首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In Na+- and K+-free solution, an inward-directed current can be detected in Xenopus oocytes, which is inhibited by cardic glycosides and activated by ATP. Therefore, it is assumed to be generated by the Na+, K+ pump. At negative membrane potentials, the pump current increases with more negative potentials and with increasing [H+] in the external medium. This current is not observed when Mg2+ instead of Ba2+ is the only divalent cation present in the bath medium, and it does not depend on whether Na+ or K+ is present internally. At 5 to 10 mM Na+ externally, maximum pump-generated current is obtained while no current can be detected in presence of physiological [Na+]. It is suggested that in low-Na+ and K+-free medium the Na+, K+ pump molecule can either form a conductive pathway that is permeable to Ba2+ or protons or operate in its conventional transport mode accepting Ba2+ as a K+ congener. A reversed pump mode or an electrogenic uncoupled Na+-efflux mode is excluded.  相似文献   

2.
Two K+ ATP channel blockers, 5-hydroxydecanoate (5-HD) and glyburide, are often used to study cross-talk between Na+/K+-ATPase and these channels. The aim of this work was to characterize the effects of these blockers on purified Na+/K+-ATPase as an aid to appropriate use of these drugs in studies on this cross-talk. In contrast to known dual effects (activating and inhibitory) of other fatty acids on Na+/K+-ATPase, 5-HD only inhibited the enzyme at concentrations exceeding those that block mitochondrial K+ ATP channels. 5-HD did not affect the ouabain sensitivity of Na+/K+-ATPase. Glyburide had both activating and inhibitory effects on Na+/K+-ATPase at concentrations used to block plasma membrane K+ ATP channels. The findings justify the use of 5-HD as specific mitochondrial channel blocker in studies on the relation of this channel to Na+/K+-ATPase, but question the use of glyburide as a specific blocker of plasma membrane K+ ATP channels, when the relation of this channel to Na+/K+-ATPase is being studied.  相似文献   

3.
To examine the extracellular Na+ sensitivity of a renal inwardly rectifying K+ channel, we performed electrophysiological experiments on Xenopus oocytes or a human kidney cell line, HEK293, in which we had expressed the cloned renal K+ channel, ROMK1 (Kir1.1). When extracellular Na+ was removed, the whole-cell ROMK1 currents were markedly suppressed in both the oocytes and HEK293 cells. Single-channel ROMK1 activities recorded in the cell-attached patch on the oocyte were not affected by removal of Na+ from the pipette solution. However, macro-patch ROMK1 currents recorded on the oocyte were significantly suppressed by Na+ removal from the bath solution. A blocker of Na+/H+ antiporters, amiloride, largely inhibited the Na+ removal-induced suppression of whole-cell ROMK1 currents in the oocytes. The pH-insensitive K80M mutant of ROMK1 was much less sensitive to Na+ removal. Na+ removal was found to induce a significant decrease in intracellular pH in the oocytes using H+-selective microelectrodes. Coexpression of ROMK1 with NHE3, which is a Na+/H+ antiporter isoform of the kidney apical membrane, conferred increased sensitivity of ROMK1 channels to extracellular Na+ in both the oocytes and HEK293 cells. Thus, it is concluded that the ROMK1 channel is regulated indirectly by extracellular Na+, and that the interaction between NHE transporter and ROMK1 channel appears to be involved in the mechanism of Na+ sensitivity of ROMK1 channel via regulating intracellular pH. Received: 13 April 1999/Revised: 15 July 1999  相似文献   

4.
Previous studies in expression systems have found different ion activation of the Na+/K+-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na+,K+-ATPase activity, and the Na+ affinity of Na+,K+-ATPase was studied in total membranes from rat muscle and purified membranes from muscle with different fiber types. The Na+ affinity was higher (K m lower) in oxidative muscle compared with glycolytic muscle and in purified membranes from oxidative muscle compared with glycolytic muscle. Na+,K+-ATPase isoform analysis implied that heterodimers containing the β1 isoform have a higher Na+ affinity than heterodimers containing the β2 isoform. Immunoprecipitation experiments demonstrated that dimers with α1 are responsible for approximately 36% of the total Na,K-ATPase activity. Selective inhibition of the α2 isoform with ouabain suggested that heterodimers containing the α1 isoform have a higher Na+ affinity than heterodimers containing the α2 isoform. The estimated K m values for Na+ are 4.0, 5.5, 7.5 and 13 mM for α1β1, α2β1, α1β2 and α2β2, respectively. The affinity differences and isoform distributions imply that the degree of activation of Na+,K+-ATPase at physiological Na+ concentrations differs between muscles (oxidative and glycolytic) and between subcellular membrane domains with different isoform compositions. These differences may have consequences for ion balance across the muscle membrane.  相似文献   

5.
A single Na+/K+-ATPase pumps three Na+ outwards and two K+ inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na+ than K+ generates outward current across the cell membrane. Less well understood is the ability of Na+/K+ pumps to generate an inward current of protons. Originally noted in pumps deprived of external K+ and Na+ ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K+ and Na+ concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na+ release from phosphorylated Na+/K+ pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na+/K+ pumps that enables proton import is not required for completion of the 3 Na+/2 K+ transport cycle. However, the back-step occurs readily during Na+/K+ transport when external K+ ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na+-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na+ and K+ ions that passes through binding site II. The inferred occurrence of Na+/K+ exchange and H+ import during the same conformational cycle of a single molecule identifies the Na+/K+ pump as a hybrid transporter. Whether Na+/K+ pump–mediated proton inflow may have any physiological or pathophysiological significance remains to be clarified.  相似文献   

6.
Na+ and K+ transport in excised soybean roots   总被引:1,自引:0,他引:1  
Uptake, accumulation and xylem transport of K+ and Na+ in excised roots of soybean were investigated by use of a perfusion technique. This technique permitted independent quantification of, on the one hand, entry of ions into the roots and their transport through the cortex to the xylem vessels, and on the other hand reabsorption from the xylem vessels to the neighbouring cells and the external medium. Data are consistent with a low degree of selective uptake of K+ over Na+. However, Na+ depletion of the xylem stream by reabsorption limits, although weakly, its translocation to the shoots. Na+ reabsorbed is for a great part reexcreted into the external medium. The low efficiency of these processes is discussed in relation to the Na+ sensitivity of soybean.  相似文献   

7.
The neurological disorders familial hemiplegic migraine type 2 (FHM2), alternating hemiplegia of childhood (AHC), and rapid-onset dystonia parkinsonism (RDP) are caused by mutations of Na+,K+-ATPase α2 and α3 isoforms, expressed in glial and neuronal cells, respectively. Although these disorders are distinct, they overlap in phenotypical presentation. Two Na+,K+-ATPase mutations, extending the C terminus by either 28 residues (“+28” mutation) or an extra tyrosine (“+Y”), are associated with FHM2 and RDP, respectively. We describe here functional consequences of these and other neurological disease mutations as well as an extension of the C terminus only by a single alanine. The dependence of the mutational effects on the specific α isoform in which the mutation is introduced was furthermore studied. At the cellular level we have characterized the C-terminal extension mutants and other mutants, addressing the question to what extent they cause a change of the intracellular Na+ and K+ concentrations ([Na+]i and [K+]i) in COS cells. C-terminal extension mutants generally showed dramatically reduced Na+ affinity without disturbance of K+ binding, as did other RDP mutants. No phosphorylation from ATP was observed for the +28 mutation of α2 despite a high expression level. A significant rise of [Na+]i and reduction of [K+]i was detected in cells expressing mutants with reduced Na+ affinity and did not require a concomitant reduction of the maximal catalytic turnover rate or expression level. Moreover, two mutations that increase Na+ affinity were found to reduce [Na+]i. It is concluded that the Na+ affinity of the Na+,K+-ATPase is an important determinant of [Na+]i.  相似文献   

8.
Summary Barley roots grown on a nutrient solution containing 1 mM Na+ but no K+ are capable of a considerable Na+ transport via the symplasm of the root and the xylem vessels. K+ added to the medium surrounding the root cortex severely inhibits this transport after a lag period at a high rate constant (Fig. 3).It is likely that the fluxes of Na+ are changed drastically during this transition from low to high K+ status. Although originally limited to steady state fluxes, the extended method of efflux analysis for excised roots (Pitman, 1971) has been applied to the non-steady fluxes which occur upon the addition of K+ to the roots. It is shown that besides other changes the efflux of 22Na+ through the cortex of barley roots is stimulated instantaneously (Fig. 5) by the addition of K+ and presumably by an influx of K+ ions. From this a transient, K+-stimulated Na+ efflux at the plasmalemma of the cortical cells can be estimated. It amounts to 10.9 moles/g fw · h compared to the control efflux of 3.3 moles/g fw · h without K+.The stimulated efflux is attributed to a Na+ efflux pump at the plasmalemma and is thus related to the K-Na-selectivity of barley plants. The inhibition of the Na+ transport by K+ is probably a consequence of this increased efflux of Na+ from the symplasm through the root cortex.  相似文献   

9.
Experiments on the effects of varying concentrations of Ca2+ on the Mg2+ + Na+-dependent ATPase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase showed that Ca2+ was a partial inhibitor of this activity. When Ca2+ was added to the reaction mixture instead of Mg2+, there was a ouabain-sensitive Ca2+ + Na+-dependent ATPase activity the maximal velocity of which was 30 to 50% of that of Mg2+ + Na+-dependent activity. The apparent affinities of the enzyme for Ca2+ and CaATP seemed to be higher than those for Mg2+ and MgATP. Addition of K+, along with Ca2+ and Na+, increased the maximal velocity and the concentration of ATP required to obtain half-maximal velocity. The maximal velocity of the ouabain-sensitive Ca2+ + Na+ + K+-dependent ATPase was about two orders of magnitude smaller than that of Mg2+ + Na+ + K+-dependent activity. In agreement with previous observations, it was shown that in the presence of Ca2+, Na+, and ATP, an acid-stable phosphoenzyme was formed that was sensitive to either ADP or K+. The enzyme also exhibited a Ca2+ + Na+-dependent ADP-ATP exchange activity. Neither the inhibitory effects of Ca2+ on Mg2+-dependent activities, nor the Ca2+-dependent activities were influenced by the addition of calmodulin. Because of the presence of small quantities of endogenous Mg2+ in all reaction mixtures, it could not be determined whether the apparent Ca2+-dependent activities involved enzyme-substrate complexes containing Ca2+ as the divalent cation or both Ca2+ and Mg2+.  相似文献   

10.
Summary The influence of K+ ions on the net Na+ fluxes in cells of excised barley roots (Hordeum distichon L.) and roots of whole barley plants was investigated. The fluxes were determined by flame photometry in the external solution. In both cases a transient net Na+ efflux against the external Na+ concentration was observed upon addition of K+. The results stress the effectiveness of the K+-dependent Na+ efflux mechanism residing at the plasmalemma, and its involvement in K–Na-selectivity in whole barley plants.  相似文献   

11.
Summary To study the physiological role of the bidirectionally operating, furosemide-sensitive Na+/K+ transport system of human erythrocytes, the effect of furosemide on red cell cation and hemoglobin content was determined in cells incubated for 24 hr with ouabain in 145mm NaCl media containing 0 to 10mm K+ or Rb+. In pure Na+ media, furosemide accelerated cell Na+ gain and retarded cellular K+ loss. External K+ (5mm) had an effect similar to furosemide and markedly reduced the action of the drug on cellular cation content. External Rb+ accelerated the Na+ gain like K+, but did not affect the K+ retention induced by furosemide. The data are interpreted to indicate that the furosemide-sensitive Na+/K+ transport system of human erythrocytes mediates an equimolar extrusion of Na+ and K+ in Na+ media (Na+/K+ cotransport), a 1:1 K+/K+ (K+/Rb+) and Na+/Na+ exchange progressively appearing upon increasing external K+ (Rb+) concentrations to 5mm. The effect of furosemide (or external K+/Rb+) on cation contents was associated with a prevention of the cell shrinkage seen in pure Na+ media, or with a cell swelling, indicating that the furosemide-sensitive Na+/K+ transport system is involved in the control of cell volume of human erythrocytes. The action of furosemide on cellular volume and cation content tended to disappear at 5mm external K+ or Rb+. Thein vivo red cell K+ content was negatively correlated to the rate of furosemide-sensitive K+ (Rb+) uptake, and a positive correlation was seen between mean cellular hemoglobin content and furosemide-sensitive transport activity. The transport system possibly functions as a K+ and waterextruding mechanism under physiological conditiosin vivo. The red cell Na+ content showed no correlation to the activity of the furosemide-sensitive transport system.  相似文献   

12.
The Na+,K+-ATPase binds Na+ at three transport sites denoted I, II, and III, of which site III is Na+-specific and suggested to be the first occupied in the cooperative binding process activating phosphorylation from ATP. Here we demonstrate that the asparagine substitution of the aspartate associated with site III found in patients with rapid-onset dystonia parkinsonism or alternating hemiplegia of childhood causes a dramatic reduction of Na+ affinity in the α1-, α2-, and α3-isoforms of Na+,K+-ATPase, whereas other substitutions of this aspartate are much less disruptive. This is likely due to interference by the amide function of the asparagine side chain with Na+-coordinating residues in site III. Remarkably, the Na+ affinity of site III aspartate to asparagine and alanine mutants is rescued by second-site mutation of a glutamate in the extracellular part of the fourth transmembrane helix, distant to site III. This gain-of-function mutation works without recovery of the lost cooperativity and selectivity of Na+ binding and does not affect the E1-E2 conformational equilibrium or the maximum phosphorylation rate. Hence, the rescue of Na+ affinity is likely intrinsic to the Na+ binding pocket, and the underlying mechanism could be a tightening of Na+ binding at Na+ site II, possibly via movement of transmembrane helix four. The second-site mutation also improves Na+,K+ pump function in intact cells. Rescue of Na+ affinity and Na+ and K+ transport by second-site mutation is unique in the history of Na+,K+-ATPase and points to new possibilities for treatment of neurological patients carrying Na+,K+-ATPase mutations.  相似文献   

13.
Heart mitochondria swollen passively in nitrate salts contract in a respiration-dependent reaction which can be attributed to an endogenous cation/H+ exchange component (or components). The rate of contraction increases with increased extent of passive swelling in both Na+ and K+ salts. Since nearly constant internal cation concentrations are maintained during osmotic swelling, this result suggests that both Na+/H+ and K+/H+ exchange is enhanced by increased matrix volume. Endogenous Mg2+ is also lost with increased matrix volume, and this observation, in conjunction with other evidence available in the literature, suggests that monovalent cation/H+ exchanges may be regulated by divalent cations. Passive exchange of Na+/K+,42K+/K+, and24Na+/Na+ can be readily demonstrated in mitochondria swollen in nitrate. All these exchanges are low or not detectable in unswollen control mitochondria, and it appears that they are manifestations of the activated cation/H+ component (or components) functioning in the absence of pH.  相似文献   

14.
Sharad Kumar  D.J.D. Nicholas 《BBA》1984,765(3):268-274
Potassium-depleted cells of Nitrosomonas europaea and Nitrobacter agilis were prepared by diethanolamine treatment and contained less than 5 mM intracellular K+. The addition of K+ to K+-depleted cells of N. europaea and N. agilis resulted in a depolarization of membrane potential (ΔΨ) by about 5 and 10 mV, respectively. This depolarization was, however, compensated by an equivalent increase in transmembrane pH gradient (ΔpH), so that the total proton-motive force (Δp) remained constant, indicating that K+ transport was electrogenic in both bacteria. Using 22Na+-loaded cells, it is shown that both bacteria lack a respiration-dependent Na+ pump; however, antiporters for Na+/H+, K+/Na+ and K+/H+ were detected. Of these, at least the K+/Na+ antiporter required an electrochemical gradient for its operation. It is also shown that the unprotonated form of NH4+ is transported into these bacteria by a simple diffusion mechanism.  相似文献   

15.
Summary In the perfused rat liver administration of glucagon was shown to result in a transiently increased uptake of K+, indicating the possible involvement of the Na+, K+-ATPase. Direct measurement of the activity of Na+, K+-ATPase revealed a two-fold stimulation of the enzyme by glucagon. The effect of glucagon on the activity of the enzyme was immediate. Simultaneously with the increase in the activity of the Na+, K+-ATPase, the activity of Mg2+-ATPase decreased. In order to evaluate whether the activation of the Na+, K+-ATPase by glucagon is related to the metabolic effects of the hormone, experimental conditions known to interfere with the activity of the enzyme were employed and glucagon stimulation of Ca2+-efflux, mitochondrial metabolism and gluconeogenesis were measured. K+-free perfusate, high K+ perfusate or ouabain interfered to varying degrees with the glucagon stimulation of these responses. The combination of K+-free perfusate and ouabain almost completely abolished the glucagon stimulation of all three parameters. These results demonstrate the glucagon stimulation of Na+, K+-ATPase and raise the possibility that the activation of the enzyme by glucagon might be a necessary link for the manifestation of its metabolic effects.  相似文献   

16.
1. The major ionmotive ATPase, in animal cells, is the Na+, K+-ATPase or sodium pump.2. This membrane bound enzyme is responsible for the translocation of Na+ ions and K+ ions across the plasma membrane, an active transport mechanism that requires the expenditure of the metabolic energy stored within the ATP molecule.3. This ubiquitous enzyme controls directly or indirectly many essential cellular functions, such as, cell volume, free calcium concentration and membrane potential.4. It is, therefore, apparent that alterations in its regulation may play key roles in pathological processes.  相似文献   

17.
Ouabain activation of the phosphatase associated with Na+,K+-ATPase is a time-dependent process which is stimulated by ATP and other nucleotides. Further stimulation by Na+ is observed under certain conditions. The stimulatory effect of ATP was found to be due to an increase in the affinity of the enzyme for ouabain. The time required for maximal ouabain activation to be achieved was decreased by ATP and further decreased by ATP + Na+.These conditions for maximal activation by ouabain are similar to those required for maximal ouabain binding and suggest that the same ouabain site is responsible for activation of Mg2+-dependent phosphatase and for inhibition of Na+,K+-ATPase and K+-phosphatase.  相似文献   

18.
Chronic hypertension is characterized by a persistent increase in vascular tone. Sodium-rich diets promote hypertension; however, the underlying molecular mechanisms are not fully understood. Variations in the sodium content of the diet, through hormonal mediators such as dopamine and angiotensin II, modulate renal tubule Na+,K+-ATPase activity. Stimulation of Na+,K+-ATPase activity increases sodium transport across the renal proximal tubule epithelia, promoting Na+ retention, whereas inhibited Na+,K+-ATPase activity decreases sodium transport, and thereby natriuresis. Diets rich in sodium also enhance the release of adrenal endogenous ouabain-like compounds (OLC), which inhibit Na+,K+-ATPase activity, resulting in increased intracellular Na+ and Ca2+ concentrations in vascular smooth muscle cells, thus increasing the vascular tone, with a corresponding increase in blood pressure. The mechanisms by which these homeostatic processes are integrated in response to salt intake are complex and not completely elucidated. However, recent scientific findings provide new insights that may offer additional avenues to further explore molecular mechanisms related to normal physiology and pathophysiology of various forms of hypertension (i.e. salt-induced). Consequently, new strategies for the development of improved therapeutics and medical management of hypertension are anticipated.  相似文献   

19.
Hickey KD  Buhr MM 《Theriogenology》2012,77(7):1369-1380
Existing as a ubiquitous transmembrane protein, Na+K+-ATPase affects sperm fertility and capacitation through ion transport and a recently identified signaling function. Functional Na+K+-ATPase is a dimer of α and β subunits, each with isoforms (four and three, respectively). Since specific isoform pairings and locations may influence or indicate function, the objective of this study was to identify and localize subunits of Na+K+-ATPase in fresh bull sperm by immunoblotting and immunocytochemistry using antibodies against α1 and 3, and all β isoforms. Relative quantity of Na+K+-ATPase in head plasma membranes (HPM's) from sperm of different bulls was determined by densitometry of immunoblot bands, and compared to bovine kidney. Sperm and kidney specifically bound all antibodies at kDa equivalent to commercial controls, and to additional lower kDa bands in HPM. Immunofluorescence of intact sperm confirmed that all isoforms were present in the head region of sperm and that α3 was also uniformly distributed post-equatorially. Permeabilization exposing internal membranes typically resulted in an increase in fluorescence, indicating that some antibody binding sites were present on the inner surface of the HPM or the acrosomal membrane. Deglycosylation of β1 reduced the kDa of bands in sperm, rat brain and kidney, with the kDa of the deglycosylated bands differing among tissues. Two-dimensional blots of β1 revealed three distinct spots. Based on the unique quantity, location and structure Na+K+-ATPase subunits in sperm, we inferred that this protein has unique functions in sperm.  相似文献   

20.
In previous papers, the isolation of brain soluble fractions able to modify neuronal Na+, K+-ATPase activity has been described. One of those fractions-peak I-stimulates membrane Na+, K+-ATPase while another-peak II-inhibits this enzyme activity, and has other ouabain-like properties. In the present study, synaptosomal membrane Na+, K+-ATPase was analyzed under several experimental conditions, using ATP orp-nitrophenylphosphate (p-NPP) as substrate, in the absence and presence of cerebral cortex peak II. Peak II inhibited K+-p-NPPase activity in a concentration dependent manner. Double reciprocal plots indicated that peak II uncompetitively inhibits K+-p-NPPase activity regarding substrate, Mg2+ and K+ concentration. Peak II failed to block the known K+-p-NPPase stimulation caused by ATP plus Na+. At various K+ concentrations, percentage K+-p-NPPase inhibition by peak II was similar regardless of the ATP plus Na+ presence, indicating lack of correlation with enzyme phosphorylation. Na+, K+-ATPase activity was decreased by peak II depending on K+ concentration. It is postulated that the inhibitory factor(s) present in peak II interfere(s) with enzyme activation by K+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号