首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nature of the light-induced ΔpH-dependent decline of chlorophyll a fluorescence in intact and broken spinach chloroplasts was investigated. Fluorescence spectra at 77 K of chloroplasts frozen in the low-fluorescent (high ΔpH) state showed increased ratios of the band peak at 735 nm (Photosystem (PS) I fluorescence) to the peak at 695 nm (PS II fluorescence). The increase in the F735F695 ratio at 77 K was related to the extent of fluorescence quenching at room temperature. Normalization of low-temperature spectra with fluorescein as an internal standard revealed a lowering of F695 that was not accompanied by an increase in F735: preillumination before freezing decreased both F695 and, to a lesser extent, F735 in the spectra recorded at 77 K. Fluorescence induction of chloroplasts frozen in the low-fluorescent state showed a markedly decreased variable fluorescence (Fv) of PS II, but no concomitant increase in initial fluorescence (F0) of PS I. Thus, the buildup of a proton gradient at the thylakoid membrane, as reflected by fluorescence quenching at room temperature, affects low-temperature fluorecence emission in a manner entirely different from the effect of removal of Mg2+, which is thought to alter the distribution of excitation energy in favor of PS I. The ΔpH-dependent quenching therefore cannot be caused by such change in energy distribution and is suggested to reflect increased thermal deactivation.  相似文献   

2.
In intact, uncoupled type B chloroplasts from spinach, added ATP causes a slow light-induced decline (t12 ≈ 3 min) of chlorophyll a fluorescence at room temperature. Fluorescence spectra were recorded after fast cooling to 77 K and normalized with fluorescein as an internal standard. Related to the fluorescence quenching at room temperature, an increase in Photosystem (PS) I fluorescence (F735) and a decrease in PS II fluorescence (F695) were observed in the low-temperature spectra. The change in the F735F695 ratio was abolished by the presence of methyl viologen. Fluorescence induction at 77 K of chloroplasts frozen in the quenched state showed lowered variable (Fv) and initial (F0) fluorescence at 690 nm and an increase in F0 at 735 nm. The results are interpreted as indicating an ATP-dependent change of the initial distribution of excitation energy in favor of PS I, which is controlled by the redox state of the electron-transport chain and, according to current theories, is caused by phosphorylation of the light-harvesting complex.  相似文献   

3.
A.J. Hoff  J.H. Van Der Waals 《BBA》1976,423(3):615-620
Microwave induced transitions in zero magnetic field have been observed in the photoinduced triplet of chloroplasts treated with dithionite by monitoring changes in the intensity of the 735 nm fluorescence band at 2°K. Similar results were obtained with chloroplasts treated with hydroxylamine plus 3-(3,4-dichlorophenyl)-1,1-dimethylurea and preillumination. The zero field parameters are D = 0.02794 ± 0.00007 cm?1, E = 0.00382 ± 0.00007 cm?1, i.e. equal to those of monomeric chlorophyll a to within the experimental error. The photoinduced triplet appears to be linked to Photosystem II. This indicates that the low temperature 735 nm fluorescence band of chloroplasts is at least partly due to Photosystem II.  相似文献   

4.
J.A. Van Best  P. Mathis 《BBA》1978,503(1):178-188
Absorption changes (ΔA) at 820 nm, following laser flash excitation of spinach chloroplasts and Chlorella cells, were studied in order to obtain information on the reduction time of the photooxidized primary donor of Photosystem II at physiological temperatures.In the microsecond time range the difference spectrum of ΔA between 750 and 900 nm represents a peak at 820 nm, attributable to a radical-cation of chlorophyll a. In untreated dark-adapted material the signal can be attributed solely to P+?700; it decays in a polyphasic manner with half-times of 17 μs, 210 μs and over 1 ms. The oxidized primary donor of Photosystem II (P+II) is not detected with a time resolution of 3 μs. After treatment with 3–10 mM hydroxylamine, which inhibits the donor side of Photosystem II, P+II is observed and decays biphasically (a major phase with t12 = 20–40 μs, and a minor phase with t12 ? 200 μs), probably by reduction by an accessory electron donor.In the nanosecond range, which was made accessible by a new fast-response flash photometer operating at 820 nm, it was found the P+II is reduced with a half-time of 25–45 ns in untreated dark-adapted chloroplasts. It is assumed that the normal secondary electron donor is responsible for this fast reduction.  相似文献   

5.
A.W.D. Larkum  Jan M. Anderson 《BBA》1982,679(3):410-421
A Photosystem II reaction centre protein complex was extracted from spinach chloroplasts using digitonin. This complex showed (i) high rates of dichloroindophenol and ferricyanide reduction in the presence of suitable donors, (ii) low-temperature fluorescence at 685 nm with a variable shoulder at 695 nm which increased as the complex aggregated due to depletion of digitonin and (iii) four major polypeptides of 47, 39, 31 and 6 kDa on dissociating polyacrylamide gels. The Photosystem II protein complex, together woth the P-700-chlorophylla protein complex and light-harvesting chlorophyll ab-protein complex (LHCP) also isolated using digitonin, were reconstituted with lipids from spinach chloroplasts to form proteoliposomes. The low-temperature (77 K) fluorescence properties of the various proteoliposomes were analysed. The F685F695 ratios of the Photosystem II reaction centre protein complex-liposomes decreased as the lipid to protein ratios were increased. The F681F697 ratios of LHCP-liposomes were found to behave similarly. Light excitation of chlorophyll b at 475 nm stimulated emission from both the Photosystem II protein complex (F685 and F695) and the P-700-chlorophyll a-protein complex (F735) when LHCP was reconstituted with either of these complexes, demonstrating energy transfer between LHCP and PS I or II complexes in liposomes. No evidence was found for energy transfer from the PS II complex to the P-700-chlorophyll a-protein complex reconstituted in the same proteoliposome preparation. Proteoliposome preparations containing all three chlorophyll-protein complexes showed fluorescence emission at 685, 700 and 735 nm.  相似文献   

6.
Pierre Sebban  Ismaël Moya 《BBA》1983,722(3):436-442
Fluorescence lifetime spectra of Rhodopseudomonas sphaeroides chromatophores have been measured at room temperature by phase fluorimetry at 82 MHz in order to investigate the heterogeneity of the emission. The total fluorescence was decomposed into two main components. A constant component, Fc, centered at 865 nm, represents about 50% of the total emission from dark-adapted chromatophores (Fo) and has a lifetime of 0.55 ns. A variable component is centered at 890 nm. Upon closing the reaction centers, 5-fold increases take place in both emission yield and lifetime of this component. In the dark-adapted state, its lifetime is about 50 ps and its contribution to the total fluorescence is 70% at 890 nm. In the presence of sodium dithionite, a long-lifetime component (τD ? 4 ns) is observed. This probably arises from radical pair recombination between P+ and I? (P, the primary electron donor, is a dimer of bacteriochlorophyll; I, the primary electron acceptor, is a molecule of bacteriopheophytin). Its spectrum is nearly identical to that of the variable component. This emission seems to be present also under nonreducing conditions, although with a much weaker intensity than when the electron acceptor quinone is prereduced.  相似文献   

7.
J.A. Van Best  L.N.M. Duysens 《BBA》1977,459(2):187-206
The kinetics of the luminescence of chlorophyll a in Chlorella vulgaris were studied in the time range from 0.2 μs to 20 μs after a short saturating flash (t12 = 25 ns) under various pretreatment including anaerobiosis, flashes, continuous illumination and various additions. A 1 μs luminescence component probably originating from System II was found of which the relative amplitude was maximum under anaerobic conditions for reaction centers in the state SPQ? before the flash, about one third for centers in the state S+PQ? or SPQ before the flash, and about one tenth for centers in the state S+PQ before the flash. S is the secondary donor complex with zero charge; S+ is the secondary donor complex with 1 to 3 positive charges; P, the primary donor, is the photoactive chlorophyll a, P-680, of reaction center 2; Q? is the reduced acceptor of System II, Q. Under aerobic conditions, where an endogenous quencher presumably was active, the luminescence was reduced by a factor two.The 1 μs decay of the luminescence is probably caused by the disappearance of P+ formed in the laser flash according to the reaction ZP+ → Z+P in which Z is the molecule which donates an electron to P+ and which is part of S. After addition of hydroxylamine, the 1 μs luminescence component changed with the incubation time exponentially (τ = 27 s) into a 30 μs component; during the same time, the variable fluorescence yield, measured 9 μs after the laser flash, decreased by a factor 2 with the same time constant. Hereafter in a second much slower phase the fluorescence yield decreased as an exponential function of the incubation time to about the dark value; meanwhile the 30 μs luminescence increased about 50% with the same time constant (τ = 7 min). Heat treatment abolished both luminescence components.The 1 μs luminescence component saturated at about the same energy as the System II fluorescence yield 60 μs after the laser flash and as the slower luminescence components. From the observation that the amplitude is maximum if the laser flash is given when the fluorescence yield is high after prolonged anaerobic conditions (state SQ?), we conclude that the 1 μs luminescence is probably caused by the reaction
PWQ?+hv → P1WQ?P+W?Q?P1WQ? → PWQ?+hv
in which W is an acceptor different from Q. The presence of S+ reduced the luminescence amplitude to about one third. Two models are discussed, one with W as an intermediate between P and Q and another, which gives the best interpretation, with W on a side path.  相似文献   

8.
C.C. Schenck  B. Diner  P. Mathis  K. Satoh 《BBA》1982,680(2):216-227
Light excitation of chloroplasts at low temperature produces absorption changes (ΔA) with a large positive peak at 990 nm and a bleaching around 480 nm. ΔA at 990 nm rises with t12 = 0.6 ms at 20–77 K and remains largely stable. This signal is not observed when Photosystem II (PS II) photochemistry is blocked by reduction of the primary plastoquinone. It is observed also in purified PS II particles, in which case it could be shown that during a sequence of short flashes, the absorption at 990 nm rises in parallel with plastoquinone reduction measured at 320 nm. In chloroplasts the light-induced 990-nm ΔA at 77 K is increased under oxidizing conditions (addition of ferricyanide) and upon addition of 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT2p). At 21°C, flash excitation of chloroplasts or of PS II particles induces only a very small ΔA at 990 nm, even when this is measured with a 100-ns time resolution or when the material is preilluminated. In both materials, however, a large flash-induced ΔA takes place when various lipophilic anions are added. After a flash the signal rises in less than 100 μs and its decay varies with experimental conditions; the decay is strongly accelerated by benzidine. The difference spectrum measured in PS II particles includes a broad peak around 990 nm and a bleaching around 490 nm. These absorption changes are attributed to a carotenoid radical cation formed at the PS II reaction center. It is estimated that in the presence of lipophilic anions at room temperature, one cation can be formed by a single flash in 80% of the reaction centers. At cryogenic temperature approx. 8% of the PS II reaction centers can oxidize a carotenoid after a single flash.  相似文献   

9.
Excitation spectra of chlorophyll a fluorescence in chloroplasts from spinach and barley were measured at 4.2 K. The spectra showed about the same resolution as the corresponding absorption spectra. Excitation spectra for long-wave chlorophyll a emission (738 or 733 nm) indicate that the main absorption maximum of the photosystem (PS) I complex is at 680 nm, with minor bands at longer wavelengths. From the corresponding excitation spectra it was concluded that the emission bands at 686 and 695 nm both originate from the PS II complex. The main absorption bands of this complex were at 676 and 684 nm. The PS I and PS II excitation spectra both showed a contribution by the light-harvesting chlorophyll ab protein(s), but direct energy transfer from PS II to PS I was not observed at 4 K. Omission of Mg2+ from the suspension favored energy transfer from the light-harvesting protein to PS I. Excitation spectra of a chlorophyll b-less mutant of barley showed an average efficiency of 50–60% for energy transfer from β-carotene to chlorophyll a in the PS I and in the PS II complexes.  相似文献   

10.
Herman J.M. Kramer  Jan Amesz 《BBA》1982,682(2):201-207
Spectra of fluorescence polarization were measured between 4 and 120 K of spinach chloroplasts, oriented in a magnetic field. At least seven emission bands were observed. The well known bands near 685 nm (‘F-685’) and 735–740 nm (‘F-735’) and the band near 680 nm (‘F-680’) were strongly polarized parallel to the plane of the thylakoid membrane, whereas emission bands near 695 nm (‘F-695’), 710, 730–735 and 760 nm showed perpendicular polarization. Assuming perfect orientation of the thylakoid membranes, we calculated orientation angles of 64, 47 and 66.5° for the emission dipoles of F-685, F-695 and F-735, respectively, with respect to the normal of the membrane. Excitation spectra of F-695 and F-735 in polarized light at 4 K provided information about the orientation of the absorption dipoles of chlorophylls a and b. The spectra thus obtained were in very good agreement with the linear dichroism spectrum. Moreover, they allowed us to distinguish between the pigments associated with Photosystems I and Ii, which is not possible from measurement of linear dichroism alone. The results indicate that a high degree of orientation is not confined to the long-wave absorbing bands, but also bands at shorter wavelength show a clear anisotropy. The calculated orientations were in quantitative agreement with the hypothesis that F-685 and F-735 are associated with chlorophylls absorbing at 676 and 710–715 nm, respectively.  相似文献   

11.
Pike olfactory nerves labeled with pyrene and illuminated at 340 nm showed a highly resolved monomer fluorescence emission and a broad excimer emission band at longer wavelength. The excimer formation being controlled by lateral diffusion in the membrane lipids, the ratio of both maxima emission amplitudes is a fluidity parameter and was found to depend on temperature. When these nerves were stimulated, this ratio (F) underwent a small transient decrease (ΔFF range = 10?3 to 10?4), synchronous with the propagated impulse. These findings may be interpreted as a transient decreased fluidity of the membrane lipids during excitation  相似文献   

12.
A solid‐state reaction route‐based LiTi2 ? xEux(PO4)3 was phosphor synthesized for the first time to evaluate its luminescence performance by excitation, emission and lifetime (τ) measurements. The LiTi2 ? xEux(PO4)3 phosphor was excited at λexci. = 397 nm to give an intense orange–red (597 nm) emission attributed to the 5D07F1 magnetic dipole (ΔJ = ±1) transition and red (616 nm) emission (5D07F2), which is an electric dipole (ΔJ = ±2) transition of the Eu3+ ion. Beside this, excitation and emission spectra of host LiTi2(PO4)3 powder were also reported. The effect of Eu3+ concentration on luminescence characteristics was explained from emission and lifetime profiles. Concentration quenching in the LiTi2 ? xEux(PO4)3 phosphor was studied from the Dexter's model. Dipole–quadrupole interaction is found to be responsible for energy transfer among Eu3+ ions in the host lattice. The LiTi2 ? xEux(PO4)3 phosphor displayed a reddish‐orange colour realized from a CIE chromaticity diagram. We therefore suggest that this new phosphor could be used as an optical material of technological importance in the field of display devices. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Single crystals of KCl doped with Ce3+,Tb3+ were grown using the Bridgeman–Stockbarger technique. Thermoluminescence (TL), optical absorption, photoluminescence (PL), photo‐stimulated luminescence (PSL), and thermal‐stimulated luminescence (TSL) properties were studied after γ‐ray irradiation at room temperature. The glow curve of the γ‐ray‐irradiated crystal exhibits three peaks at 420, 470 and 525 K. F‐Light bleaching (560 nm) leads to a drastic change in the TL glow curve. The optical absorption measurements indicate that F‐ and V‐centres are formed in the crystal during γ‐ray irradiation. It was attempted to incorporate a broad band of cerium activator into the narrow band of terbium in the KCl host without a reduction in the emission intensity. Cerium co‐doped KCl:Tb crystals showed broad band emission due to the d–f transition of cerium and a reduction in the intensity of the emission peak due to 5D37Fj (j = 3, 4) transition of terbium, when excited at 330 nm. These results support that energy transfer occurs from cerium to terbium in the KCl host. Co‐doping Ce3+ ions greatly intensified the excitation peak at 339 nm for the emission at 400 nm of Tb3+. The emission due to Tb3+ ions was confirmed by PSL and TSL spectra. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The yield of P-700 photooxidation has been studied in isolated chloroplast membranes by measuring the extent of the flash-induced absorption increase at 820 nm (ΔA820) in the microsecond time range. The extent of ΔA820 induced by non-saturating laser flashes was increased by the following treatments. (1) Suspension of chloroplast membranes in Mg2+ free medium (plus 15 mM K+) which leads to unstacking of grana (as detected by a decrease in chlorophyll fluorescence). (2) Reduction of Q, the primary acceptor of Photosystem II, in the presence of 20 μM 3-(3,4 dichlorophenyl)-1,1-dimethylurea by a saturating xenon flash, fired 300 ms before the laser flash. (3) Phosphorylation of light harvesting chlorophyll ab-protein complex, which occurs in the presence of ATP after activation of protein kinase in the dark with NADPH and ferredoxin. We conclude that the Mg2+ concentration, the redox state of Q and the protein-phosphorylation all can control the photochemical efficiency of P-700 photooxidation in isolated chloroplasts, and we discuss these results in relation to control of excitation energy distribution between the two photosystems. We also discuss the significance of these results in relation to the regulation of photosynthetic electron transport in vivo.  相似文献   

15.
The kinetics of thylakoid membrane protein phosphorylation in the presence of light and adenosine triphosphate is correlated to an incease in the 77 °K fluorescence emission at 735 nm (F735) relative to that at 685 nm (F685). Analysis of detergent-derived submembrane fractions indicate phosphorylation only of the polypeptides of Photosystem II, and the light-harvesting chlorophyll-protein complex serving Photosystem II (LHC-II). Although several polypeptides are phosphorylated, only the dephosphorylation kinetics of LHC-II follow the kinetics of the decrease of the F735F685 fluorescence emission ratios. The relative quantum yield of Photosystem II was significantly lower in phosphorylated membranes compared to dephosphorylated membranes. Reversible LHC-II phosphorylation thus provides the physiological mechanism for the control of the distribution of absorbed excitation energy between the two photosystems.  相似文献   

16.
Purified photochemical reaction centers from Rhodopseudomonas sphaeroides R-26 were reduced with Na2S2O4 so as to block their photochemical electron-transfer reactions. The magnetic field induced an increase in the emission yield. Our results support the hypothesis that under these conditions, charge recombination in the singlet radical pair composed of the oxidized primary donor and reduced primary acceptor predominantly generates the excited singlet state of the reaction center bacteriochlorophyll.The maximum relative fluorescence change and the value of the magnetic field at which half-saturation of the effect is achieved (B12) at room temperature are 5.5% and 75 G, respectively. For the whole cells of Rps. sphaeroides R-26 these parameters are 1.2% and 120 G.The relative fluorescence change at 600 G, ΔFF(600), and B12 are studied as functions of temperature. The temperature dependencies of ΔFF(600) for reaction centers and whole cells of Rps. sphaeroides R-26 are qualitatively the same, with the maximum effect (8% for reaction centers) occurring at 230 K. However, the B12 curves for the two preparations are different.  相似文献   

17.
John L. Casey  Kenneth Sauer 《BBA》1984,767(1):21-28
In Photosystem II preparations at low temperature we were able to generate and trap an intermediate state between the S1 and S2 states of the Kok scheme for photosynthetic oxygen evolution. Illumination of dark-adapted, oxygen-evolving Photosystem II preparations at 140 K produces a 320-G-wide EPR signal centered near g = 4.1 when observed at 10 K. This signal is superimposed on a 5-fold larger and somewhat narrower background signal; hence, it is best observed in difference spectra. Warming of illuminated samples to 190 K in the dark results in the disappearance of the light-induced g = 4.1 feature and the appearance of the multiline EPR signal associated with the S2 state. Low-temperature illumination of samples prepared in the S2 state does not produce the g = 4.1 signal. Inhibition of oxygen evolution by incubation of PS II preparations in 0.8 M NaCl buffer or by the addition of 400 μM NH2OH prevents the formation of the g = 4.1 signal. Samples in which oxygen evolution is inhibited by replacement of Cl? with F? exhibit the g = 4.1 signal when illuminated at 140 K, but subsequent warming to 190 K neither depletes the amplitude of this signal nor produces the multiline signal. The broad signal at g = 4.1 is typical for a S = 52 spin system in a rhombic environment, suggesting the involvement of non-heme Fe in photosynthetic oxygen evolution.  相似文献   

18.
BaO‐B2O3‐P2O5 glasses doped with a fixed concentration of Tb3+ ions and varying concentrations of Al2O3 were synthesized, and the influence of the Al3+ ion concentration on the luminescence efficiency of the green emission of Tb3+ ions was investigated. The optical absorption, excitation, luminescence spectra and fluorescence decay curves of these glasses were recorded at ambient temperature. The emission spectra of terbium ions when excited at 393 nm exhibited two main groups of bands, corresponding to 5D3 → 7Fj (blue region) and 5D4 → 7Fj (green region). From these spectra, the radiative parameters, viz., spontaneous emission probability A, total emission probability AT, radiative lifetime τ and fluorescent branching ratio β, of different transitions originating from the 5D4 level of Tb3+ ions were evaluated based on the Judd‐Ofelt theory. A clear increase in the quantum efficiency and luminescence of the green emission of Tb3+ ions corresponding to 5D4 → 7F5 transition is observed with increases in the concentration of Al2O3 up to 3.0 mol%. The improvement in emission is attributed to the de‐clustering of terbium ions by Al3+ ions and also to the possible admixing of wave functions of opposite parities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
(1) Aqueous solutions of 1–10 μM ferricytochrome c treated with 100 μM–100 mM H2O2 at pH 8.0 emit chemiluminescence with quantum yield Ф ? 10?9 and absolute maximum intensity Imax ? 105 hv/s per cm3 (λ = 440), and exhibit exponential decay with a rate constant of 0.15 s?1. (2) The emission spectrum of the chemiluminescence covers the range 380–620 nm with the maximum at 460 ± 10 nm. (3) Neither cytochrome c nor haemin fluoresce in the spectral region of the chemiluminescence. In the reaction course with H2O2, a weak fluorescence in the region 400–620 nm with λmax = 465–510 nm (λexc 315–430 nm) gradually arises. This originates from tryptophan oxidation products of the formylkynurenine type or from imidazole derivatives, respectively. (4) Frozen solutions (77 K) of cytochrome c exhibit phosphorescence typical of tryptophan (λexc = 280 nm, λem = 450 nm). During the peroxidation, an additional phosphorescence gradually appears in the range 480–620 nm with λmax = 530 nm (λexc = 340 nm). This originates from oxidative degradation products of tryptophan. (5) There are no red bands in the chemiluminescence spectra of cytochrome c or haemin. This result suggests that singlet molecular oxygen O2(1Δg) is not involved in either peroxidation or chemiluminescence. (6) The haem Fe3+ group and H2O2 appear to be crucial for the chemiluminescence. It is suggested that the generation of electronically excited, light-emitting states is coupled to the production of conformational out-of-equilibrium states of peroxy-Fe-protoporphyrin IX compounds.  相似文献   

20.
Ismael Moya  Raphael Garcia 《BBA》1983,722(3):480-491
A new method for decomposing fluorescence emission spectra into their elementary components, based on the simultaneous recording of fluorescence intensity and lifetime vs. the emission wavelength, has been applied to the spectra of algal cells at liquid nitrogen temperature. A model of Gaussian components fits both τ(λ) and F(λ) spectra with the same parameters. The fluorescence lifetimes have been measured by phase fluorimetry at two modulation frequencies: 29 and 139 MHz. The final Gaussian decomposition is able to describe both the 29 and 139 MHz spectra. The following conclusions concerning the fluorescence spectra of Chlorella cells at 77 K can be drawn. These conclusions are also valid with minor changes for the other examined species. (1) An overlapping of different emitting bands occurs in all the spectra; therefore, a direct lifetime reading from phase delay measurement necessitates measurements being made at several frequencies. (2) At the Fmax fluorescence level, the lifetime values of the two emissions usually associated with variable fluorescence are 0.53 ns (for B′1; λ peak 688 nm), and 1.46 ns (for B′2; λ peak 698 nm); these lifetimes are shorter than those we have measured at room temperature (approx. 1.8 ns). (3) Superimposed on B′1 and B′2 and with approximatively the same peak location, two long-lifetime components (B″1, 4.8 ns; B″2, 5.6 ns) are present. Two hypotheses can be proposed to explain these emissions: (i) the long-lifetime components arise from subsets of chlorophyll a disconnected from the functional antenna by the cooling process; and (ii) charge recombination in reaction centers leads to delayed fluorescence. (4) In the λ > 710 nm region, two main bands are required to describe the so-called Photosystem I emission: B3 (0.8 ns; λ peak 715 nm) and B4 (3.3 ns; λ peak 724 nm). The former band, usually unresolved in the amplitude fluorescence spectra, is a specific finding from lifetime measurements and has been associated with the antenna core of Photosystem I. No additional information has been obtained for B4. A supplementary small band (B5, 0.40 ns; λ peak ? 740 nm) is necessary to take into account the frequency effect and the τ(λ) decrease in the λ > 740 nm spectral range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号