首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Proteoliposomes containing cytochrome c oxidase and phospholipid have been made by sonication and by the cholate dialysis procedure. In both methods of preparation, only about 50% of the enzyme molecules are oriented in the membrane with their cytochrome c reaction sites exposed to the outside of the vesicle.2. The activity of cytochrome c oxidase in the reconstituted vesicles is not increased by incubation in 1% Tween 80. Experiments on reconstituted vesicles containing internal (entrapped) cytochrome c indicate that turnover of enzyme oxidising entrapped cytochrome c in the presence of N,N,N′,N′-tetramethyl-p-phenylenediamine or 2,3,5,6-tetramethyl-p-phenylenediamine is at a very much lower rate than enzyme oxidising external ferrocytochrome c.3. Oxidation of ascorbate by externally added cytochrome c results in an electrogenic production of OH? inside the vesicles, which can be monitored using entrapped phenol red. Polylysine inhibits, but does not abolish, the internal alkalinity change in reconstituted vesicles oxidising internal (entrapped) cytochrome c using externally added ascorbate plus N,N,N′,N′-tetramethyl-p-phenylenediamine. When 2,3,5,6-tetramethyl-p-phenylenediamine is used as the permeable redox mediator, an increase in internal acidity can be monitored under the same conditions.  相似文献   

2.
Electron transport in continuous light has been investigated in chromatophores ofRhodopseudomonas capsulata, Ala pho+, depleted in ubiquinone-10 and subsequently reconstituted with various ubiquinone homologs and analogs. In addition the restoration of electron transport in depleted chromatophores by the artificial redox compoundsN-methylphenazonium methosulfate andN,N,N,N-tetramethyl-p-phenylenediamine was studied. The following pattern of activities was obtained: (1) Reconstitution of cyclic photophosphorylation with ubiquinone-10 was saturated at about 40 ubiquinone molecules per reaction center. (2) Reconstitution by ubiquinone homologs was dependent on the length of the isoprenoid side chain and the amount of residual ubiquinone in the extracted chromatophores. If two or more molecules of ubiquinone-10 per reaction center were retained, all homologs with a side chain longer than two isoprene units were as active as ubiquinone-10 in reconstitution, and the double bonds in the side chain were not required. If less than two molecules per reaction center remained, an unsaturated side chain longer than five units was necessary for full activity. Plastoquinone, -tocopherol, and naphthoquinones of the vitamin K series were relatively inactive in both cases. (3) All ubiquinone homologs, also ubiquinone-1 and -2, could be reduced equally well by the photosynthetic reaction center, as measured by light-induced proton binding in the presence of antimycin A and uncoupler. Plastoquinone was found to be a poor electron acceptor. (4) Photophosphorylation could be reconstituted byN-methylphenazonium methosulfate as well as byN,N,N,N-tetramethyl-p-phenylenediamine in an antimycin-insensitive way, if more than two ubiquinones per reaction center remained. These compounds were active also in more extensively extracted particles reconstituted with ubiquinone-1, which itself was inactive.Abbreviations UQ-n, n = 1–10 ubiquinone with 1 to 10 isoprene units in the side chain - UQ-9 sat UQ-9 with a saturated side chain - PQ plastoquinone A - PMS N-methylphenazonium methosulfate - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - DAD diaminodurene (2,3,5,6-tetramethyl-p-phenylenediamine) - FCCP carbonyl cyanide-p-trifluoromethoxyphenylhydrazone - E h redox potential - RC photosynthetic reaction center - BChl bacteriochlorophyll - PES N-methylphenazonium ethosulfate  相似文献   

3.
B.Dean Nelson  P. Gellerfors 《BBA》1975,396(2):202-209
Approx. 40–50% of the cytochrome b in purified Complex III is reduced by ascorbate plus N,N,N′,N′-tetramethyl-p-phenylenediamine or phenazine methosulfate at neutral pH. The remaining cytochrome b, including cytochrome b-565, is reduced by increasing the pH. The apparent pK for this reduction is between pH 10 and 11, and is more than two pH units higher than a similar alkali-induced transition in Mg-ATP particles. Alkali-induced reduction of cytochrome b occurs concomitantly with the exposure of hydrophobic tyrosine and tryptophan residues to a more hydrophilic environment. The relationship of these findings to the presence of a substrate accessibility barrier in Complex III is discussed.  相似文献   

4.
(1) Inhibition of cyclic phosphorylation in chromatophores ofRhodopseudomonas capsulata by antimycin A can be fully reversed by artificial redox mediators, provided the ambient redox potential is maintained around 200 mV. The redox mediator need not be a hydrogen carrier in its reduced form, N-methyl-phenazonium methosulfate and N,N,N,N-tetramethyl-p-phenylenediamine being equally effective. However, the mediator needs to be lipophilic. Endogenous cyclic phosphorylation is fastest around 130 mV. A shift to 200 mV can also be observed if high concentrations of artificial redox mediator are present in the absence of antimycin A. (2) ATPase activity ofRhodopseudomonas capsulata, in the light as well as in the dark, activated or not activated by inorganic phosphate, can also be stimulated by N-methylphenazonium methosulfate. This stimulation is highest at redox potentials between 60 to 80 mV and is sensitive to antimycin A. In this case N,N,N,N-tetramethyl-p-phenylenediamine is much less effective.Abbreviations PES N-methyl-phenazonium ethosulfate - PMS N-methyl-phenazonium methosulfate - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - DAD diaminodurene (2,3,5,6-tetramethyl-p-phenylenediamine) - Bchl bacteriochlorophyll - FCCP carbonylcyanide-p-trifluoromethoxy-phenylhydrazone - E h redox potential - E m midpoint redox potential  相似文献   

5.
Salil Bose  P. Ramanujam 《BBA》1984,764(1):40-45
The rate of electron transfer through Photosystem I (reduced 2,6-dichlorophenol indophenol (DCIPH2 → methylviologen) in a low-salt thylakoid suspension is inhibited by Mg2+ both under light-limited and the light-saturated conditions, the magnitude of inhibition being the same. The 2,6-dichlorophenol indophenol (DCIP) concentration dependence of the light-saturated rate in the presence and in the absence of Mg2+ shows that the overall rate constant of the photoreaction is not altered by Mg2+. With N,N,N′,N′-tetramethyl-p-phenylenediamine or 2,3,5,6-tetramethylphenylenediamine as electron donor only the light-limited rate, not the light-saturated rate, is inhibited by Mg2+ and the magnitude of inhibition is the same as with DCIP as donor. The results are interpreted in terms of heterogeneous Photosystem I, consisting of two types, PS I-A and PS I-B, where PS I-A is involved in cation-regulation of excitation energy distribution and becomes unavailable for DCIPH2 → methyl viologen photoelectron transfer in the presence of Mg2+.  相似文献   

6.
Evidence is presented which suggests that N-methylphenazonium methosulfate suppresses the fluorescence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea-poisoned chloroplasts by two mechanisms: (i) indirectly, by catalyzing the buildup of the phosphorylating potential XE across the thylaknid membrane; (ii) directly, by interacting with excited chlorophyll molecules.Arguments in support of direct quenching are as follows: (i) N-methylphenazonium methosulfate is an efficient quencher of the fluorescence of chlorophyll a in methanol; (ii) the dark-irreversible portion of the light-induced fluorescence lowering in the presence of N-methylphenazonium-methosulfate increases with the concentration of the cofactor, (iii) N-methylphenazonium methosulfate lowers the fluorescence of chloroplasts at an excitation that is too weak to allow formation of XE.Ascorbate-reduced N-methylphenazonium methosulfate (PMS-SQ) is a more efficient direct quencher of chloroplast fluorescence than oxidized PMS because the thylakoid membrane is more permeable to the reduced species. The permeability to these quenchers is enhanced by the light-induced protonation of the membrane, and suppressed by added Mg2+. Different permeability barriers appear to exist for the direct and for the XE-mediated quenching by N-methylphenazonium methosulfate, since the latter is known to be insensitive to the presence of Mg2+.  相似文献   

7.
The terminal oxidase of Photobacterium phosphoreum has been purified to the electrophoretically homogeneous state and some of its properties have been studied.The enzyme catalyses oxidation of ascorbate in the presence of phenazine methosulphate or N,N,N′,N′-tetramethyl-p-phenylenediamine. The reaction is inhibited by cyanide. Nitrite at comparatively high concentrations inhibits the enzyme, but the enzyme does not catalyse nitrite reduction with ascorbate plus the electron mediator as the electron donor.The enzyme shows the absorption peaks at 632, 565, 534 and 436 nm in the reduced form. It has two kinds of haems: protohaem and haem d. Namely, the enzyme is a ‘cytochrome bd’-type oxidase; a novel cytochrome.  相似文献   

8.
Rhodospirillum rubrum chromatophores associated with a planar phospholipid macromembrane by bivalent cations in the presence of quinone, N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) and ascorbate generate a transmembrane electrical potential difference in the light. Photoelectrical activity is also observed if chromatophores are preincubated with cytochrome c; the maximum values of responses are reached upon subsequent addition of ascorbate and menadion in the absence of bivalent cations and TMPD. The cytochrome c-dependent responses of the illuminated chromatophores are inhibited by Ca2+ and prevented by quinones. The possibility of cytochrome c (c2) translocation across the chromatophore membrane and the mechanism of charge transfer across the planar phospholipid membrane are discussed.  相似文献   

9.
The horseradish peroxidase/hydrogen peroxide-supported oxidation of N,N-dimethylaniline is shown to proceed along three separate primary pathways; N-demethylation to N-metnylaniline, dimerization to N,N,N′,N′-tetramethyl-p,p′-benzidine and its oxidation products, and another dimerization to an unidentified water-soluble product, possibly an N-oxide. The first pathway predominates at low concentrations of peroxidase, while the dimerizations predominate at higher enzyme concentrations. These studies were made possible by the development of a very sensitive fluorimetric assay for N,N,N′,N′-tetramethyl-p,p′-benzidine. Kinetic studies of the dimerizations show them to be second-order with peroxidase concentration at low enzyme concentrations (less than 0.1 μg/3 ml), but near first order at higher enzyme concentrations. The dimerizations appear to involve interactions between pairs of enzyme-substrate or enzyme-intermediate complexes.  相似文献   

10.
K.S. Cheah 《BBA》1975,387(1):107-114
1. The cytochrome system in Ascaris muscle mitochondria was further characterized using purer preparations.2. Difference spectra (at 22 °C and ?196 °C) of the mitochondrial preparations using succinate and ascorbate plus N,N,N′,N′-tetramethyl-p-phenylenediamine show that Ascaris muscle mitochondria contain cytochromes c1, c and aa3, and also at least three b-type cytochromes. The b-type cytochrome is the predominant component.3. Cytochrome c and Ascaris cytochrome b-560 can be extracted from the mitochondrial preparations with 150 mM KCl, leaving the membrane-bound cytochromes c1, b and aa3 in the KCl residue.  相似文献   

11.
Vesicles prepared with the French press from membranes of cyanelles of Cyanophora paradoxa retain O2 evolution activity with rates up to 500 micromoles 2,6-dichlorophenolindophenol reduced per hour per milligram chlorophyll. This activity is immediately lost when the vesicles are transferred from the sucrose-phosphate-citrate preparation buffer into dilute phosphate buffer. Similar preparations from Phormidium laminosum, a thermophilic cyanobacterium retain activity under such conditions. Photosystem I activities of both cyanobacterial vesicle preparations were determined by direct spectrophotometric measurement of N,N,N′,N′-tetramethyl-p-phenylenediamine photooxidation in the presence of anthraquinone-2-sulfonate. The rates so determined were compared with rates of O2 taken up in the presence of methyl viologen or anthraquinone-2-sulfonate as electron acceptors. The predicted stoichiometry of two was observed for moles of N,N,N′,N′-tetramethyl-p-phenylenediamine oxidized per mole of oxygen taken up. Anthraquinone-2-sulfonate was the better electron acceptor, and maximal rates of 943 micromoles per hour per milligram chlorophyll for O2 uptake were observed for Phormidium laminosum preparations in the presence of superoxide dismutase. For purposes of comparison, spinach chloroplasts were assayed for similar activities. All preparations were readily assayed for photosystem I activity by the direct spectrophotometric method, which has advantages of simplicity and freedom from errors introduced by photoxidation of other substrates by photosystem I when O2 uptake is measured.  相似文献   

12.
B.G. De Grooth  J. Amesz 《BBA》1977,462(2):237-246
Light-induced absorbance changes were measured at temperatures between ?30 and ?55 °C in chromatophores of Rhodopseudomonas sphaeroides. Absorbance changes due to photooxidation of reaction center bacteriochlorophyll (P-870) were accompanied by a red shift of the absorption bands of a carotenoid. The red shift was inhibited by gramicidin D. The kinetics of P-870 indicated electron transport from the “primary” to a secondary electron acceptor. This electron transport was slowed down by lowering the temperature or increasing the pH of the suspension. Electron transport from soluble cytochrome c to P-870+ occurred in less purified chromatophore preparations. This electron transport was accompanied by a relatively large increase of the carotenoid absorbance change. This agrees with the hypothesis that P-870 is located inside the membrane, so that an additional membrane potential is generated upon transfer of an electron from cytochrome to P-870+.A strong stimulation of the carotenoid changes (more than 10-fold in some experiments) and pronounced band shifts of bacteriochlorophyll B-850 were observed upon illumination in the presence of artificial donor-acceptor systems. Reduced N-methylphenazonium methosulphate (PMS) and N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) were fairly efficient donors, whereas endogenous ubiquinone and oxidized PMS acted as secondary acceptor. These results indicate the generation of large membrane potentials at low temperature, caused by sustained electron transport across the chromatophore membrane. The artificial probe, merocyanine MC-V did not show electrochromic band shifts at low temperature.  相似文献   

13.
The mechanism of light-induced O2 uptake by chromatophores and isolated P-870 reaction center complexes from Rhodospirillum rubrum has been investigated.The process is inhibited by o-phenanthroline and also by an extraction of loosely bound quinones from chromatophores. Vitamin K-3 restored the o-phenanthroline-sensitive light-induced O2 uptake by the extracted chromatophores and stimulated the O2 uptake by the reaction center complexes. It is believed that photooxidase activity of native chromatophores is due to an interaction of loosely bound photoreduced ubiquinone with O2. Another component distinguishable from the loosely bound ubiquinone is also oxidized by O2 upon the addition of detergents (lauryldimethylamine oxide or Triton X-100) to the illuminated reaction center complexes and to the extracted or native chromatophores treated by o-phenanthroline. Two types of photooxidase activity are distinguished by their dependence on pH.The oxidation of chromatophore redox chain components due to photooxidase activity as well as the over-reduction of these components in chromatophores, incubated with 2,3,5,6-tetramethyl-p-phenylenediamine (Me4Ph(NH2)2) or N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) (plus ascorbate) in the absence of exogenous electron acceptors, leads to an inhibition of the membrane potential generation, as measured by the light-induced uptake of penetrating phenyldicarbaundecaborane anions (PCB?) and tetraphenylborate anions. The inhibition of the penetrating anion responses observed under reducing conditions is removed by oxygen, 1,4-naphthoquinone, fumarate, vitamin K-3 and methylviologen, but not by NAD+ or benzylviologen. Since methylviologen does not act as an electron acceptor with the extracted chromatophores, it is believed that this compound, together with fumarate and O2, gains electrons at the level of the loosely bound ubiquinone. Data on the relationship between photooxidase activity and membrane potential generation by the chromatophores show that non-cyclic electron transfer from reduced Me4Ph(NH2)2 to the exogenous acceptors is an electrogenic process, whereas non-cyclic electron transfer from reduced TMPD is non-electrogenic.Being oxidized, Me4Ph(NH2)2 and TMPD are capable of the shunting of the cyclic redox chain of the chromatophores. Experiments with extracted chromatophores show that the mechanisms of the shunting by Me4Ph(NH2)2 and TMPD are different.  相似文献   

14.
15.
P. Horton  W.A. Cramer 《BBA》1975,396(2):310-319
In the presence of 0.1–5 μM N-methylphenazonium methosulphate approx. 50–70% oxidation of cytochrome b-559 can be induced by far-red light. The oxidation is best observed with long wavelength far-red light (732 nm) of moderate intensities (approx. 104 ergs/cm2 per s) and is reversed by subsequent illumination with red light. Concentrations of N-methylphenazonium methosulphate above 5 μM are inhibitory probably due to cyclic electron flow. The far-red oxidation is inhibited by low concentrations of the plastoquinone antagonist 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, while 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibits red light reduction and increases the amplitude of far-red oxidation. The effect of N-methylphenazonium methosulphate is mimicked by N-methyl-phenazonium ethosulphate, but not by pyocyanine or diaminodurene. Low concentrations (2–3 μM) of N-methylphenazonium methosulphate also stimulate a 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone-inhibitable red light reduction of cytochrome f.  相似文献   

16.
D. Siefermann  H.Y. Yamamoto 《BBA》1975,387(1):149-158
1. In isolated chloroplasts of Lactuca sativa var. Manoa, the size of the violaxanthin fraction which is available for de-epoxidation is not directly dependent on electron transport but rather related to the reduced level of some electron carrier between the photosystems. This is concluded from the effects of various electrontransport conditions on violaxanthin availability: Under conditions of electron transport through both photosystems, availability was saturated at a lower electron-transport rate with actinic light at 670 than at 700 nm. Under conditions of electron transport through Photosystem I, availability was smaller for linear electron flow from reduced N-methylphenazonium methosulfate via methylviologen to oxygen than for cyclic electron flow mediated by either N-methylphenazonium methosulfate or 2,6-dichlorophenolindophenol; in addition for linear r flow from reduced N-methylphenazonium methosulfate via methylviologen to oxygen, availability increased with decreasing light intensity.2. The postulated carrier whose reduced level is related to availability seems to be some carrier between plastoquinone and the primary acceptor of Photosystem II or plastoquinone itself. This conclusion follows from the fact that availability increased with increasing light intensity under conditions of electron flow through both photosystems and that 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (≤ μM) had no effect on availability, whereas low levels of 3,3-(3′,4′-dichlorophenyl)-1,1-dimethylurea resulted in decreased availability (50% decrease at 1 μM). Furthermore, availability in 3,3-(3′,4′-dichlorophenyl)-1,1-dimethylurea-poisoned chloroplasts was fully restored by 2-methyl-1,4-naphtoquinone (menadione) which mediates cyclic electron flow through plastoquinone.3. Violaxanthin availability was zero in the dark and increased in the light to a maximum of 67% of the total violaxanthin in chloroplasts. It is proposed that this variable violaxanthin availability reflects conformational changes on the internal surface of the thylakoid membrane which result in variable exposure of violaxanthin to the de-epoxidase. The fact that not all of the violaxanthin was available for de-epoxidation may indicate a heterogenous distribution of violaxanthin in the membrane.  相似文献   

17.
Kazuhiko Satoh  Sakae Katoh 《BBA》1979,545(3):454-465
Light -induced absorbance changes at 560 nm in dark-adapted intact chloroplasts of the green alga, Bryopsis maxima were studied in the time range of 200 ms. The initial rise of the 560 nm signals constists of two major components which are both electrochromic absorbance changes of the carotenoids, sipnonein and/or siphonaxanthin, but different in mechanisms of the field formation.The first component (component S) is related to electron transport since it was sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) and showed a light-intensity dependence similar to that of electron transport in chloroplasts. In the presence of DCMU, component S could be restored on addition of proton-transporting electron donors such as reduced 2,6-dichlorophenol indophenol and phenazine methosulfate, but not on addition of N,N,N′,N′-tetramethyl-p-phenylenediamine which does not carry protons with electrons (Trebst, A. (1974) Annu. Rev. Plant Physiol. 25, 423–458). We propose that component S is due to the electric field set up by the proton translocation across the thylakoid membrane.The second component (component R) was resistant to DCMU and DBMIB. The light-intensity dependency of component R was similar to that of cytochrome f photooxidation which showed saturation at a relatively low light intensity. The magnitude of component R was markedly reduced by phenylmercuric acetate, suggesting the participation of ferredoxin and ferredoxin-NADP oxidoreductase in the mechanism of the field formation responsible for this component. In the presence of DCMU and phenylmercuric acetate, time courses of the 560 nm changes paralleled those of cytochrome f changes. These results indicate that component R is due to the electric field formed between oxidized cytochrome f and other intersystem electron carriers located in the inner part of the thylakoid membrane and reduced electron acceptors of Photosystem I situated on the membrane surface.The complex natures of the 560 nm changes, as well as the contributions of Photosystems I and II to the absorbance changes, are explained in terms of the two electrogenic mechanisms.  相似文献   

18.
The respiration of Azotobacter vinelandii membrane vesicles was investigated in order to determine the partial rates of electron fluxes at each segment of its branched respiratory chain. It is concluded that under physiological conditions only 20 to 30% of the total flux is carried through the c4, c5a1,o chain. Steady state analysis indicates that the limited capacity of the chain is due to the slow rate of oxidation of the cytochromes c by the a1,o oxidases. This rate-limiting step is bypassed by the artificial electron donors, ascorbate-2,6-dichlorophenol indophenol and ascorbate-N,N,N′,N′-tetramethyl-p-phenylenediamine, which directly reduce the highly active a1,o oxidases. During the oxidation of ascorbate-N,N,N′,N′-tetramethyl-p-phenylenediamine by the membrane vesicles, an accumulation of oxidized N,N,N′,N′-tetramethyl-p-phenylenediamine occurs. Such accumulation of positively charged molecules should lead to a generation of a membrane potential. This fact and previous data concerning coupling site III of A. vinelandii are discussed.  相似文献   

19.
Helmar Almon  Herbert Böhme 《BBA》1982,679(2):279-286
Isolated heterocysts of the blue-green alga Nostoc muscorum (Anabaena 7119) exhibit high rates of photophosphorylation in systems with cyclic and non-cyclic electron transport. Cyclic photophosphorylation mediated by N-methylphenazonium methosulfate is found to be sensitive to antimycin A, but not to 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinon (DBMIB). Non-cyclic electron transport (diaminodurol → methylviologen) coupled to phosphorylation is affected by DBMIB, but not by antimycin A. Studies with uncouplers indicate that ΔpH is the main component of the protonmotive force under continuous illumination. A different effect of NH4Cl on dark- and photophosphorylation is observed and discussed with respect to localization of respiration in blue-green algae.  相似文献   

20.
Nolan WG 《Plant physiology》1981,67(6):1259-1263
Temperature-induced changes in the decay of the light-induced proton gradient of chloroplast thylakoids isolated from chilling-resistant and chilling-sensitive plants have been examined. In the presence of N-methylphenazonium methosulfate, the thylakoids isolated from chilling-resistant barley (cv. Kanby) and pea (cv. Alaska) and chilling-sensitive mung bean (cv. Berken) plants showed temperature-induced changes at approximately 8.6, 13.3, and 14.0 C, respectively. Barley thylakoids assayed in the presence of sodium thiocyanate also showed a change at 8.6 C, whereas with no addition or upon the inclusion of both N-methylphenazonium methosulfate and sodium thiocyanate the change occurred at approximately 11.5 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号