of carbon in combination with either acrolein or formaldehyde (both common components of smoke) to cause pulmonary edema in anesthetized sheep. Seven animals received acrolein smoke, seven animals received a low-dose formaldehyde smoke, and five animals received a high-dose formaldehyde smoke. Pulmonary arterial pressure, pulmonary capillary wedge pressure, and cardiac output were not affected by smoke in any group. Peak airway pressure increased after acrolein (14 +/- 1 to 21 +/- 2 mmHg; P less than 0.05) and after low- and high-dose formaldehyde (14 +/- 1 to 21 +/- 1 and 20 +/- 1 mmHg, respectively; both P less than 0.05). The partial pressure of O2 in arterial blood fell sharply after acrolein [219 +/- 29 to 86 +/- 9 (SE) Torr; P less than 0.05] but not after formaldehyde. Only acrolein resulted in a rise in lung lymph flow (6.5 +/- 2.2 to 17.9 +/- 2.6 ml/h; P less than 0.05). Lung lymph-to-plasma protein ratio was unchanged for all three groups, but clearance of lymph protein was increased after acrolein. After acrolein, the blood-free extravascular lung water-to-lung dry weight ratio was elevated (P less than 0.05) compared with both low- and high-dose formaldehyde groups (4.8 +/- 0.4 to 3.3 +/- 0.2 and 3.6 +/- 0.2, respectively). Lymph clearance (ng/h) of thromboxane B2, leukotriene B4, and the sulfidopeptide leukotrienes was elevated after acrolein but not formaldehyde.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The degree of pulmonary perfusion may have an important role in the pathogenesis of inhalation injury. We studied this in sheep that had only one lung exposed to smoke. The right lung and upper airway of 12 chronically instrumented sheep were insufflated with cotton smoke. In six animals, the left pulmonary artery was occluded between 4 and 10 h after smoke insufflation. All animals were studied for 24 h and then killed, and lung tissue was harvested. The smoked as well as the air-insufflated lung of all animals showed an increase in wet-to-dry weight ratio and tissue conjugated dienes (products of lipid peroxidation). Neither the intermittent blood flow increase to the smoked lung nor the simultaneous blood flow reduction with a concomitant polymorphonuclear neutrophil entrapment in the air-insufflated lung significantly affected the histopathological outcome of the respective lung. We conclude that tissue damage after inhalation injury cannot be diminished by increasing the flow to smoked areas. Ischemia-reperfusion injury does not have a major role in the lung damage seen with inhalation injury.  相似文献   

17.
We assessed pulmonary endothelial and epithelial permeability and lung lymph flow in nine adult sheep under base-line conditions and after resuscitation from profound hemorrhagic shock. Animals were mechanically ventilated and maintained on 1% halothane anesthesia while aortic pressure was held at 40 Torr for 3 h. Systemic heparin was not used. After reinfusion of shed blood, sheep recovered from anesthesia and we measured lung lymph flow (QL), lymph-to-plasma concentration ratio for proteins, and time taken to reach half-equilibrium concentration of intravenous tracer albumin in lymph (t1/2). Twenty-four hours after bolus injection of radio-albumin we lavaged subsegments of the right upper lobe and determined fractional equilibration of the tracer in the alveolar luminal-lining layer. In each sheep we had measured these parameters 7 days earlier under base-line conditions. Animals were killed, and the lungs were used for gravimetric determination of extravascular lung water (gravimetric extravascular lung water-to-dry weight ratio) 24 h after resuscitation from shock. Pulmonary endothelial injury after resuscitation was evidenced by marked increase in QL, without fall in lymph-to-plasma ratio. Time taken to reach half-equilibrium concentration fell from 169 +/- 47 (SD) min in base-line studies to 53 +/- 33 min after shock. There was no evidence of lung epithelial injury. Gravimetric extravascular lung water-to-dry weight ratio was significantly increased in these animals killed 24 h after resuscitation (4.94 +/- 0.29) compared with values in our laboratory controls (4.13 +/- 0.09, mean +/- SD). These data demonstrate a loss of lung endothelial integrity in sheep after resuscitation from profound hemorrhagic shock.  相似文献   

18.
We hypothesized that the pulmonary damage induced by smoke inhalation is the result of ischemic reperfusion injury. We determined the effect of allopurinol (xanthine oxidase inhibitor) on the pulmonary microvascular fluid flux in an ovine model after inhalation of cotton smoke (n = 13) and compared these data with those from untreated similarly smoke-injured (n = 7), as well as sham- (air, n = 9) smoked, animals and sheep given an equivalent dose of CO (n = 7). Smoke injury resulted in an increased lung lymph flow, lymph-to-plasma protein ratio, lung content of polymorphonuclear cells, and extravascular lung water (gravametric), in addition to histological evidence of tissue (pulmonary) edema and destruction. No significant difference was found in these variables between the sheep that were injured with smoke whether or not they were pretreated with allopurinol. The sham-smoked and CO-insufflated animals showed no significant changes in cardiopulmonary function or morphology. We conclude that there are few data to support a role of ischemic reperfusion injury in the pulmonary damage seen after smoke inhalation.  相似文献   

19.
Injury to the bronchial vasculature may contribute to liquid and solute leakage into the lung during noncardiac pulmonary edema. The purpose of this study was to measure changes in hemodynamics, pulmonary mechanics, extravascular lung water, and lung morphometry after selectively injuring the bronchial vasculature in anesthetized sheep. In two groups of seven sheep, we injected oleic acid (0.1 ml/kg) or normal saline directly into the bronchoesophageal artery. We measured systemic and pulmonary arterial pressures, cardiac output, oxygen saturation, pulmonary resistance and compliance, and lung volumes before and 1 and 4 h after injection. The lungs were removed for measurement of extravascular water, histology, and morphometry. Four hours after injection of oleic acid, cardiac output decreased but pulmonary arterial pressure did not change. In addition, pulmonary resistance increased and dynamic compliance and vital capacity decreased. Extravascular lung water was slightly but significantly greater in the oleic acid group. Histological examination showed interstitial edema and leukocytes in airway walls and sloughing of bronchial epithelium but little or no alveolar edema. Morphometric analysis showed significant thickening of airway walls. We conclude that direct injury to the bronchial vasculature increases lung resistance, decreases dynamic compliance, and increases extravascular lung water by the accumulation of an inflammatory infiltrate in airway walls.  相似文献   

20.
Oleic acid lung injury in sheep   总被引:3,自引:0,他引:3  
Intravenous infusion of oleic acid into experimental animals causes acute lung injury resulting in pulmonary edema. We investigated the mechanism of oleic acid lung injury in sheep. In experiments with anesthetized and unanesthetized sheep with lung lymph fistulas, we measured pulmonary arterial and left atrial pressures, cardiac output, lung lymph flow, and lymph and plasma protein concentrations. We injured the lungs with intravenous infusions of oleic acid at doses ranging from 0.015 to 0.120 ml/kg. We found that oleic acid caused reproducible dose-related increases in pulmonary arterial pressure and pulmonary vascular resistance, arterial hypoxemia, and increased protein-rich lung lymph flow and extravascular lung water. The lung fluid balance changes were characteristic of increased permeability pulmonary edema. Infusion of the esterified fat triolein had no hemodynamic or lung fluid balance effects. Depletion of leukocytes with a nitrogen mustard or platelets with an antiplatelet serum had no effect on oleic acid lung injury. Treatment of sheep before injury with methylprednisolone 30 mg/kg or ibuprofen 12.5-15.0 mg/kg also had no effects. Unlike other well-characterized sheep lung injuries, injury caused by oleic acid does not require participation of leukocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号