首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Detailed absorbance difference spectra are reported for the Photosystem II acceptor Q, the secondary donor Z, and the donor involved in photosynthetic oxygen evolution which we call M. The spectra of Z and Q could be resolved by analysis of flash-induced kinetics of prompt and delayed fluorescence, EPR signal IIf and absorbance changes in Tris-washed system II preparations in the presence of ferricyanide and 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU). The spectrum of Z oxidation consists mainly of positive bands at 260, 300 and 390–450 nm on which a chlorophyll a band shift around 438 nm is superimposed, and is largely pH-independent as is also the case for the spectrum of Q reduction. The re-reduction of Z+ occurred in the millisecond time range, and could be explained by a competition between back reaction with Q? (120 ms at pH 6.0) and reduction by ferrocyanide. When the Tris treatment is omitted the preparations evolve oxygen, and the photoreduction of Q (with DCMU present) is accompanied by the oxidation of M. The Q spectrum being known, the spectrum of the oxidation of M could be determined as well. It consists of a broad, asymmetric increase peaking near 305 nm and of a Chl a band shift, which is about the same as that accompanying Z in Tris-washed system II. Comparison with spectra of model compounds suggests that Z is a bound plastoquinol which is oxidized to the semiquinone cation and that the oxidation of M is an Mn(III) → Mn(IV) transition.  相似文献   

3.
The 688 nm absorption changes (ΔA688), indicating the photochemical turnover of chlorophyll aII (Chl aII) have been investigated under repetitive laser flash excitation conditions in spinach chlorplasts. It was found that under steady state conditions about 50–60% of the photo-oxidized primary donor of Photosystem II (PS II), Chl a+II, becomes re-reduced with a biphasic kinetics in the nanosecond time scale with half-life times of about 50 ns and 400 ns. The remaining Chl a+II becomes re-reduced in the microsecond range.  相似文献   

4.
5.
G. Renger  Ch. Wolff 《BBA》1976,423(3):610-614
In Tris-washed chloroplasts the kinetics of the primary electron acceptor X 320 of reaction center II has been investigated by fast repetitive flash spectroscopy with a time resolution of ≈ 1 μs. It has been found that X 320 is reduced by a flash in ? 1 μs. The subsequent reoxidation in the dark occurs mainly by a reaction with a 100–200 μs kinetics. The light-induced difference spectrum confirms X 320 to be the reactive species. From these results it is concluded that in Tris-washed chloroplasts the reaction centers of System II are characterized by a high photochemical turnover rate mediated either via rapid direct charge recombination or via fast cyclic electron flow.  相似文献   

6.
7.
The electron donation to Chl a+II has been studied by measurement of absorbance changes at 824 nm under repetitive excitation conditions. For untreated inside-out thylakoids the electron donation was dominated by 35 and 220 ns kinetics. After salt-washing, both oxygen-evolution and nanosecond phases decreased drastically with corresponding increase in the microsecond time range. On addition of a purified 23 kDa protein, a restoration of the nanosecond phases up to 75% of the orginal level was obtained concomitant with a corresponding restoration of oxygen evolution. The results are consistent with a function of the 23 kDa protein at the oxidizing side of Photosystem II and that the nanosecond donation to Chl-a+II is coupled to the natural path of electrons from water.  相似文献   

8.
H. Conjeaud  P. Mathis  G. Paillotin 《BBA》1979,546(2):280-291
Absorption changes at 820 or 515 nm after a short laser flash were studied comparatively in untreated chloroplasts and in chloroplasts in which oxygen evolution is inhibited.In chloroplasts pre-treated with Tris, the primary donor of Photosystem II (P-680) is oxidized by the flash, as observed by an absorption increase at 820 nm. After the first flash it is re-reduced in a biphasic manner with half-times of 6 μs (major phase) and 22 μs. After the second flash, the 6 μs phase is nearly absent and P-680+ decays with half-times of 130 μs (major phase) and 22 μs. Exogenous electron donors (MnCl2 or reduced phenylenediamine) have no direct influence on the kinetics of P-680+.In untreated chloroplasts the 6 and 22 μs phases are of very small amplitude, either at the 1st, 2nd or 3rd flash given after dark-adaptation. They are observed, however, after incubation with 10 mM hydroxylamine.These results are interpreted in terms of multiple pathways for the reduction of P-680+: a rapid reduction (<1 μs) by the physiological donor D1; a slower reduction (6 and 22 μs) by donor D′1, operative when O2 evolution is inhibited; a back-reaction (130 μs) when D′1 is oxidized by the pre-illumination in inhibited chloroplasts. In Tris-treated chloroplasts the donor system to P-680+ has the capacity to deliver only one electron.The absorption change at 515 nm (electrochromic absorption shift) has been measured in parallel. It is shown that the change linked to Photosystem II activity has nearly the same magnitude in untreated chloroplasts or in chloroplasts treated with hydroxylamine or with Tris (first and subsequent flashes). Thus we conclude that all the donors (P-680, D1, D′1) are located at the internal side of the thylakoid membrane.  相似文献   

9.
10.
The antenna composition of the Photosystems IIα, IIβ and I was studied in tobacco chloroplasts. Absorbance spectra, recorded at 4 K, were analyzed for the wild type and the mutants Su/su and Su/su var. Aurea, containing higher concentrations of the photosystems. With chloroplasts of Su/su we measured the action spectra of the three photosystems from 625 to 690 nm. Above 675 nm absorption by Photosystem I dominated. This sytem had a maximum at 678 nm and a shoulder at 660 nm. Of the long-wavelength chlorophyll a forms, absorbing at 690, 697 and 705 nm at 4 K, which are generally assigned to Photosystem I, the 697 nm form occurred in an amount of four molecules per reaction center of Photosystem I in each type of chloroplast. The Photosystem IIα spectrum was characterized by maxima at 650 and 672 nm, showing clearly the participation of the chlorophyll a and b containing light-harvesting complex. In the mutants the light-harvesting complex has a chlorophyll a to chlorophyll b ratio of more than 1; the amount of the 672 nm chlorophyll a was normal, whereas the amount of chlorophyll b was markedly decreased in the mutants relative to the wild type. The Photosystem IIβ spectrum mainly consisted of a band at 683 nm.  相似文献   

11.
A class of compounds, usually referred to as ADRY reagents, destabilize intermediates in the photosynthetic water-oxidizing process. The effects of these species on the reduction kinetics of Z?, the oxidized donor to P-680, have been monitored in Tris-washed chloroplasts by following the decay of EPR Signal IIf. In the presence of ADRY reagents (e.g., sodium picrate, carbonyl cyanide m-chlorophenylhydrazone) this process follows an exponential time course, the decay half-time of which decreases as the ADRY reagent concentration increases. From this pseudo-first-order behavior, the second-order rate constants for four commonly used ADRY reagents have been extracted. The ADRY-induced acceleration in Z? reduction proceeds independently of conditions imposed on the acceptor side of Photosystem II and shows no synergism with exogenous electron donors. These observations are most easily rationalized in terms of a model which proposes direct reduction of Z? by the ADRY reagent followed by regeneration of the reduced ADRY reagent in a nonspecific reaction with membrane components such as carotenoids, chlorophyll or protein. A comparison of the second-order rate constants we obtain for ADRY reagents in their reaction with Z? in Tris-washed chloroplasts with those obtained from the literature for the ADRY- reagent induced deactivation of states S2 and S3 in oxygen-evolving chloroplasts reveals a close similarity between the two processes. From this observation, a general model for the action of ADRY reagents in destabilizing the high-potential oxidizing equivalents generated in Photosystem II is proposed.  相似文献   

12.
The structural and functional organization of the spinach chloroplast photosystems (PS) I, IIα and IIβ was investigated. Sensitive absorbance difference spectrophotometry in the ultraviolet (?A320) and red (?A700) regions of the spectrum provided information on the relative concentration of PS II and PS I reaction centers. The kinetic analysis of PS II and PS I photochemistry under continuous weak excitation provided information on the number (N) of chlorophyll (Chl) molecules transferring excitation energy to PS IIα, PS IIβ and PS I. Spinach chloroplasts contained almost twice as many PS II reaction centers compared to PS I reaction centers. The number Nα of chlorophyll (Chl) molecules associated with PS IIα was 234, while Nβ = 100 and NPS I = 210. Thus, the functional photosynthetic unit size of PS II reaction centers was different from that of PS I reaction centers. The relative electron-transport capacity of PS II was significantly greater than that of PS I. Hence, under light-limiting green excitation when both Chl a and Chl b molecules are excited equally, the limiting factor in the overall electron-transfer reaction was the turnover of PS I. The Chl composition of PS I, PS IIα and PS IIβ was analyzed on the basis of a core Chl a reaction center complex component and a Chl ab-LHC component. There is a dissimilar Chl ab-LHC composition in the three photosystems with 77% of total Chl b associated with PS IIα only. The results indicate that PS IIα, located in the membrane of the grana partition region, is poised to receive excitation from a wider spectral window than PS IIβ and PS I.  相似文献   

13.
Peroxynitrite is a strong oxidant that has been proposed to form in chloroplasts. The interaction between peroxynitrite and photosystem II (PSII) has been investigated to determine whether this oxidant could be a hazard for PSII. Peroxynitrite is shown to inhibit oxygen evolution in PSII membranes in a dose-dependent manner. Analyses by PAM fluorimetry and EPR spectroscopy have demonstrated that the inhibition target of peroxynitrite is on the PSII acceptor side. In the presence of the herbicide DCMU, the chlorophyll (Chl) a fluorescence induction curve is inhibited by peroxynitrite, but the slow phase of the Chl a fluorescence decay does not change. EPR studies demonstrate that the Signal IIslow and Signal IIfast of peroxynitrite-treated Tris-washed PSII membranes are induced at room temperature, implying that the redox active tyrosines YZ and YD of PSII are not significantly nitrated. A featureless EPR signal with a g value of approximately 2.0043 ± 0.0003 and a line width of 10 ± 1 G is induced under continuous illumination in the presence of peroxynitrite. This new EPR signal corresponds with the semireduced plastoquinone QA in the absence of magnetic interaction with the non-heme Fe2+. We conclude that peroxynitrite impairs PSII electron transport in the QAFe2+ niche.  相似文献   

14.
The effect of divalent cations on the primary photoconversion kinetics of chloroplast Photosystems (PS) I and II was investigated by absorbance difference spectrophotometry in the ultraviolet (ΔA320) and red (ΔA700) regions and by fluorescence at room temperature. Three main chlorophyll (Chl) a fluorescence emission components were identified. Addition of 5 mM MgCl2 to unstacked chloroplasts caused a 5–7-fold increase in Fvα, the variable fluorescence yield controlled by the α-centers. The fluorescence yield Fvβ controlled by the β-centers and the nonvariable fluorescence yield F0 were only slightly changed by the treatment. The absolute number of α- and β-centers remained unchanged and independent of divalent cations. The rate constants Kα, Kβ and KP-700 determined from the photoconversion kinetics of Qα, Qβ and P-700 were also unchanged by divalent cations, suggesting a constancy of the respective absorption cross-sections. Evidence is presented that the Mg2+ effect on Chl a fluorescence is not due simply to unstacking. Conclusion: (1) In the absence of divalent cations from the chloroplast suspending medium, the variable fluorescence yield is not complementary to the rate of PS II photochemistry. (2) A spillover of excitation from PS II to PS I in the absence of Mg2+ cannot account for the 7-fold lowering of the variable fluorescence yield Fvα at room temperature. The results are discussed in view of a model of excitation transfer and fluorescence emission in the pigment bed of PS IIα and PS IIβ.  相似文献   

15.
The role of Cl? in the electron transfer reactions of the oxidizing side of Photosystem II (PS II) has been studied by measuring the fluorescence yield changes corresponding to the reduction of P+-680, the PS II reaction center chlorophyll, by the secondary PS II donor, Z. In Cl?-depleted chloroplasts, a rapid rise in fluorescence yield was observed following the first and second flashes, but not during the third or subsequent flashes. These results indicate that there exists an additional endogenous electron donor beyond P-680 and Z in Cl?-depleted systems. In contrast, the terminal endogenous donor on the oxidizing side of PS II in Tris-washed preparations has previously been shown to be Z, the component giving rise to EPR signals IIf and IIvf. The rate of reduction of P+-680 in the Cl?-depleted chloroplasts was as rapid as that measured in uninhibited systems, within the time resolution of our instrument. Again, this is in contrast to Tris-washed preparations in which a dramatic decrease in the rate if this reaction has been previously reported. We have also carried out a preliminary study on the rate of rereduction of Z+ in the Cl?-depleted system. Under steady-state conditions, the reduction half-time of Z+ in uninhibited systems was about 450 μs, while in the Cl?-depleted chloroplasts, the reduction of Z+ was biphasic, one phase with a half-time of about 120 ms, and a slower phase with a half-time of several seconds. The appearance of the quenching state due to P+-680 observed following the third flash on excitation of Cl?-depleted chloroplasts was delayed by two flashed when low concentrations of NH2OH (20–50 μM) were included in the medium. Hydrazine at somewhat higher concentrations showed the same effect. This is taken to indicate that the reactions leading to PS II oxidation of NH2OH or NH2NH2 are uninhibited by Cl? depletion. Addition of NH2OH at low concentrations to Tris-washed chloroplasts did not alter the pattern of the fluorescence yield, indicating that the reactions leading to the NH2OH oxidation present in Cl?-depleted systems are absent following Tris inhibition. The results are discussed in terms of an inhibition by Cl? depletion of the reactions of the oxygen-evolving complex. It is suggested that no intermediary redox couple exists between the oxygen-evolving complex and Z, and that Z+ is reduced directly by Mn of the complex. In terms of the S-state model, Cl? depletion appears to inhibit the advancement of the mechanism beyond S2, but not to inhibit the transitions from S0 to S1, or from S1 to S2.  相似文献   

16.
17.
J.A. Van Best  P. Mathis 《BBA》1978,503(1):178-188
Absorption changes (ΔA) at 820 nm, following laser flash excitation of spinach chloroplasts and Chlorella cells, were studied in order to obtain information on the reduction time of the photooxidized primary donor of Photosystem II at physiological temperatures.In the microsecond time range the difference spectrum of ΔA between 750 and 900 nm represents a peak at 820 nm, attributable to a radical-cation of chlorophyll a. In untreated dark-adapted material the signal can be attributed solely to P+?700; it decays in a polyphasic manner with half-times of 17 μs, 210 μs and over 1 ms. The oxidized primary donor of Photosystem II (P+II) is not detected with a time resolution of 3 μs. After treatment with 3–10 mM hydroxylamine, which inhibits the donor side of Photosystem II, P+II is observed and decays biphasically (a major phase with t12 = 20–40 μs, and a minor phase with t12 ? 200 μs), probably by reduction by an accessory electron donor.In the nanosecond range, which was made accessible by a new fast-response flash photometer operating at 820 nm, it was found the P+II is reduced with a half-time of 25–45 ns in untreated dark-adapted chloroplasts. It is assumed that the normal secondary electron donor is responsible for this fast reduction.  相似文献   

18.
C.C. Schenck  B. Diner  P. Mathis  K. Satoh 《BBA》1982,680(2):216-227
Light excitation of chloroplasts at low temperature produces absorption changes (ΔA) with a large positive peak at 990 nm and a bleaching around 480 nm. ΔA at 990 nm rises with t12 = 0.6 ms at 20–77 K and remains largely stable. This signal is not observed when Photosystem II (PS II) photochemistry is blocked by reduction of the primary plastoquinone. It is observed also in purified PS II particles, in which case it could be shown that during a sequence of short flashes, the absorption at 990 nm rises in parallel with plastoquinone reduction measured at 320 nm. In chloroplasts the light-induced 990-nm ΔA at 77 K is increased under oxidizing conditions (addition of ferricyanide) and upon addition of 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT2p). At 21°C, flash excitation of chloroplasts or of PS II particles induces only a very small ΔA at 990 nm, even when this is measured with a 100-ns time resolution or when the material is preilluminated. In both materials, however, a large flash-induced ΔA takes place when various lipophilic anions are added. After a flash the signal rises in less than 100 μs and its decay varies with experimental conditions; the decay is strongly accelerated by benzidine. The difference spectrum measured in PS II particles includes a broad peak around 990 nm and a bleaching around 490 nm. These absorption changes are attributed to a carotenoid radical cation formed at the PS II reaction center. It is estimated that in the presence of lipophilic anions at room temperature, one cation can be formed by a single flash in 80% of the reaction centers. At cryogenic temperature approx. 8% of the PS II reaction centers can oxidize a carotenoid after a single flash.  相似文献   

19.
The protonization pattern of the endogenous donor component D1 which feeds electrons directly into chl-a+II has been analyzed in Tris-washed inside-out thylakoids with the aid of appropriate pH-indicators. It was found that under repetitive flash excitation the amount of protons released is proportional to the extent of D1-oxidation, depending on the time between the flashes. The kinetics of D1-oxidation (being practically the same as in normal Tris-washed chloroplasts) are faster than the proton release by two orders of magnitude. The results lead to the conclusion that D1 is protonized in the reduced state with pK(Dox1) < 5 and becomes deprotonized in the oxidized state with pK(Dred1) ? 8. The proton release is kinetically limited by a transport barrier. Implications on the interpretation of the proton release pattern in preparation with intact water oxidation are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号