共查询到20条相似文献,搜索用时 15 毫秒
1.
A pH decrease in chloroplast suspension in media of low salt concentration was observed when a salt was added at pH values higher than 4.4, while at lower pH values a pH increase was observed. The salt-induced pH changes depended on the valence and concentration of cations of added salts at neutral pH values (higher than 4.4) and on those of anions at acidic pH values (lower than 4.4). The order of effectiveness was trivalent > divalent > monovalent. The pH value change by salt addition was affected by the presence of ionic detergents depending on the sign of their charges. These characteristics agreed with those expected from the Gouy-Chapman theory on diffuse electrical double layers. The results were interpreted in terms of the changes in surface potential, surface pH and the ionization of surface groups which result in the release (or binding) of H+ to (or from) the outer medium.The analysis of the data of KCl-induced pH change suggests that the change in the surface charge density of thylakoid membranes depends mainly on the ionization of carboxyl groups, which is determined by the surface pH. When the carboxyl groups are fully dissociated, the surface charge density reaches ?1.0 ± 0.1 · 10?3 elementary charge/square Å.Dependence of the estimated surface potential on the bulk pH was similar to that of electrophoretic mobility of thylakoid membrane vesicles. 相似文献
2.
From electrophoresis experiments it is concluded that acidic phospholipids incorporated in liquid crystalline phosphatidylcholine bilayers at neutral pH are randomly distributed. The same is true for spin-labelled fatty acids. In contrast, long chain fatty acids are not fully ionized at neutral pH and appear to be clustered, i.e. they segregate out into patches. Only at is the fatty acid-COOH group fully ionized and charge repulsion leads to a random distribution of the fatty acid within the plane of the bilayer. 相似文献
3.
The aim of this work was to verify the influence of the saturated (SFA) (stearic acid) and the unsaturated (UFA) (oleic and alpha-linolenic) fatty acids on model cholesterol/phospholipid membranes. The experiments were based on the Langmuir monolayer technique. Cholesterol and phospholipid were mixed in the molar ratio that corresponds to the proportion of these lipids in the majority of natural human membranes. Into the binary cholesterol/phospholipid monolayers, various amounts of fatty acids were incorporated. Our investigations were based on the analysis of the interactions between molecules in ternary (cholesterol/phospholipids/fatty acid) mixtures, however, also binary (cholesterol/fatty acid and phospholipids/fatty acid) mixed system were examined. It was concluded that the influence of the fatty acids on model cholesterol/phospholipid membrane is closely connected with the shape of the fatty acid molecule, resulting from the saturation degree of the hydrocarbon chain. It was found that the saturated fatty acid makes the model membrane more rigid, while the presence of unsaturated fatty acid increases its fluidity. The increasing amount of stearic acid gradually destabilizes model membrane, however, this effect is the weakest at low content of SFA in the mixed monolayer. Unsaturated fatty acids in a small proportion make the membrane thermodynamically more stable, while higher content of UFA decreases membrane stability. This explains low proportion of the free fatty acids to other lipids in natural membrane. 相似文献
4.
David Samuel Johnston Sukhpal Sanghera Arturo Manjon-Rubio Dennis Chapman 《生物化学与生物物理学报:生物膜》1980,602(1):213-216
Diacetylenic fatty acid monolayers at the air/water interface and multilayers on suitable supports polymerise when exposed to ultraviolet radiation. It has been found that polymerisation still occurs when monolayers are diluted with cholesterol or gramicidin. The rigid, crystalline nature of the films formed makes them useful biomembrane models. Phospholipids made from the fatty acids were less reactive. Multilayers deposited on hydrophobic supports would polymerise but not monolayers on water. 相似文献
5.
Proton nuclear magnetic resonance spectra at 360 MHz of small sonicated distearoyl phosphatidylcholine vesicles show easily distinguishable resonances due to choline N-methyl head-group protons located in the inner and outer bilayer halves. A study of the chemical shift of these resonances as a function of temperature reveals that the splitting between them increases below the phase transition. This occurs as a result of an upfield shift of the inner layer resonance at the phase transition. Consideration of the possible causes of this effect results in the conclusion that, at the phase transition, there is a change in the organization of the inner layer head-groups which does not occur for the outer layer head-groups. 相似文献
6.
The surface potential of the purple membrane was measured by a novel method by using an artificial bacteriorhodopsin whose chromophore was 13-CF3 retinal instead of retinal. When attached to the apoprotein by a Schiff base, the intrinsic pK of the 13-CF3 chromophore is around 7.3. The apparent pK of this pigment depends on the surface potential and thus on the electrolyte concentration. This allowed us to determine the surface charge density using the Gouy-Chapman equation. The surface charge density was found to be −1.65 ± 0.15 × 10−3 electronic charges per Å2 or about 2 negative charges/bacteriorhodopsin. This large value for the surface potential probably explains both part of the strong apparent association of divalent cations with the membrane and the effect of low salt concentrations on light-induced proton release from the purple membrane. 相似文献
7.
The fatty acid composition of plasma membrane phospholipids of the murine T lymphocyte tumor EL4 were systematically modified in an attempt to understand the relationship between lipid bilayer composition and plasma membrane physical and biological properties. Two plasma membrane enzyme activities, adenylate cyclase and ouabain-sensitive ()-ATPase, were measured in normal and fatty acid-substituted EL4 plasma membrane fractions. The fatty acid effect on enzyme activities was similar to previously reported effects of fatty acids on cytotoxic T cell function. The activity of both enzymes was inhibited by saturated fatty acids, while unsaturated fatty acids had a moderate enhancing effect on both enzyme activities. Using two different nitroxide derivatives of stearic acid, the order parameter and approximate rotational correlation times were calculated from ESR spectra of normal and fatty acid-modified plasma membranes. No significant difference was found in either parameter in these membranes. These results, in conjunction with earlier data from our laboratory and others, suggest that caution should be exercised in inferring changes in membrane ‘fluidity’ based on lipid modulation of biological membranes. 相似文献
8.
Seasonal changes in the microbial community of a salt marsh, measured by phospholipid fatty acid analysis 总被引:6,自引:1,他引:6
Microbial activity within the environment can have distinct geochemicaleffects, and so changes in a microbial community structure can result ingeochemical change. We examined seasonal changes in both the microbialcommunityand the geochemistry of an inter-tidal salt marsh in north-west England tocharacterise biogeochemical processes occurring at this site.Phospholipid fatty acid (PLFA) analysis of sediment samples collected atmonthly intervals was used to measure seasonal changes in microbial biomass andcommunity structure. The PLFA data were analysed using multivariate techniques(Ward's method and the Mahalanobis distance metric), and we show that the useofthe Mahalanobis distance metric improves the statistical analysis by providingdetailed information on the reasons samples cluster together and identifyingthedistinguishing features between the separate clusters. Five clusters of likesamples were defined, showing differences in the community structure over thecourse of a year.At all times, the microbial community was dominated by PLFA associated withaerobic bacteria, but this was most pronounced in summer (August). Theabundanceof branched fatty acids, a measure of the biomass of anaerobes, started toincrease later in the year than did those associated with aerobes and thefungalbiomarker 18:26 showed a brief late-summer peak.The salt marsh remained mildly oxic throughout the year despite the increase inmicrobial respiration, suggested by the large increases in the abundance ofPLFA, in the warmer months. The conditions therefore remained most favourablefor aerobic species throughout the year, explaining their continual dominanceatthis site. However, as the abundance of PLFA synthesised by anaerobesincreased,increases in dissolved Mn concentrations were observed, which we suggest weredue to anaerobic respiration of Mn(IV) to Mn(II). Overall, the geochemicalconditions were consistent with the microbial community structure and changeswithin it. 相似文献
9.
Szabó A Fébel H Mézes M Balogh K Horn P Romvári R 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2006,144(4):496-502
The myocardial phospholipid fatty acid (FA) composition (mol %) of 7 avian species was determined, in a body mass range from 150 g (Japanese quail, Coturnix coturnix japonica) to 19 kg (turkey, Meleagris gallopavo). Significant allometric increases were found for C16:1 n7 (allometric exponent: B = 0.15), C18:1 n7 (B = 0.08), C18:1 n9 (B = 0.24), C20:1 n9 (B = 0.22) and C20:3 n3 (B = 0.12); moreover, total monounsaturates (B = 0.20) and the sum of n9 FAs (B = 0.24) was also positively related to body mass. The total n3 FAs (B = − 0.36), and within them C22:5 n3 (B = − 0.41) and C22:6 n3 (B = − 0.60) showed allometric declines, such as total polyunsaturated fatty acids (PUFA; B = − 0.01), unsaturation index (B = − 0.03) and mean FA chain length (B = − 0.003). Comparing our results with earlier published data on avian skeletal muscle and divergent mammalian tissues, the allometric scaling of the above membrane forming fatty acids seems to be part of a general relationship postulated as the theory “membranes as metabolic pacemakers”. In addition, the cardiac muscle malondialdehyde concentration was negatively related to body mass (B = − 0.16), referring to a lower level of lipid peroxidation in larger birds, and vice versa, indicating a progressive myocardial lipid peroxidation in smaller-bodied species. 相似文献
10.
11.
Upon storage of phospholipid liposome samples, lysolipids, fatty acids, and glycerol-3-phosphatidylcholine are generated as a result of acid- or base-catalyzed hydrolysis. Accumulation of hydrolysis products in the liposome membrane can induce fusion, leakage, and structural transformations of the liposomes, which may be detrimental or beneficial to their performance depending on their applications as, e.g., drug delivery devices. We investigated in the present study the influence of phospholipid hydrolysis on the aggregate morphology of DPPC/DSPE-PEG2000 liposomes after transition of the phospholipid membrane from the gel phase to liquid crystalline phase using high performance liquid chromatography (HPLC) in combination with static light scattering, dynamic light scattering, and cryo-transmission electron microscopy (cryo-TEM). The rates of DPPC hydrolysis in DPPC/DSPE-PEG2000 liposomes were investigated at a pH of 2, 4, or 6.5 and temperatures of 22 °C or 4 °C. Results indicate that following phase transition, severe structural reorganizations occurred in liposome samples that were partially hydrolyzed in the gel phase. The most prominent effect was an increasing tendency of liposomes to disintegrate into membrane discs in accordance with an increasing degree of phospholipid hydrolysis. Complete disintegration occurred when DPPC concentrations had decreased by, in some cases, as little as 3.6%. After extensive phospholipid hydrolysis, liposomes and discs fused to form large bilayer sheets as well as other more complex bilayer structures apparently due to a decreased ratio of lysolipid to palmitic acid levels in the liposome membrane. 相似文献
12.
Vesna B. Jovanović Ivan D. Pavićević Marija M. Takić Ana Z. Penezić-Romanjuk Jelena M. Aćimović Ljuba M. Mandić 《Analytical biochemistry》2014
During investigation of the changes of the Cys34 thiol group of human serum albumin (HSA) (isolated by affinity chromatography with Cibacron Blue (CB)) in diabetes, we found that the HSA-SH content was higher (11–33%) than the total serum thiol content. The influence of fatty acids (FA) binding to HSA on this discrepancy was investigated in vitro (using fluorescence and CD spectroscopy and GC) and with HSA samples from diabetic (n=20) and control groups (n=17). HSA-bound FA determine the selection of HSA molecules by CB and enhance reactivity and/or accessibility of the SH group. A high content of polyunsaturated FA (35.6%) leads to weaker binding of HSA molecules to CB. Rate constants of DTNB reaction with the SH group of HSA applied to a CB column, bound-HSA and unbound-HSA fractions, were 4.8×10-3, 21.6×10-3, and 11.2×10-3 s-1, respectively. The HSA-SH group of diabetics is more reactive compared with control individuals (rate constants 20.9×10-3±4.4×10-3 vs 12.9×10-3±2.6×10-3 s-1, P<0.05). Recovery values of the SH group obtained after chromatography of HSA with bound stearic acid ranged from 110 to 140%, while those for defatted HSA were from 98.5 to 101.7%. Thus, HSA-bound FA leads to an increase of HSA-SH content and a contribution to total serum thiols, which make the determination of the thiol group unreliable. 相似文献
13.
14.
15.
Edward F. Labelle 《生物化学与生物物理学报:生物膜》1979,555(2):259-269
Human erythrocytes have been treated with lipid vesicles in order to alter the cholesterol content of the cell membrane. Erythrocytes have been produced with cholesterol concentrations between 33 and 66 mol% of total lipid. The rate of valinomycin-mediated uptake of rubidium into the red cells at 37°C was lowered by increasing the cholesterol concentration of the cell membrane. Cholesterol increased the permeability to valinomycin at 20°C of small (less than 50 nm), unilamellar egg phosphatidylcholine vesicles formed by sonication. Cholesterol decreased the permeability to valinomycin at 20°C of large (up to 200 nm) unilamellar egg phosphatidylcholine vesicles formed by freezethaw plus brief sonication. It is concluded that cholesterol increases the permeability of small membrane vesicles to hydrophobic penetrating substances while above the transition temperature but has the opposite effect on large membrane vesicles and on the membranes of even larger cells. 相似文献
16.
(1) Using the phosphatidylcholine specific transfer protein from bovine liver, native phosphatidylcholine from intact human erythrocytes was replaced by a variety of different phosphatidylcholine species without altering the original phospholipid and cholesterol content. (2) The replacement of native phosphatidylcholine by the disaturated species, 1,2-dipalmitoyl- and 1,2-distearoylphosphatidylcholine, proceeded at a low rate and extensive replacement could only be achieved by repeatedly adding fresh donor vesicles. The replacement by disaturated molecules was accompanied by a gradual increase in osmotic fragility of the cells, finally resulting in hemolysis when 40% of the native PC had been replaced. Up to this lytic concentration, the replacement did not affect the permeability of the membrane for potassium ions. (3) Essentially, all of the PC in the outer monolayer of the membrane could be replaced by 1-palmitoyl-2-oleoyl- and 1-palmitoyl-2-linoleoylphosphatidylcholine. These replacements did not alter the osmotic fragility of the cells, nor the K+ permeability of the membrane. (4) Increasing the total degree of unsaturation of the phosphatidylcholine species modified the properties of the membrane considerably. Replacement by 1,2-dilinoleoylphosphatidylcholine resulted in a progressive increase in osmotic fragility and hemolysis started to occur after 30% of the native PC had been replaced by this species. K+ permeability was found to be slightly increased in this case. Cells became leaky for K+ upon the introduction of 1-palmitoyl-2-arachidonoylphosphatidylcholine in the membrane. The increased permeability was also reflected by an apparent increase in the resistance of the cells against osmotic shock. (5) The conclusions to be drawn are that (i) 1-palmitoyl-2-oleoyl- and 1-palmitoyl-2-linoleoylphosphatidylcholine are species which fit most optimally into the erythrocyte membrane; (ii) loss of membrane stability results from an increase in the degree of saturation of phosphatidylcholine () and (iii) the permeability is enhanced by increasing the content of highly unsaturated species (). 相似文献
17.
The apparent Km of Rb+ uptake and the zeta potential of yeast cells are appreciably affected by changes in the pH, variation of the concentration of the buffer cation Tris+ and addition of Ca2+ to the suspending medium. Irrespective of the way in which the zeta potential is affected, a direct relationship between the apparent Km of the Rb+ uptake and the zeta potential is observed. A reduction of 8 mV in the zeta potential is accompanied by a 20-fold increase in the apparent Km, which illustrates that electrostatic effects in ion uptake cannot be ignored. Measured zeta potentials are, to a good approximation, linearly related to surface potentials evaluated from a kinetic analysis of the Rb+ uptake. This shows the practical use of the zeta potential as a measure of the surface potential in studies of electrostatic effects in ion uptake by yeast. It is concluded that Tris+ and the aikaline earth cations inhibit the Rb+ uptake in yeast exclusively via a reduction in the surface potential. Protons, in addition, exert a competitive inhibition. 相似文献
18.
Irmgard Schuiki Martina SchnablTibor Czabany Claudia HrastnikGünther Daum 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2010,1801(4):480-486
In this study, we examined the contribution of the four different pathways of phosphatidylethanolamine (PE) synthesis in the yeast Saccharomyces cerevisiae to the supply of this phospholipid to the plasma membrane. These pathways of PE formation are decarboxylation of phosphatidylserine (PS) by (i) phosphatidylserine decarboxylase 1 (Psd1p) in mitochondria and (ii) phosphatidylserine decarboxylase 2 (Psd2p) in a Golgi/vacuolar compartment, (iii) incorporation of exogenous ethanolamine and ethanolamine phosphate derived from sphingolipid catabolism via the CDP-ethanolamine pathway in the endoplasmic reticulum (ER), and (iv) synthesis of PE through acylation of lyso-PE catalyzed by the acyl-CoA-dependent acyltransferase Ale1p in the mitochondria associated endoplasmic reticulum membrane (MAM). Deletion of PSD1 and/or PSD2 led to depletion of total cellular and plasma membrane PE level, whereas mutation in the other pathways had practically no effect. Analysis of wild type and mutants, however, revealed that all four routes of PE synthesis contributed not only to PE formation but also to the supply of PE to the plasma membrane. Pulse-chase labeling experiments with L[3H(G)]serine and [14C]ethanolamine confirmed the latter finding. Fatty acid profiling demonstrated a rather balanced incorporation of PE species into the plasma membrane irrespective of mutations suggesting that all four pathways of PE synthesis provide at least a basic portion of “correct” PE species required for plasma membrane biogenesis. In summary, the PE level in the plasma membrane is strongly influenced by total cellular PE synthesis, but fine tuned by selective assembly mechanisms. 相似文献
19.
The monolayer technique has been used to study the transfer of [14C]phosphatidylinositol from the monolayer to phosphatidylcholine vesicles. An equivalent transfer rate was found for egg phosphatidylcholine, dioleoylphosphatidylcholine, dielaidoylphosphatidylcholine and dipalmitoylphosphatidylcholine. A reduced transfer rate was found for a shorter-chain derivative, dimyristoylphosphatidylcholine, and for species with two polyunsaturated fatty acid chains such as dilinoleoylphosphatidylcholine, diheptadecadienoylphosphatidylcholine, dilinolenoylphosphatidylcholine and diether and dialkyl derivatives. No activity was found for 1,3-dipalmitoylphosphatidylcholine. The presence of up to 5 mol% phosphatidylinositol in egg phosphatidylcholine vesicles had no effect on the transfer rate. Introduction of more than 5 mol% phosphatidylinositol or phosphatidic acid into the phosphatidylcholine vesicles gradually decreased the rate of phosphatidylinositol transfer from the monolayer. 20 mol% acidic phospholipid was nearly completely inhibitory. Transfer experiments between separate monolayers of phosphatidylcholine and phosphatidylinositol showed that the protein-bound phosphatidylcholine is readily exchanged for phosphatidylinositol, but the protein-bound phosphatidylinositol exchange for phosphatidylcholine occurs at a 20-times lower rate. The release of phosphatidylinositol is dependent on the lipid composition and the concentration of charged lipid in the acceptor membrane, but also on the ratio between donor and acceptor membranes. The main transfer protein from bovine brain which transfer phosphatidylinositol and phosphatidylcholine transfers also phosphatidylglycerol, but not phosphatidylserine or phosphatidic acid. The absence of significant changes in the surface pressure indicate that the phosphatidylinositol and phosphatidylcholine transfer is not accompanied by net mass transfer. 相似文献
20.
Nousheen Zaidi Leslie Lupien Nancy B. Kuemmerle William B. Kinlaw Johannes V. Swinnen Karine Smans 《Progress in lipid research》2013,52(4):585-589
One of the most important metabolic hallmarks of cancer cells is enhanced lipogenesis. Depending on the tumor type, tumor cells synthesize up to 95% of saturated and mono-unsaturated fatty acids (FA) de novo in spite of sufficient dietary lipid supply. This lipogenic conversion starts early when cells become cancerous and further expands as the tumor cells become more malignant. It is suggested that activation of FA synthesis is required for carcinogenesis and for tumor cell survival. These observations suggest that the enzymes involved in FA synthesis would be rational therapeutic targets for cancer treatment. However, several recent reports have shown that the anti-tumor effects, following inhibition of endogenous FA synthesis in cancer cell lines may be obviated by adding exogenous FAs. Additionally, high intake of dietary fat is reported to be a potential risk factor for development and poor prognosis for certain cancers. Recently it was reported that breast and liposarcoma tumors are equipped for both de novo fatty acid synthesis pathway as well as LPL-mediated extracellular lipolysis. These observations indicate that lipolytically acquired FAs may provide an additional source of FAs for cancer. This review focuses on our current understanding of lipogenic and lipolytic pathways in cancer cell progression. 相似文献