首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ascorbate-reduced horse heart cytochrome c reduces photo-oxidized bacterial reaction centres with a second-order rate constant of (5–8) · 108 M?1 · s?1 at an ionic strength of 50 mM. In the absence of cytochrome c, the cytochrome c1 in the ubiquinol:cytochrome c oxidoreductase is oxidized relatively slowly (k = 3.3 · 105 M?1 · s?1). Ferrocytochrome c binds specifically to ascorbate-reduced reductase, with a Kd of 0.6 μM, and only the free cytochrome c molecules are involved in the rapid reduction of photo-oxidized reaction centres. The electron transfer between ferricytochrome c and ferrocytochrome c1 of the reductase is rapid, with a second-order rate constant of 2.1 · 108 M?1 · s?1 at an ionic strength of 50 mM. The rate of electron transfer from the Rieske iron-sulphur cluster to cytochrome c1 is even more rapid. The cytochrome b of the ubiquinol:cytochrome c oxidoreductase can be reduced by electrons from the reaction centres through two pathways: one is sensitive to antimycin and the other to myxothiazol. The amount of cytochrome b reduced in the absence of antimycin is dependent on the redox potential of the system, but in no case tested did it exceed 25% of the amount of photo-oxidized reaction centres.  相似文献   

2.
Pulse radiolysis-kinetic spectrometry has been used to investigate the reaction of hydrated electrons with ferricytochrome c in dilute aqueous solution at pH 6.5–7.0. Time resolutions from 2·10?7 to 1 s were employed. Transient spectra from 320 to 580 nm were characterized with a wavelength resolution of ±0.5 nm. 1 In neutral salt-free solution, k(ferricytochrome c+e?aq)=(6.0±0.9)·1010 M?1·s?1 and k(ferricytochrome c+H)=(1.2±0.2)·1010 M?1·s?1. The reaction of ferricytochrome c with hydrated electrons is sensitive to ionic strength; in 0.1 M NaClO4, k(ferricytochrome c+e?aq)=(2.4±0.4)·1010 M?1·s?1. In contrast, k(ferricytochrome c+H) is insensitive to ionic strength. Time resolution of three spectral stages has been accomplished. The primary spectrum is the first observable spectrum detectable after irradiation and is formed in a second-order process. Its rate of formation is indisting-uishable from the rate of disappearance of the electron spectrum. The secondary spectrum is generated in a true first order intramolecular process, k(p→s)=(1.2±0.1)·105 s?1. The tertiary spectrum is also generated in a true first-order process, k(s→t)=(1.3±0.2)·102 s?1. The specific rates of both transformations are independent of the wavelength of measurement. The tertiary spectrum, observable 50 ms after initial reaction and remaining unchanged thereafter for at least 1 s, shows that relaxed ferrocytochrome c is the only detectable product. This product is not autoxidizable, as expected for native reduced enzyme. It is more probable that the intramolecular changes responsible for the p→s and s→t spectral transformations involve the influence of conformational relaxation of ferrocytochrome c upon electronic energy states then that they are intramolecular transmission of reducing equivalents from primary sites of electron attachment.  相似文献   

3.
J. Wilms  J. Lub  R. Wever 《BBA》1980,589(2):324-335
1. The steady-state oxidation of ferrocytochrome c by dioxygen catalyzed by cytochrome c oxidase, is inhibited non-competitively towards cytochrome c by methanethiol, ethanethiol, 1-propanethiol and 1-butanethiol with Ki values of 4.5, 91, 200 and 330 μM, respectively.2. The inhibition constant Ki of ethanethiol is found to be constant between pH 5 and 8, which suggests that only the neutral form of the thiol inhibits the enzyme.3. The absorption spectrum of oxidized cytochrome c oxidase in the Soret region shows rapid absorbance changes upon addition of ethanethiol to the enzyme. This process is followed by a very slow reduction of the enzyme. The fast reaction, which represents a binding reaction of ethanethiol to cytochrome c oxidase, has a k1 of 33 M?1 · s?1 and dissociation constant Kd of 3.9 mM.4. Ethanethiol induces fast spectral changes in the absorption spectrum of cytochrome c, which are followed by a very slow reduction of the heme. The rate constant for the fast ethanethiol reaction representing a bimolecular binding step is 50 M?1 · s?1 and the dissociation constant is about 2 mM. Addition of up to 25 mM ethanethiol to ferrocytochrome c does not cause spectral changes.5. EPR (electron paramagnetic resonance) spectra of cytochrome c oxidase, incubated with methanethiol or ethanethiol in the presence of cytochrome c and ascorbate, show the formation of low-spin cytochrome a3-mercaptide compounds with g values of 2.39, 2.23, 1.93 and of 2.43, 2.24, 1.91, respectively.  相似文献   

4.
Hiroshi Seki  Masashi Imamura 《BBA》1981,635(1):81-89
The reactions of ferrocytochrome c with Br?2, (SCN)?2, N3 and OH radicals were followed by measuring the change in the optical spectra of cytochrome c on γ-irradiation as well as the rate of change of absorbance upon pulse irradiation.Ferrocytochrome c is oxidized to ferricytochrome c by Br?2, (SCN)?2 or N3 radical with an efficiency of about 100% through a second-order process in which no intermediates were observed. The rate constants in neutral solutions at I = 0.073 are 9.7 · 108 M?1 · s?1, 7.9 · 108 M?1 · s?1, 1.3 · 109 M?1 · s?1 for the oxidation by Br?2, (SCN)?2 and N3 radicals, respectively. The rate constants do not vary appreciably in alkaline solutions (pH 8.9). The ionic strength dependence was observed for the rate constants of the oxidation by Br?2 and (SCN)?2. Those rate constants estimated on the assumption that the radicals react only with the amino acid residues with the characteristic steric correction factors were less than one-tenth of the observed ones. These results suggest that the partially exposed region of the heme is the probable site of electron transfer from ferrocytochrome c to the radical.Hydroxyl radicals also oxidize ferrocytochrome c with a high rate constant (k > 1 · 1010 M?1 · s?1), but with a very small efficiency (5%).  相似文献   

5.
6.
1. Using stopped-flow technique we have investigated the electron transfer form cytochrome c to cytochrome aa3 and to the (porphyrin) cytochrome c-cytochromeaa3 complex.2. In a low ionic strength medium, the pre-steady state reaction occurs in a biphasic way with rate constants of at least 2 · 108 M?1 · s?1 and about 107 M?1 · s?1 (I = 8.8 mM, pH 7.0, 10° C), respectively.3. A comparison of the rate constants, determined in the presence of an excess of cytochrome c with those found in the presence of an excess of cytochrome aa3 reveals the existence of two slower reacting sites on the functional unit (2 hemes and 2 coppers) of cytochrome aa3. On basis of these results we discuss various models. If no site-site interactions are assumed (non-cooperative model) cytochrome aa3 has 2 high and 2 low affinity sites available for the reaction with ferrocytochrome c. If negative cooperativity occurs, cytochrome aa3 has 2 high affinity sites which change into 2 low affinity sites upon binding of one cytochrome c molecule. The latter model is favoured.  相似文献   

7.
(1) Using the pulse-radiolysis and stopped-flow techniques, the reactions of iron-free (porphyrin) cytochrome c and native cytochrome c with cytochrome aa3 were investigated. The porphyrin cytochrome c anion radical (generated by reduction of porphyrin cytochrome c by the hydrated electron) can transfer its electron to cytochrome aa3. The bimolecular rate constant for this reaction is 2·107 M?1·s?1 (5 mM potassium phosphate, 0.5% Tween 20, pH 7.0, 20°C). (2) The ionic strength dependence of the cytochrome c-cytochromeaa3 interaction was measured in the ionic strength range between 40 and 120 mM. At ionic strengths below 30 mM, a cytochrome c-cytochrome aa3 complex is formed in which cytochrome c is no longer reducible by the hydrated electron. A method is described by which the contributions of electrostatic forces to the reaction rate can be determined. (3) Using the stopped-flow technique, the effect of the dielectric constant (?) of the reaction medium on the reaction of cytochrome c with cytochrome aa3 was investigated. With increasing ? the second-order rate constant decreased.  相似文献   

8.
The reductant of ferricytochrome c2 in Rhodopseudomonas sphaeroides is a component, Z, which has an equilibrium oxidation-reduction reaction involving two electrons and two protons with a midpoint potential of 155 mV at pH 7. Under energy coupled conditions, the reduction of ferricytochrome c2 by ZH2 is obligatorily coupled to an apparently electrogenic reaction which is monitored by a red shift of the endogeneous carotenoids. Both ferricytochrome c2 reduction and the associated carotenoid bandshift are similarly affected by the concentrations of ZH2 and ferricytochrome c2, pH, temperature the inhibitors diphenylamine and antimycin, and the presence of ubiquinone. The second-order rate constant for ferricytochrome c2 reduction at pH 7.0 and at 24°C was 2 · 109 M?1 · s?1, but this varied with pH, being 5.1 · 108 M?1 · s?1 at pH 5.2 and 4.3 · 109 M?1 · s?1 at pH 9.3. At pH 7 the reaction had an activation energy of 10.3 kcal/mol.  相似文献   

9.
The kinetics of the oxidation-reduction reactions of cytochrome c1 with ascorbate, ferricyanide, triphenanthrolinecobalt(III) and N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) have been examined using the stopped-flow technique. The reduction of ferricytochrome c1 by ascorbic acid is investigated as a function of pH. It is shown that at neutral and alkaline pH the reduction of the protein is mainly performed by the doubly deprotonated form of ascorbate. From the ionic-strength-dependence studies of the reactions of cytochrome c1 with ascorbate, ferricyanide and triphenanthrolinecobalt(III), it is demonstrated that the reaction rate is governed by electrostatic interactions. The second-order rate constants for the reaction of cytochrome c1 with ascorbate, ferricyanide, TMPD and triphenanthrolinecobalt(III) are 1.4·104, 3.2·103, 3.8·104 and 1.3·108 M?1·s?1 (pH 7.0, I = 0, 10°C), respectively. Application of the Debye-Hückel theory to the the ionic-strength-dependence studies of these redox reactions of cytochrome c1 yielded for ferrocytochrome c1 and ferricytochrome c1 a net charge of ?5 and ?4, respectively. The latter value is close to that of ?3 for the oxidized enzyme, calculated from the amino acid sequence of the protein. This implies that not a local charge on the surface of the protein, but the overall net charge of cytochrome c1 governs the reaction rate with small redox molecules.  相似文献   

10.
11.
12.
James A. Mccray  Toru Kihara 《BBA》1979,548(2):417-426
The oxidation of reduced cytochrome c by ferricyanide has been studied over a wide range of ferricyanide concentrations using a continuous-flow apparatus. The formation of a ferrocytochrome c-ferricyanide complex has been demonstrated and the binding and electron transfer processes separated to give both the oxidation electron transfer rate and the binding rate parameters. The electron transfer rate has been found to be 1.86 · 103 s?1 in H2O buffer and 1.36 · 103 s?1 in 2H2O demonstrating that a deuterium isotope effect of similar magnitude (R = 1.37) to that found in the cytochrome reactions in photosynthetic bacteria [18] is also found in the reaction studied here. The binding association rate parameters also show a similar deuterium isotope effect suggesting that water rotation may be involved in both the binding of ferricyanide to reduced cytochrome c and the subsequent oxidation electron transfer.  相似文献   

13.
S.P.J. Brooks  P. Nicholls 《BBA》1982,680(1):33-43
Citrate and other polyanion binding to ferricytochrome c partially blocks reduction by ascorbate, but at constant ionic strength the citrate-cytochrome c complex remains reducible; reduction by TMPD is unaffected. At a constant high ionic strength citrate inhibits the cytochrome c oxidase reaction competitively with respect to cytochrome c, indicating that ferrocytochrome c also binds citrate, and that the citrateferrocytochrome c complex is rejected by the binding site at high ionic strength. At lower ionic strengths, citrate and other polyanions change the kinetic pattern of ferrocytochrome c oxidation from first-order towards zero-order, indicating preferential binding of the ferric species, followed by its exclusion from the binding site. The turnover at low cytochrome c concentrations is diminished by citrate but not the Km (apparent non-competitive inhibition) or the rate of cytochrome a reduction by bound cytochrome c. Small effects of anions are seen in direct measurements of binding to the primary site on the enzyme, and larger effects upon secondary site binding. It is concluded that anion-cytochrome c complexes may be catalytically competent but that the redox potentials and/or intramolecular behaviour of such complexes may be affected when enzyme-bound. Increasing ionic strength diminishes cytochrome c binding not only by decreasing the ‘association’ rate but also by increasing the ‘dissociation’ rate for bound cytochrome c converting the ‘primary’ (T) site at high salt concentrations into a site similar kinetically to the ‘secondary’ (L) site at low ionic strength. A finite Km of 170 μM at very high ionic strength indicates a ratio of KMK0M of about 5000. It is proposed that anions either modify the E10 of cytochrome c bound at the primary (T) site or that they perturb an equilibrium between two forms of bound c in favour of a less active form.  相似文献   

14.
The rate of reduction of cytochrome c by 2-amino-4-hydroxy-6,7-dimethyl-5,6,7,8-tetrahydropteridine was examined as a function of binding to liposomes prepared from mixed soybean phospholipids, asolectin, and from various purified phospholipids. Binding of cytochrome c to asolectin liposomes caused an increase in the rate of reduction by the pteridine derivative from 2900 to 16 000 M?1 · s?1 at pH 7. At low ionic strength (0.003 M) the binding stoichiometry between cytochrome c and asolectin vesicles is 15 ± 2 phosphospolipid/cytochrome c (mole ratio), determined by monitoring the change in reduction rate of cytochrome c by pteridine as cytochrome c is bound to the vesicles. A stoichiometry of 14 phospholipid/cytochrome c was obtained from gel filtration studies. Equilibrium association constants for the binding of cytochrome c to sites on the asolectin vesicles varied from 2.2 · 106 to 1.8 · 103 M?1 between 0.02 and 0.10 M ionic strength, respectively. In general, liposomes prepared from purified phospholipids resulted in less binding of cytochrome c per mole of phospholipid and lower reduction rates than those prepared from asolectin.  相似文献   

15.
P.Muir Wood  D.S. Bendall 《BBA》1975,387(1):115-128
The rates of electron transfer to P700 from plastocyanin and cytochrome f have been compared with those from three other c-type cytochromes and azurin, a copper protein resembling plastocyanin. Three different disruptive techniques were used to expose P700; digitonin, Triton X-100 and sonication. The following rate constants were measured at 25 °C, pH 7.0, with digitonin-treated chloroplasts: plastocyanin, 8 · 107 M?1 · s?1; red-algal cytochrome c-553, 1.9 · 107 M?1 · s?1; Pseudomonas cytochrome c-551, 8 · 106 M?1 · s?1; azurin, ? 3 · 105 M?1 · s?1; cytochrome f, ? 2 · 104 M?1 · s?1; mammalian cytochrome c, ? 2 · 104 M?1 · s?1. For electron transfer from plastocyanin, the effects of ionic strength, pH and temperature were also studied, and saturation effects found in earlier work were avoided by a full consideration of the various secondary reactions and inclusion of superoxide dismutase. The relative rates are discussed in relation to photosynthetic electron transport.  相似文献   

16.
The kinetic properties of a 1:1 covalent complex between horse-heart cytochrome c and yeast cytochrome c peroxidase (ferrocytochrome-c:hydrogen-peroxide oxidoreductase, EC 1.11.1.5) have been investigated by transient-state and steady-state kinetic techniques. Evidence for heterogeneity in the complex is presented. About 50% of the complex reacts with hydrogen peroxide with a rate 20–40% faster than that of native enzyme; 20% of the complex exists in a conformation which does not react with hydrogen peroxide but converts to the reactive form at a rate of 20 ± 5 s−1; 30% of the complex does not react with hydrogen peroxide to form the oxidized enzyme intermediate, cytochrome c peroxidase Compound I. Intramolecular electron transfer between covalently bound ferrocytochrome c and an oxidized site in cytochrome c peroxidase Compound I is too fast to measure, but a lower limit of 600 s−1 can be estimated at 5°C in a 10 mM potassium phosphate buffer at pH 7.5. Free ferrocytochrome c reduces cytochrome c peroxidase Compound I covalently bound to ferricytochrome c at a rate 10−4 to 10−5-times slower than for free Compound I. The transient-state ferrocytochrome c reduction rates of Compound I covalently linked to ferricytochrome c are about 70-times too slow to account for the steady-state catalytic properties of the 1:! covalent complex. This indicates that hydrogen peroxide can interact with the 1:1 complex at sites other than the heme of cytochrome c peroxidase, generating additional species capable of oxidizing free ferrocytochrome c.  相似文献   

17.
Isolated cytochrome c1 contains endogenous reducing equivalents. They can be removed by treating the protein with sodium dithionite followed by chromatography. This treatment has no effect on the reaction with cytochrome c, nor does it alter the optical spectrum, or the polypeptide or amino acid composition of the protein. Both the titration of dithionite-treated ferrocytochrome c1 with potassium ferricyanide and the anaerobic titration of dithionite-treated ferricytochrome c1 with NADH in the presence of phenazine methosulphate lead to the same value for the absorbance coefficient of cytochrome c1 : 19.2 mM?1 · cm?1 at 552.4 nm for the reduced-minus-oxidised form. This value was also obtained when the haem content was determined by comparing the spectra of the reduced pyridine haemochromes of cytochrome c and cytochrome c1. Comparison of the optical spectra of cytochrome c and cytochrome c1 by integration shows equal transition moments for the transitions in the porphyrin systems of both proteins. A set of equations is presented with which the concentration of the cytochromes aa3, b, c and c1 can be calculated from one reduced-minus-oxidised difference spectrum of a mixture of these proteins.  相似文献   

18.
(1) In the pH range between 5.0 and 8.0, the rate constants for the reaction of ferrocytochrome c with both the high- and low-affinity sites on cytochrome aa3 increase by a factor of approx. 2 per pH unit. (2) The pre-steady-state reaction between ferrocytochrome c and cytochrome aa3 did not cause a change in the pH of an unbuffered medium. Furthermore, it was found that this reaction and the steady-state reaction are equally fast in H2O and 2H2O. From these results it was concluded that no protons are directly involved in a rate-determining reaction step. (3) Arrhenius plots show that the reaction between ferrocytochrome c and cytochrome aa3 requires a higher enthalpy of activation at temperatures below 20°C (15–16 kcal/mol) as compared to that at higher temperature (9 kcal/mol). We found no effect of ionic strength on the activation enthalpy of the pre-steady-state reaction, nor on that of the steady-state reaction. This suggests that ionic strength does not change the character of these reactions, but merely affects the electrostatic interaction between both cytochromes.  相似文献   

19.
The binding of[Co(CN)6]3?, and that of[Fe(CN)6]3? and [Ru(CN)6]4? using a competitive method, to horse cytochrome c has been studied by 59 Co NMR spectroscopy. At I = 0.07 M, without added salt and in 2H2O at ph* 7.3 (measured in 2H2O) and 25°C, there are at least two binding sites on ferricytochrome c and ferrocytochrome c for [Co(CN)6]3?. Association constants were determined to be 2.0 ± 0.6 × 103M?1 and 1.5 ± 0.5 × 102M?1 respectively. with no effect of the oxidation state of the cytochrome. At higher ionic strength (I = 0.12 M adjusted with KCl the binding markedly decreased, and, although it was not possible to determine the precise binding stoichiometry and magnitude of association constants, it is clear that the association constants are ≤ 1.5 × 10tM?1 The binding of [Ru(CN)6]4? at I = 0.07, without added salt and in 2H2O at pH 1.3 and 23°C, was not precisely defined, but its binding strength relative to that of [Fe(CN)6]3? was determined. Extrapolating this to I = 0.12 (KCl) suggests that under these conditions the association constant for [Ru(CN)6]4? binding to ferricytochrome c is ≤ 3 × 102M?1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号