首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The laminin alpha1 chain is a subunit of laminin-1, a heterotrimeric basement membrane protein. The LG4-5 module at the C terminus of laminin alpha1 contains major binding sites for heparin, sulfatide, and alpha-dystroglycan and plays a critical role in early embryonic development. We previously identified active synthetic peptides AG73 and EF-1 from the sequence of laminin alpha1 LG4 for binding to syndecan and integrin alpha2beta1, respectively. However, their activity and functional relationship within the laminin-1 and LG4 as well as the functional relation between these sites and alpha-dystroglycan binding sites in LG4 are not clear. To address these questions, we created mutant recombinant LG4 proteins containing alanine substitutions within the AG73 (M1), EF-1 (M2, M3), and alpha-dystroglycan binding sites (M4, M5) and analyzed their activities. We found that recombinant proteins rec-M1 and rec-M5, containing mutations within M1 and M5, respectively, did not bind heparin or lymphoid cell lines expressing syndecans. These results suggest that LG4 binds to heparin and syndecans through M1 and M5. Rec-M1 and rec-M5 reduced fibroblast attachment, whereas mutant rec-M2 and rec-M3 retained cell attachment activity but did not promote cell spreading. Fibroblast attachment to rec-LG4 was inhibited by heparin but not by integrin antibodies. Spreading of fibroblasts on rec-LG4 was inhibited by anti-integrin alpha2 and beta1 but not by anti-integrin alpha1 and alpha6. These results suggest that the M1 and M5 sites are necessary for cell attachment on LG4 through syndecans and that the EF-1 site is for cell spreading activity through integrin alpha2beta1. In contrast, laminin-1-mediated fibroblast attachment and spreading were not inhibited by heparin or anti-integrin alpha2. Our findings indicate that LG4 has a unique function distinct from laminin-1 and suggest that laminin alpha1 LG4-5 may also be produced by a proteolytic cleavage in certain tissues where it exerts its activity.  相似文献   

2.
Eph signaling, which arises following stimulation by ephrins, is known to induce opposite cell behaviors such as promoting and inhibiting cell adhesion as well as promoting cell-cell adhesion and repulsion by altering the organization of the actin cytoskeleton and influencing the adhesion activities of integrins. However, crosstalk between Eph/ephrin with integrin signaling has not been fully elucidated in leukocytes, including monocytes and their related cells. Using a cell attachment stripe assay, we have shown that, following stimulation with ephrin-A1, kinase-independent EphA2 promoted cell spreading/elongation as well as adhesion to integrin ligand-coated surfaces in cultured U937 (monocyte) and J774.1 (monocyte/macrophage) cells as well as sublines of these cells expressing dominant negative EphA2 that lacks most of the intracellular region. Moreover, a pull-down assay showed that dominant negative EphA2 is recruited to the β2 integrin/ICAM1 and β2 integrin/VCAM1 molecular complexes in the subline cells following stimulation with ephrin-A1-Fc. Notably, this study is the first comprehensive analysis of the effects of EphA2 receptors on integrin-mediated cell adhesion in monocytic cells. Based on these findings we propose that EphA2 promotes cell adhesion by an unknown signaling pathway that largely depends on the extracellular region of EphA2 and the activation of outside-in integrin signaling.  相似文献   

3.
Eph signaling, which arises following stimulation by ephrins, is known to induce opposite cell behaviors such as promoting and inhibiting cell adhesion as well as promoting cell-cell adhesion and repulsion by altering the organization of the actin cytoskeleton and influencing the adhesion activities of integrins. However, crosstalk between Eph/ephrin with integrin signaling has not been fully elucidated in leukocytes, including monocytes and their related cells. Using a cell attachment stripe assay, we have shown that, following stimulation with ephrin-A1, kinase-independent EphA2 promoted cell spreading/elongation as well as adhesion to integrin ligand-coated surfaces in cultured U937 (monocyte) and J774.1 (monocyte/macrophage) cells as well as sublines of these cells expressing dominant negative EphA2 that lacks most of the intracellular region. Moreover, a pull-down assay showed that dominant negative EphA2 is recruited to the β2 integrin/ICAM1 and β2 integrin/VCAM1 molecular complexes in the subline cells following stimulation with ephrin-A1-Fc. Notably, this study is the first comprehensive analysis of the effects of EphA2 receptors on integrin-mediated cell adhesion in monocytic cells. Based on these findings we propose that EphA2 promotes cell adhesion by an unknown signaling pathway that largely depends on the extracellular region of EphA2 and the activation of outside-in integrin signaling.  相似文献   

4.
We previously demonstrated that TIMP-2 treatment of human microvascular endothelial cells (hMVECs) activates Rap1 via the pathway of paxillin-Crk-C3G. Here, we show that TIMP-2 overexpression in hMVECs by adenoviral infection enhances Rap1 expression, leading to further increase in Rap1-GTP. TIMP-2 expression, previously reported to inhibit cell migration, also leads to cell spreading accompanied with increased cell adhesion. HMVECs stably expressing Rap1 display a similar phenotype as hMVECs-TIMP-2, whereas the expression of inactive Rap1 mutant, Rap1(38N), leads to elongated appearance with greatly reduced cell adhesion. Furthermore, the phenotype of hMVECs-Rap1(38N) was not reversed by TIMP-2 overexpression. TIMP-2 greatly promotes the association of Rap1 with actin. Therefore, these findings suggest that TIMP-2 mediated alteration in cell morphology requires Rap1, TIMP-2 may recruit Rap1 to sites of actin cytoskeleton remodeling necessary for cell spreading, and enhanced cell adhesion by TIMP-2 expression may hinder cell migration.  相似文献   

5.
6.
Fisp12 was first identified as a secreted protein encoded by a growth factor-inducible immediate-early gene in mouse fibroblasts, whereas its human ortholog, CTGF (connective tissue growth factor), was identified as a mitogenic activity in conditioned media of human umbilical vein endothelial cells. Fisp12/CTGF is a member of a family of secreted proteins that includes CYR61, Nov, Elm-1, Cop-1/WISP-2, and WISP-3. Fisp12/CTGF has been shown to promote cell adhesion and mitogenesis in both fibroblasts and endothelial cells and to stimulate cell migration in fibroblasts. These findings, together with the localization of Fisp12/CTGF in angiogenic tissues, as well as in atherosclerotic plaques, suggest a possible role for Fisp12/CTGF in the regulation of vessel growth during development, wound healing, and vascular disease. In this study, we show that purified Fisp12 (mCTGF) protein promotes the adhesion of microvascular endothelial cells through the integrin receptor alphavbeta3. Furthermore, Fisp12 stimulates the migration of microvascular endothelial cells in culture, also through an integrin-alphavbeta3-dependent mechanism. In addition, the presence of Fisp12 promotes endothelial cell survival when cells are plated on laminin and deprived of growth factors, a condition that otherwise induces apoptosis. In vivo, Fisp12 induces neovascularization in rat corneal micropocket implants. These results demonstrate that Fisp12 is a novel angiogenic inducer and suggest a direct role for Fisp12 in the adhesion, migration, and survival of endothelial cells during blood vessel growth. Taken together with the recent finding that the related protein CYR61 also induces angiogenesis, we suggest that Fisp12/mCTGF and CYR61 comprise prototypes of a new family of angiogenic regulators that function, at least in part, through integrin-alphavbeta3-dependent pathways.  相似文献   

7.
Laminin-5 is an important constituent of the basal lamina. The receptors for laminin-5, the integrins alpha3beta1 and alpha6beta4, have been associated with epithelial wound migration and carcinoma invasion. The signal transduction mechanisms that regulate these integrins are not well understood. We report here that the small GTPase Rap1 regulates the adhesion of a number of cell lines to various extracellular matrix proteins including laminin-5. cAMP also mediates cell adhesion and spreading on laminin-5, a process that is independent of protein kinase A but rather dependent on Epac1, a cAMP-dependent exchange factor for Rap. Interestingly, although both alpha3beta1 and alpha6beta4 mediate adhesion to laminin-5, only alpha3beta1-dependent adhesion is dependent on Rap1. These results provide evidence for a function of the cAMP-Epac-Rap1 pathway in cell adhesion and spreading on different extracellular matrix proteins. They also define different roles for the laminin-binding integrins in regulated cell adhesion and subsequent cell spreading.  相似文献   

8.
Laminins are a family of extracellular matrix glycoproteins involved in cell adhesion and migration. A major obstacle to understanding their structure-function relationships is the lack of small laminin domains capable of replicating integrin-binding, cell-adhesive, and migratory functions of the intact molecule. Here, we show that the recombinant LG3 (rLG3) module (26 kDa) of laminin-5 (Ln-5) alpha(3) chain replicated key Ln-5 activities. rLG3 but not rLG1 or rLG2 supported cell adhesion and migration of at least two distinct cell lines, in an integrin alpha(3)beta(1)-dependent manner. Cell adhesion to rLG3 was regulated by divalent cations and accompanied by cell spreading and tyrosine phosphorylation of FAK focal adhesion kinase. The integrin binding activity of rLG3 was confirmed by rLG3 affinity chromatography of detergent cell lysates, which resulted in specific purification of integrin alpha(3)beta(1). To our knowledge, this is the first report directly demonstrating that a recombinant laminin LG module is an active domain capable of supporting integrin-dependent cell adhesion and migration.  相似文献   

9.
Zhu Z  Fu C  Li X  Song Y  Li C  Zou M  Guan Y  Zhu Y 《PloS one》2011,6(8):e23554
Prostaglandin E2 (PGE2) has been reported to modulate angiogenesis, the process of new blood vessel formation, by promoting proliferation, migration and tube formation of endothelial cells. Endothelial progenitor cells are known as a subset of circulating bone marrow mononuclear cells that have the capacity to differentiate into endothelial cells. However, the mechanism underlying the stimulatory effects of PGE2 and its specific receptors on bone marrow-derived cells (BMCs) in angiogenesis has not been fully characterized. Treatment with PGE2 significantly increased the differentiation and migration of BMCs. Also, the markers of differentiation to endothelial cells, CD31 and von Willebrand factor, and the genes associated with migration, matrix metalloproteinases 2 and 9, were significantly upregulated. This upregulation was abolished by dominant-negative AMP-activated protein kinase (AMPK) and AMPK inhibitor but not protein kinase, a inhibitor. As a functional consequence of differentiation and migration, the tube formation of BMCs was reinforced. Along with altered BMCs functions, phosphorylation and activation of AMPK and endothelial nitric oxide synthase, the target of activated AMPK, were both increased which could be blocked by EP4 blocking peptide and simulated by the agonist of EP4 but not EP1, EP2 or EP3. The pro-angiogenic role of PGE2 could be repressed by EP4 blocking peptide and retarded in EP4(+/-) mice. Therefore, by promoting the differentiation and migration of BMCs, PGE2 reinforced their neovascularization by binding to the receptor of EP4 in an AMPK-dependent manner. PGE2 may have clinical value in ischemic heart disease.  相似文献   

10.
Endometrial carcinoma differential 3 (EDI3) was the first member of the glycerophosphodiesterase (GDE) protein family shown to be associated with cancer. Our initial work demonstrated that endometrial and ovarian cancer patients with primary tumors overexpressing EDI3 had a higher risk of developing metastasis and decreased survival. Further analysis indicated that EDI3 cleaves glycerophosphocholine to choline and glycerol-3-phosphate, increases the levels of active PKC, and enhances the migratory activity of tumor cells. Despite these initial findings, EDI3 remained mainly uncharacterized. Therefore, to obtain an overview of processes in which EDI3 may be involved, gene array analysis was performed using MCF-7 breast cancer cells after EDI3 knockdown compared with a non-targeting control siRNA. Several biological motifs were altered, including an enrichment of genes involved in integrin-mediated signaling. More specifically, silencing of EDI3 in MCF-7 and OVCAR-3 cells was associated with reduced expression of the key receptor subunit integrin β1, leading to decreased cell attachment and spreading accompanied by delayed formation of cell protrusions. To confirm these results, we stably overexpressed EDI3 in MCF-7 cells which led to elevated integrin β1 expression associated with enhanced cell attachment and spreading - two processes critical for metastasis. In conclusion, our data provide further insight into the role of EDI3 during cancer progression.  相似文献   

11.
Endometrial carcinoma differential 3 (EDI3) was the first member of the glycerophosphodiesterase (GDE) protein family shown to be associated with cancer. Our initial work demonstrated that endometrial and ovarian cancer patients with primary tumors overexpressing EDI3 had a higher risk of developing metastasis and decreased survival. Further analysis indicated that EDI3 cleaves glycerophosphocholine to choline and glycerol-3-phosphate, increases the levels of active PKC, and enhances the migratory activity of tumor cells. Despite these initial findings, EDI3 remained mainly uncharacterized. Therefore, to obtain an overview of processes in which EDI3 may be involved, gene array analysis was performed using MCF-7 breast cancer cells after EDI3 knockdown compared with a non-targeting control siRNA. Several biological motifs were altered, including an enrichment of genes involved in integrin-mediated signaling. More specifically, silencing of EDI3 in MCF-7 and OVCAR-3 cells was associated with reduced expression of the key receptor subunit integrin β1, leading to decreased cell attachment and spreading accompanied by delayed formation of cell protrusions. To confirm these results, we stably overexpressed EDI3 in MCF-7 cells which led to elevated integrin β1 expression associated with enhanced cell attachment and spreading - two processes critical for metastasis. In conclusion, our data provide further insight into the role of EDI3 during cancer progression.  相似文献   

12.
Angiogenesis is a complex process regulated by the interactions of endothelial cells with cytokines and the adhesive protein matrix. The cytokines basic fibroblast growth factor (bFGF) and tumor necrosis factor-alpha (TNF-alpha) are two of the modulators of angiogenesis. One mechanism by which these cytokines induce their effects may be through the regulation of integrin adhesion receptor activity, in particular, alpha(v)beta(3). In this study, we examined the ability of these angiogenic factors to modulate the adhesion of human umbilical vein endothelial cells (HUVECs) to immobilized disintegrins (i.e., rhodostomin and arietin), which are specific in antagonizing integrin alpha(v)beta(3) in cells. As these disintegrins were immobilized as substrates, they acted as agonists to induce HUVEC adhesion in a dose- and alpha(v)beta(3)-dependent manner. In addition, adhesion also triggered a sustained increase of intracellular free calcium. Furthermore, bFGF-primed HUVECs potentiated, but TNF-alpha primed cells attenuated, about 50% adhesion events and calcium signaling triggered by immobilized disintegrin compared to naive cells, respectively. The mechanisms of modulating alpha(v)beta(3)-dependent HUVEC adhesion by cytokines may be related to changes of integrin alpha(v)beta(3) conformation, as demonstrating the antagonistic effect of Mn(2+) on decreased adhesion by TNF-alpha pretreatment, and confirmed with flow cytometric analysis probed by anti-LIBS1 mAb. However, cytokine pretreatment did not alter the expression of this integrin on the cell surface, as determined by flow cytometry. Phosphoinositide-3 kinase may be one of the signaling molecules involved in the enhanced adhesion of bFGF-primed cells.  相似文献   

13.
The NG2 proteoglycan is expressed by microvascular pericytes in newly formed blood vessels. We have used in vitro and in vivo models to investigate the role of NG2 in cross-talk between pericytes and endothelial cells (EC). Binding of soluble NG2 to the EC surface induces cell motility and multicellular network formation in vitro and stimulates corneal angiogenesis in vivo. Biochemical data demonstrate the involvement of both galectin-3 and alpha3beta1 integrin in the EC response to NG2 and show that NG2, galectin-3, and alpha3beta1 form a complex on the cell surface. Transmembrane signaling via alpha3beta1 is responsible for EC motility and morphogenesis in this system. Galectin-3-dependent oligomerization may potentiate NG2-mediated activation of alpha3beta1. In conjunction with recent studies demonstrating the early involvement of pericytes in angiogenesis, these data suggest that pericyte-derived NG2 is an important factor in promoting EC migration and morphogenesis during the early stages of neovascularization.  相似文献   

14.
BACKGROUND: It has been postulated that the regulation of integrin vesicular traffic facilitates cell migration by internalizing integrins at the rear of the cell and transporting them forward within vesicles for exocytosis at the leading edge to form new contacts with the extracellular matrix. The rab family of GTPases control key targeting events in the endo/exocytic pathway; therefore, these GTPases may be involved in the regulation of cell-matrix contact assembly. RESULTS: The endo/exocytic cycle of alphavbeta3 and alpha5beta1 integrins was studied using mouse 3T3 fibroblast cell lines. In serum-starved cells, internalized integrins were transported through rab4-positive, early endosomes and arrived at the rab11-positive, perinuclear recycling compartment approximately 30 min after endocytosis. From the recycling compartment, integrins were recycled to the plasma membrane in a rab11-dependent fashion. Following treatment with PDGF, alphavbeta3 integrin, but not alpha5beta1, was rapidly recycled directly back to the plasma membrane from the early endosomes via a rab4-dependent mechanism without the involvement of rab11. This rapid recycling pathway directed alphavbeta3 to numerous small puncta distributed evenly across the dorsal surface of the cell, and the integrin only became localized into focal complexes at later times following PDGF addition. Interestingly, inhibition of PDGF-stimulated alphavbeta3 recycling using dominant-negative rab4 mutants compromised cell adhesion and spreading on vitronectin (a ligand for alphavbeta3), but adhesion to fibronectin (a ligand for alpha5beta1 and alphavbeta3) was unchanged. CONCLUSIONS: We propose that growth factor-regulated, rab4-dependent recycling of alphavbeta3 integrin from early endosomes to the plasma membrane is a critical upstream event in the assembly of cell-matrix contacts.  相似文献   

15.
betaig-h3 is an extracellular matrix protein and its expression is highly induced by TGF-beta and it has also been suggested to play important roles in skin wound healing. In this paper, we demonstrate that betaig-h3 is present in the papillary layer of dermis and synthesized in the basal keratinocytes in vivo and its expression is induced by TGF-beta in normal human keratinocytes (NHEK) and HaCaT cells. betaig-h3 mediates not only adhesion and spreading of keratinocytes but also supports migration and proliferation. These activities are mediated through interacting with alpha3beta1 integrin. Previously identified two alpha3beta1 integrin-interacting motifs of betaig-h3, EPDIM, and NKDIL, are responsible for these activities. The results suggest that betaig-h3 may regulate keratinocyte functions in normal skin and potentially during wound-healing process.  相似文献   

16.
17.
During developmental and tumor angiogenesis, semaphorins regulate blood vessel navigation by signaling through plexin receptors that inhibit the R-Ras subfamily of small GTPases. R-Ras is mainly expressed in vascular cells, where it induces adhesion to the extracellular matrix (ECM) through unknown mechanisms. We identify the Ras and Rab5 interacting protein RIN2 as a key effector that in endothelial cells interacts with and mediates the pro-adhesive and -angiogenic activity of R-Ras. Both R-Ras-GTP and RIN2 localize at nascent ECM adhesion sites associated with lamellipodia. Upon binding, GTP-loaded R-Ras converts RIN2 from a Rab5 guanine nucleotide exchange factor (GEF) to an adaptor that first interacts at high affinity with Rab5-GTP to promote the selective endocytosis of ligand-bound/active β1 integrins and then causes the translocation of R-Ras to early endosomes. Here, the R-Ras/RIN2/Rab5 signaling module activates Rac1-dependent cell adhesion via TIAM1, a Rac GEF that localizes on early endosomes and is stimulated by the interaction with both Ras proteins and the vesicular lipid phosphatidylinositol 3-monophosphate. In conclusion, the ability of R-Ras-GTP to convert RIN2 from a GEF to an adaptor that preferentially binds Rab5-GTP allows the triggering of the endocytosis of ECM-bound/active β1 integrins and the ensuing funneling of R-Ras-GTP toward early endosomes to elicit the pro-adhesive and TIAM1-mediated activation of Rac1.  相似文献   

18.
Prostaglandin E2 (PGE(2)), a major product of cyclooxygenase, exerts its functions by binding to four G protein-coupled receptors (EP1-4) and has been implicated in modulating angiogenesis. The present study examined the role of the EP4 receptor in regulating endothelial cell proliferation, migration, and tubulogenesis. Primary pulmonary microvascular endothelial cells were isolated from EP4(flox/flox) mice and were rendered null for the EP4 receptor with adenoCre virus. Whereas treatment with PGE(2) or the EP4 selective agonists PGE(1)-OH and ONO-AE1-329 induced migration, tubulogenesis, ERK activation and cAMP production in control adenovirus-transduced endothelial EP4(flox/flox) cells, no effects were seen in adenoCre-transduced EP4(flox/flox) cells. The EP4 agonist-induced endothelial cell migration was inhibited by ERK, but not PKA inhibitors, defining a functional link between PGE(2)-induced endothelial cell migration and EP4-mediated ERK signaling. Finally, PGE(2), as well as PGE(1)-OH and ONO-AE1-329, also promoted angiogenesis in an in vivo sponge assay providing evidence that the EP4 receptor mediates de novo vascularization in vivo.  相似文献   

19.
ADAM 23 (a disintegrin and metalloproteinase domain)/MDC3 (metalloprotease, disintegrin, and cysteine-rich domain) is a member of the disintegrin family of proteins expressed in fetal and adult brain. In this work we show that the disintegrin-like domain of ADAM 23 produced in Escherichia coli and immobilized on culture dishes promotes attachment of different human cells of neural origin, such as neuroblastoma cells (NB100 and SH-S(y)5(y)) or astrocytoma cells (U373 and U87 MG). Analysis of ADAM 23 binding to integrins revealed a specific interaction with alphavbeta3, mediated by a short amino acid sequence present in its putative disintegrin loop. This sequence lacks any RGD motif, which is a common structural determinant supporting alphavbeta3-mediated interactions of diverse proteins, including other disintegrins. alphavbeta3 also supported adhesion of HeLa cells transfected with a full-length cDNA for ADAM 23, extending the results obtained with the recombinant protein containing the disintegrin domain of ADAM 23. On the basis of these results, we propose that ADAM 23, through its disintegrin-like domain, may function as an adhesion molecule involved in alphavbeta3-mediated cell interactions occurring in normal and pathological processes, including progression of malignant tumors from neural origin.  相似文献   

20.
The angiopoietin family of secreted factors is functionally defined by the C-terminal fibrinogen (FBN)-like domain, which mediates binding to the Tie2 receptor and thereby facilitates a cascade of events ultimately regulating blood vessel formation. By screening expressed sequence tag data bases for homologies to a consensus FBN-like motive, we have identified ANGPTL3, a liver-specific, secreted factor consisting of an N-terminal coiled-coil domain and the C-terminal FBN-like domain. Co-immunoprecipitation experiments, however, failed to detect binding of ANGPTL3 to the Tie2 receptor. A molecular model of the FBN-like domain of ANGPTL3 was generated and predicted potential binding to integrins. This hypothesis was experimentally confirmed by the finding that recombinant ANGPTL3 bound to alpha(v)beta(3) and induced integrin alpha(v)beta(3)-dependent haptotactic endothelial cell adhesion and migration and stimulated signal transduction pathways characteristic for integrin activation, including phosphorylation of Akt, mitogen-activated protein kinase, and focal adhesion kinase. When tested in the rat corneal assay, ANGPTL3 strongly induced angiogenesis with comparable magnitude as observed for vascular endothelial growth factor-A. Moreover, the C-terminal FBN-like domain alone was sufficient to induce endothelial cell adhesion and in vivo angiogenesis. Taken together, our data demonstrate that ANGPTL3 is the first member of the angiopoietin-like family of secreted factors binding to integrin alpha(v)beta(3) and suggest a possible role in the regulation of angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号