首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Enterohaemorrhagic Escherichia coli (EHEC) are food-borne intestinal pathogens with a low infectious dose. Adhesion of some EHEC strains to epithelial cells is attributed, in part, to intimin, but other factors may be required for the intestinal colonizing ability of these bacteria. In order to identify additional adherence factors of EHEC, we generated transposon mutants of a clinical EHEC isolate of serotype O111:H-, which displayed high levels of adherence to cultured Chinese hamster ovary (CHO) cells. One mutant was markedly deficient in CHO cell adherence, human red blood cell agglutination and autoaggregation. Sequence analysis of the gene disrupted in this mutant revealed a 9669 bp novel chromosomal open reading frame (ORF), which was designated efa1, for EHEC factor for adherence. efa1 displayed 28% amino acid identity with the predicted product of a recently described ORF from the haemolysin-encoding plasmid of EHEC O157:H7. The amino termini of the putative products of these two genes exhibit up to 38% amino acid similarity to Clostridium difficile toxins A and B. efa1 occurred within a novel genetic locus, at least 15 kb in length, which featured a low G+C content, several insertion sequence homologues and a homologue of the Shigella flexneri enterotoxin ShET2. DNA probes prepared from different regions of efa1 hybridized with all of 116 strains of attaching-effacing E. coli (AEEC) of a variety of serotypes, including enteropathogenic E. coli (EPEC) and EHEC, but with none of 91 non-AEEC strains. Nevertheless, efa1 was not required for the attachment-effacement phenotype, and the efa1 locus was not physically linked to the locus for enterocyte effacement (LEE) pathogenicity island, which is responsible for this phenotype in EPEC. These findings suggest that efa1 encodes a novel virulence-associated determinant of AEEC, which contributes to the adhesive capacity of these bacteria.  相似文献   

6.
The rugose (also known as wrinkled or rdar) phenotype in Salmonella enterica serovar Typhimurium DT104 Rv has been associated with cell aggregation and the ability, at low temperature under low-osmolarity conditions, to form pellicles and biofilms. Two Tn5 insertion mutations in genes that are involved in lipopolysaccharide (LPS) synthesis, ddhC (A1-8) and waaG (A1-9), of Rv resulted in diminished expression of colony rugosity. Scanning electron micrographs revealed that the ddhC mutant showed reduced amounts of extracellular matrix, while there was relatively more, profuse matrix production in the waaG mutant, compared to Rv. Both mutants appeared to produce decreased levels of curli, as judged by Western blot assays probed with anti-AgfA (curli) antibodies but, surprisingly, were observed to have increased amounts of cellulose relative to Rv. Comparison with a non-curli-producing mutant suggested that the alteration in curli production may have engendered the increased presence of cellulose. While both mutants had impaired biofilm formation when grown in rich medium with low osmolarity, they constitutively formed larger amounts of biofilms when the growth medium was supplemented with either glucose or a combination of glucose and NaCl. These observations indicated that LPS alterations may have opposing effects on biofilm formation in these mutants, depending upon either the presence or the absence of these osmolytes. The phenotypes of the waaG mutant were further confirmed in a constructed, nonpolar deletion mutant of S. enterica serovar Typhimurium LT2, where restoration to the wild-type phenotypes was accomplished by complementation. These results highlight the importance of an integral LPS, at both the O-antigen and core polysaccharide levels, in the modulation of curli protein and cellulose production, as well as in biofilm formation, thereby adding another potential component to the complex regulatory system which governs multicellular behaviors in S. enterica serovar Typhimurium.  相似文献   

7.
Flagellin is the major cytokine-releasing factor when Salmonella enterica serovar Typhimurium (S. Typhimurium) infects intestinal epithelial cells. In this work it is shown that curli, an adhesive proteinaceous surface component of Enterobacteriaceae involved in biofilm formation of S. Typhimurium and Escherichia coli strains can bind flagellin and thus elicit an immune response by the intestinal epithelial cell line HT-29.  相似文献   

8.
9.
Bacterial biofilms are communities of bacteria entangled in a self‐produced extracellular matrix (ECM). Escherichia coli direct the assembly of two insoluble biopolymers, curli amyloid fibers, and phosphoethanolamine (pEtN) cellulose, to build remarkable biofilm architectures. Intense curiosity surrounds how bacteria harness these amyloid‐polysaccharide composites to build biofilms, and how these biopolymers function to benefit bacterial communities. Defining ECM composition involving insoluble polymeric assemblies poses unique challenges to analysis and, thus, to comparing strains with quantitative ECM molecular correlates. In this work, we present results from a sum‐of‐the‐parts 13C solid‐state nuclear magnetic resonance (NMR) analysis to define the curli‐to‐pEtN cellulose ratio in the isolated ECM of the E. coli laboratory K12 strain, AR3110. We compare and contrast the compositional analysis and comprehensive biofilm phenotypes for AR3110 and a well‐studied clinical isolate, UTI89. The ECM isolated from AR3110 contains approximately twice the amount of pEtN cellulose relative to curli content as UTI89, revealing plasticity in matrix assembly principles among strains. The two parent strains and a panel of relevant gene mutants were investigated in three biofilm models, examining: (a) macrocolonies on agar, (b) pellicles at the liquid‐air interface, and (c) biomass accumulation on plastic. We describe the influence of curli, cellulose, and the pEtN modification on biofilm phenotypes with power in the direct comparison of these strains. The results suggest that curli more strongly influence adhesion, while pEtN cellulose drives cohesion. Their individual and combined influence depends on both the biofilm modality (agar, pellicle, or plastic‐associated) and the strain itself.  相似文献   

10.
11.
12.
13.
14.
It had been suggested that the flagella of enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) might contribute to host colonization. In this study, we set out to investigate the adhesive properties of H7 and H6 flagella. We studied the abilities of EHEC EDL933 (O157:H7) and EPEC E2348/69 (O127:H6) flagella to bind to bovine mucus, host proteins such as mucins, and extracellular matrix proteins. Through several approaches, we found that H6 and H7 flagella and their flagellin monomers bind to mucins I and II and to freshly isolated bovine mucus. A genetic approach showed that EHEC and EPEC fliC deletion mutants were significantly less adherent to bovine intestinal tissue than the parental wild-type strains. In addition, we found that EPEC bacteria and H6 flagella, but not EHEC, bound largely, in a dose-dependent manner, to collagen and to a lesser extent to laminin and fibronectin. We also report that EHEC O157:H7 strains agglutinate rabbit red blood cells via their flagella, a heretofore unknown phenotype in this pathogroup. Collectively, our data demonstrate that the H6 and H7 flagella possess adhesive properties, particularly the ability to bind mucins, that may contribute to colonization of mucosal surfaces.  相似文献   

15.
16.
17.
18.
Escherichia coli adherence to biotic and abiotic surfaces constitutes the first step of infection by promoting colonization and biofilm formation. The aim of this study was to gain a better understanding of the relationship between E. coli adherence to different biotic surfaces and biofilm formation on abiotic surfaces. We isolated mutants defective in A549 pneumocyte cells adherence, fibronectin adherence, and biofilm formation by random transposition mutagenesis and sequential passages over A549 cell monolayers. Among the 97 mutants tested, 80 were decreased in biofilm formation, 8 were decreased in A549 cells adherence, 7 were decreased in their adherence to fibronectin, and 17 had no perturbations in either of the three phenotypes. We observed a correlation between adherence to fibronectin or A549 cells and biofilm formation, indicating that biotic adhesive factors are involved in biofilm formation by E. coli. Molecular analysis of the mutants revealed that a transposon insertion in the tnaA gene encoding for tryptophanase was associated with a decrease in both A549 cells adherence and biofilm formation by E. coli. The complementation of the tnaA mutant with plasmid-located wild-type tnaA restored the tryptophanase activity, epithelial cells adherence, and biofilm formation on polystyrene. The possible mechanism of tryptophanase involvement in E. coli adherence and biofilm formation is discussed.  相似文献   

19.
Curli are adhesive fimbriae of Enterobacteriaceae and are involved in surface attachment, cell aggregation, and biofilm formation. Here, we report that both inter- and intrastrain variations in curli production are widespread in enterohemorrhagic Escherichia coli O157:H7. The relative proportions of curli-producing variants (C(+)) and curli-deficient variants (C(-)) in an E. coli O157:H7 cell population varied depending on the growth conditions. In variants derived from the 2006 U.S. spinach outbreak strains, the shift between the C(+) and C(-) subpopulations occurred mostly in response to starvation and was unidirectional from C(-) to C(+); in variants derived from the 1993 hamburger outbreak strains, the shift occurred primarily in response to oxygen depletion and was bidirectional. Furthermore, curli variants derived from the same strain displayed marked differences in survival fitness: C(+) variants grew to higher concentrations in nutrient-limited conditions than C(-) variants, whereas C(-) variants were significantly more acid resistant than C(+) variants. This difference in acid resistance does not appear to be linked to the curli fimbriae per se, since a csgA deletion mutant in either a C(+) or a C(-) variant exhibited an acid resistance similar to that of its parental strain. Our data suggest that natural curli variants of E. coli O157:H7 carry several distinct physiological properties that are important for their environmental survival. Maintenance of curli variants in an E. coli O157:H7 population may provide a survival strategy in which C(+) variants are selected in a nutrient-limited environment, whereas C(-) variants are selected in an acidic environment, such as the stomach of an animal host, including that of a human.  相似文献   

20.
Single-base-pair csgD promoter mutations in human outbreak Escherichia coli O157:H7 strains ATCC 43894 and ATCC 43895 coincided with differential Congo red dye binding from curli fiber expression. Red phenotype csgD::lacZ promoter fusions had fourfold-greater expression than white promoter fusions. Cloning the red variant csgDEFG operon into white variants induced the red phenotype. Substrate utilization differed between red and white variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号