首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical and structural properties of the B875 light-harvesting complex of purple bacteria were examined by measurements of low-temperature circular dichroism (CD) and excitation spectra of fluorescence polarization. In the B875 complex isolated from wild-type Rhodopseudomonas sphaeroides, fluorescence polarization increased steeply across the long-wavelength Qy bacteriochlorophyll a (BChl) absorption band at both 4 and approx. 300 K. With the native complex in the photosynthetic membranes of Rhodospirillum rubrum and Rps. sphaeroides wild-type and R26-carotenoidless strains, this significant increase in polarization from 0.12 to 0.40 was only observed at low temperature. A polarization of ?0.2 was observed upon excitation in the Qx BChl band. The results indicate that about 15% of the BChl molecules in the complex absorb at wavelengths about 12 nm longer than the other BChls. All BChls have approximately the same orientation with their Qy transition dipoles essentially parallel and their Qx transitions perpendicular to the plane of the membrane. At low temperature, energy transfer to the long-wavelength BChls is irreversible, yielding a high degree of polarization upon direct excitation, whereas at room temperature a partial depolarization of fluorescence by energy transfer between different subunits occurs in the membrane, but not in the isolated complex. CD spectra appear to reflect the two spectral forms of B875 BChl in Rps. sphaeroides membranes. They also reveal structural differences between the complexes of Rps. sphaeroides and Rhs. rubrum, in both BChl and carotenoid regions. The CD spectrum of isolated B875 indicates that the interactions between the BChls but not the carotenoids are altered upon isolation.  相似文献   

2.
Oligomers of bacteriopheophytin (BPh) and bacteriochlorophyll (BChl) were formed in mixed aqueous-organic solvent systems, and in aqueous micelles of the detergent lauryldimethylamine oxide (LDAO). Conditions were found that gave relatively homogeneous samples of oligomers and that allowed quantitative comparisons of the spectroscopic properties of the monomeric and oligomeric pigments. The formation of certain types of oligomers is accompanied by a large bathochromic shift of the long-wavelength (Qy) absorption band of the BChl or BPh, and by a substantial increase in its dipole strength (hyperchromism). The hyperchromism of the Qy band occurs at the expense of the Soret band, which loses dipole strength. The Qx band shifts slightly to shorter wavelengths and also loses dipole strength. The CD spectrum in the near-infra-red (Qy) region becomes markedly nonconservative. (The net rotational strength in the Qy region is positive.) This also occurs at the expense of the bands at shorter wavelengths, which gain a net negative rotational strength. The spectroscopic properties of the oligomers resemble those of some of the BChl-protein complexes found in photosynthetic bacteria. The oligomerization of BPh in LDAO micelles is linked to the formation of large, cylindrical micelles that contain on the order of 105 LDAO molecules. However, the spectral changes probably occur on the formation of small oligomers of BPh; they begin to be seen when the micelles contain about 10 molecules of BPh. The BPh oligomers formed in LDAO micelles fluoresce at 865 nm, but the fluorescence yield is decreased about 40-fold, relative to that of monomeric BPh. The fluorescence yield is insensitive to the BPh/LDAO molar ratio, suggesting that the oligomers formed under these conditions are predominantly dimers. When the oligomers are excited with a short flash of light, they are converted with a low quantum yield into a metastable form. This transformation probably involves alterations in the geometry of the oligomer, but not full dissociation.  相似文献   

3.
Room temperature absorption difference spectra were measured on the femtosecond through picosecond time scales for chlorosomes isolated from the green bacterium Chloroflexus aurantiacus. Anomalously high values of photoinduced absorption changes were revealed in the BChl c Qy transition band. Photoinduced absorption changes at the bleaching peak in the BChl c band were found to be 7–8 times greater than those at the bleaching peak in the BChl a band of the chlorosome. This appears to be the first direct experimental proof of excitation delocalization over many BChl c antenna molecules in the chlorosome.  相似文献   

4.
《FEBS letters》1987,223(1):161-164
The orientation of the long-wavelength (Qy) transition moments of the antenna bacterioviridin (BVr) was examined in living cells of Chlorobium limicola. Previous linear dichroism studies [(1986) FEBS Lett. 199, 234–236] indicated that in each individual chromatophore of C. limicola the Qy, transition moment vectors of the whole chlorosome BVr are essentially parallel to each other and are practically ideally oriented along the long axis of the chlorosome. We measured the picosecond polarized fluorescence decay kinetics for antenna bacteriochlorophyll (BChl) emissions upon selective excitation with polarized light of the Qy, transition of BVr. The polarization (p) of the BVr fluorescence is measured to be constant during the BVr excited-state lifetime and to be equal to the limiting value of p achieved in monomeric BChl: P = + 0.42 ± 0.02. The results indicate convincingly that the excitation energy transfer within chlorosomes of C. limicola cells takes place between chromophores (or their coupled associates) with parallel transition moment vectors.  相似文献   

5.
《BBA》2021,1862(11):148473
Halorhodospira (Hlr.) halochloris is a unique phototrophic purple bacterium because it is a triple extremophile—the organism is thermophilic, alkalophilic, and halophilic. The most striking photosynthetic feature of Hlr. halochloris is that the bacteriochlorophyll (BChl) b-containing core light-harvesting (LH1) complex surrounding its reaction center (RC) exhibits its LH1 Qy absorption maximum at 1016 nm, which is the lowest transition energy among phototrophic organisms. Here we report that this extraordinarily red-shifted LH1 Qy band of Hlr. halochloris exhibits interconvertible spectral shifts depending on the electrostatic charge distribution around the BChl b molecules. The 1016 nm band of the Hlr. halochloris LH1-RC complex was blue-shifted to 958 nm upon desalting or pH decrease but returned to its original position when supplemented with salts or pH increase. Resonance Raman analysis demonstrated that these interconvertible spectral shifts are not associated with the strength of hydrogen-bonding interactions between BChl b and LH1 polypeptides. Furthermore, circular dichroism signals for the LH1 Qy transition of Hlr. halochloris appeared with a positive sign (as in BChl b-containing Blastochloris species) and opposite those of BChl a-containing purple bacteria, possibly due to a combined effect of slight differences in the transition dipole moments between BChl a and BChl b and in the interactions between adjacent BChls in their assembled state. Based on these findings and LH1 amino acid sequences, it is proposed that Hlr. halochloris evolved its unique and tunable light-harvesting system with electrostatic charges in order to carry out photosynthesis and thrive in its punishing hypersaline and alkaline habitat.  相似文献   

6.
The absorbance, polarized absorbance and linear dichroism spectra of single crystals of the B800–850 light-harvesting complex from Rhodopseudomonas acidophila strain 10050 taken at room (298 K) and low (85 K) temperatures are presented. The spectra are compared and contrasted with random phase solution spectra from the same complex. The single crystal spectra display a spectral narrowing at low temperatures in the BChl Qx (550–650 nm) and carotenoid (450–550 nm) regions similar to that observed from the random phase solution. The single crystal absorption spectra in the BChl Qy (750–900 nm) region are broader than the solution spectra and remain broad as the temperature is lowered. It is suggested that this broadening is the result of specific exciton interactions between the BChl chromophore Qy transition dipoles and is a molecular feature which occurs only in the crystalline complex.  相似文献   

7.
A light-harvesting-reaction center (LH1-RC) core complex has been highly purified from a thermophilic purple sulfur bacterium, Thermochromatium tepidum. The bacteriochlorophyll (BChl) a molecules in the LH1 exhibit a Qy transition at 914 nm, more than 25 nm red-shift from those of its mesophilic counterparts. The LH1-RC complex was isolated in a monomeric form as confirmed by sucrose density gradient centrifugation, blue native PAGE and size-exclusion chromatography. Four subunits (L, M, H and a tetraheme cytochrome) in RC and two polypeptides (α and β) in LH1 were identified. Spirilloxanthin was determined to be the predominant carotenoid in the core complex. The purified core complex was highly stable, no significant change in the LH1 Qy transition was observed over 10 days of incubation at room temperature in dark. Circular dichroism spectrum of the LH1 complex was characterized by low intensity and nonconservative spectral shape, implying a high symmetry of the large LH1 ring and interaction between the BChl a and carotenoid molecules. A dimeric feature of the BChl a molecules in LH1 was revealed by magnetic circular dichroism spectrum. Crystals of the core complex were obtained which diffracted X-rays to about 10 Å.  相似文献   

8.
The transfer of excitation energy and the pigment arrangement in isolated chlorosomes of the thermophilic green bacterium Chloroflexus aurantiacus were studied by means of absorption, fluorescence and linear dichroism spectroscopy, both at room temperature and at 4 K. The low temperature absorption spectrum shows bands of the main antenna pigments BChl c and carotenoid, in addition to which bands of BChl a are present at 798 and 613 nm. Fluorescence measurements showed that excitation energy from BChl c and carotenoid is transferred to BChl a, which presumably functions as an intermediate in energy transfer from the chlorosome to the cytoplasmic membrane. Measurements of fluorescence polarization and the use of two different orientation techniques for linear dichroism experiments enabled us to determine the orientation of several transition dipole moments with respect to each other and to the three principal axes of the chlorosome. The Qy transition of BChl a is oriented almost perfectly perpendicular to the long axis of the chlorosome. The Qy transition of BChl c and the -carotene transition dipole are almost parallel to each other. They make an angle of about 40° with the long axis and of about 70° with the short axis of the chlorosome; the angle between these transitions and the BChl a Qy transition is close to the magic angle (55°).Abbreviations BChl bacteriochlorophyll - CD circular dichroism - LD linear dichroism Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

9.
The relative orientation of the pigments of reaction centers from Rhodopseudomonas sphaeroides has been studied by the photoselection technique.A high value (+0.45) of p = (ΔAV ? ΔAH)(ΔAV + ΔAH) is obtained when exciting and observing within the 870 nm band which is contradictory to the results of Mar and Gingras (Mar, T. and Gingras, G. (1976) Biochim. Biophys. Acta 440, 609–621) and Shuvalov et al. (Shuvalov, V.A., Asadov, A.A. and Krakhmaleva, I.N. (1977) FEBS Lett. 76, 240–245). It is shown that the low values of p obtained by both groups were erroneous due to excitation conditions.Analysis of the polarization of light-induced changes when exciting with polarized light in single transitions (spheroiden band and bacteriopheophytin Qx bands) enable us to propose a possible arrangement of the pigments within the reaction center. It is concluded that the 870 nm band corresponds to a single transition and is one of the two bands of the primary electron donor (P-870). The second band of the bacteriochlorophyll dimer is centred at 805 nm. The Qy transitions of the molecules constituting the bacteriochlorophyll dimer are nearly parallel (angle less than 25°).The two bacteriopheophytin molecules present slightly different absorption spectra in the near infra-red. Both bacteriopheophytin absorption bands are subject to a small shift under illumination. The angle between the Qy bacteriopheophytin transitions is 55° or 125°. Both Qy transitions are nearly perpendicular to the 870 nm absorption band. Finally, the carotenoid molecules makes an angle greater than 70° with the 870 nm band and the other bacteriochlorophyll molecules.  相似文献   

10.
Two types of peripheral light-harvesting complexes LH2 (B800–850) from photosynthetic purple bacterium Allochromatium minutissimum were studied. First type containing carotenoids was prepared from wild type cells. The other one was obtained from carotenoid depleted cells grown with diphenylamine. We have shown that under laser femtosecond excitation within absorption 1200–1500 nm wavelength range the two-photon excitation of LH2 complexes takes place. This can be observed as fluorescence of bacteriochlorophyll (BChl) spectral form B850 (BChl molecules of circular aggregate with strong exciton interaction in 850 nm spectral domain). LH2 fluorescence excitation spectra under two-photon excitation are the same for carotenoid-containing and carotenoidless preparations. In both cases the broad band with peak near 1350 (675) nm (FWHM ~ 240 (120) nm) was found. It is concluded that the broad band with peak near 1350 (675) nm in two-photon excitation spectra of LH2 complexes from Allochromatium minutissimum cannot be interpreted as two-photon excitation band of the optically forbidden S0 → S1 transition of carotenoids (rhodopin). Possible nature of this band is discussed.  相似文献   

11.
The B800–850 antenna complex of Rhodopseudomonas sphaeroides was studied by comparing the spectral properties of several different types of complexes, isolated from chromatophores by means of the detergents lithium dodecyl sulfate (LDS) or lauryl dimethylamine N-oxide (LDAO). Fluorescence polarization spectra of the BChl 800 emission at 4 K indicated that rapid energy transfer between at least two BChl 800 molecules occurs with a rate constant of energy transfer kET > 3 · 1012 s?1. The maximal dipole-dipole distance between the two BChl 800 molecules was calculated to be 18–19 Å. The porphyrin rings of the BChl 800 molecules are oriented parallel to each other, while their Qy transition moments are mutually perpendicular. The energy-transfer efficiency from carotenoid to bacteriochlorophyll measured in different complexes showed that two functionally different carotenoids are present associated with, respectively, BChl 800 and BChl 850. Fluorescence polarization and linear dichroism spectra revealed that these carotenoids have different absorption spectra and a different orientation with respect to the membrane. The carotenoid associated with BChl 800 absorbs some nanometers more to the red and its orientation is approximately parallel to the membrane, while the carotenoid associated with BChl 850 is oriented more or less perpendicular to the membrane. The fluorescence polarization of BChl 850 was the same for the different complexes. This indicates that the observed polarization of the fluorescence is determined by the smallest complex obtained which contains 8–10 BChl 850 molecules. The B800–850 complex isolated with LDAO thus must consist of a highly ordered array of smaller structures. On basis of these results a minimal model is proposed for the basic unit consisting of four BChl 850 and two BChl 800 and three carotenoid molecules.  相似文献   

12.
In chromatophores from Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata, the Qx band(s) of the light-harvesting bacteriochlorophyll (BChl) (λmax ~590 nm) shifts to the red in response to a light-induced membrane potential, as indicated by the characteristics of the light-minus-dark difference spectrum. In green strains, containing light-harvesting complexes I and II, and one or more of neurosporene, methoxyneurosporene, and hydroxyneurosporene as carotenoids, the absorption changes due to the BChl and carotenoid responses to membrane potential in the spectral region 540–610 nm are comparable in magnitude and overlap with cytochrome and reaction center absorption changes in coupled chromatophores. In strains lacking carotenoid and light-harvesting complex II, the BChl shift absorption change is relatively smaller, due in part to the lower BChl/reaction center ratio.In the carotenoid-containing strains, the peak-to-trough absorption change in the BChl difference spectrum is 5–8% of the peak-to-trough change due to the shift of the longest-wavelength carotenoid band, although the absorption of the BChl band is 25–40% of that of the carotenoid band. The responding BChl band(s) does not appear to be significantly red-shifted in the dark in comparison to the total BChl Qx band absorption.  相似文献   

13.
Low-temperature absorption, circular dichroism and resonance Raman spectra of the LM units isolated with sodium dodecyl sulfate from wild-type Rhodopseudomonas sphaeroides reaction centers (Agalidis, I. and Reiss-Husson, F. (1983) Biochim. Biophys. Acta 724, 340–351) are described in comparison with those of intact reaction centers. In LM unit, the Qy absorption band of P-870 at 77 K shifted from 890 nm (in reaction center) to 870 nm and was broadened by about 30%. In contrast, the 800 nm bacteriochlorophyll absorption band including the 810 species remained unmodified. It was concluded that the 810 nm transition is not the higher excitonic component of P-870. The Qx band of P-870 shifted from 602 nm (in reaction center) to 598 nm in LM, whereas the Qx band of the other bacteriochlorophylls was the same in reaction center and LM and had two components at about 605 and 598 nm. The QxII band of bacteriopheophytin was upshifted to 538 nm and a slight blue shift of the Qy band of bacteriopheophytin was observed. Resonance Raman spectra of spheroidene in LM showed that its native cis-conformation was preserved. Resonance Raman spectroscopy also demonstrated that in LM the molecular interactions assumed by the conjugated carbonyls of bacteriochlorophyll molecules were altered, but not those assumed by the bacteriopheophytins carbonyls. In particular at least one Keto group of bacteriochlorophyll free in reaction center, becomes intermolecularly bounded in LM (possibly with extraneous water). This group may belong to the primary donor molecules.  相似文献   

14.
Bacteriochlorophyll a-protein from Prosthecochloris aestuarii strain 2K was oriented in a pulsed electric field. The room temperature linear dichroism spectrum of the oriented protein in the Qy region of the bacteriochlorophyll a absorption exhibits a single asymmetrical peak at 813 nm with a shoulder extending to the blue. The ≈12 nm fullwidth of the linear dichroism peak is only about half that of the 300 K absorption spectrum. The linear dichroism at 813 nm was not saturated at field strengths of up to 15 kV/cm. The time dependence of the linear dichroism suggests that the orienting particles are aggregates of at least some tens of bacteriochlorophyll a-protein trimers. The linear dichroism peak coincides in wavelength with the 813-nm peak of the 300 K, 4th derivative absorption spectrum of the protein and is therefore attributed to the bacteriochlorophyll a Qy exciton transition observed in absorption at the same wavelength.  相似文献   

15.
We have studied the pigment arrangement in purified cytoplasmic membranes of the thermophilic green bacterium Chloroflexus aurantiacus. The membranes contain 30–35 antenna bacteriochlorophyll a molecules per reaction center; these are organized in the B808–866 light-harvesting complex, together with carotenoids in a 2:1 molar ratio. Measurements of linear dichroism in a pressed polyacrylamide gel permitted the accurate determination of the orientation of the optical transition dipole moments with respect to the membrane plane. Combination of linear dichroism and low temperature fluorescence polarization data shows that the Qy transitions of the BChl 866 molecules all lie almost perfectly parallel to the membrane plane, but have no preferred orientation within the plane. The BChl 808 Qy transitions make an average angle of about 44° with this plane. This demonstrates that there are clear structural differences between the B808–866 complex of C. aurantiacus and the B800–850 complex of purple bacteria. Excitation energy transfer from carotenoid to BChl a proceeds with about 40% efficiency, while the efficiency of energy transfer from BChl 808 to BChl 866 approaches 100%. From the minimal energy transfer rate between the two spectral forms of BChl a, obtained by analysis of low temperature fluorescence emission spectra, a maximal distance between BChl 808 and BChl 866 of 23 was derived.Abbreviations BChl bacteriochlorophyll - BPheo bacteriopheophytin - CD circular dichroism - LD linear dichroism - Tris Tris(hydroxymethyl)aminomethane  相似文献   

16.
The recently developed technique of Magneto-Optical Difference Spectroscopy (MODS) [10] has been applied to reaction centers (RC) of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26. Absorbance changes induced by a magnetic field are measured as a function of wavelength yielding the triplet-minus-singlet (T-S) absorbance difference spectrum. (T-S) spectra thus obtained have been measured from 24–290 K. Going from low to high temperature the (T-S) spectra show the following features:
  1. A rapid decrease of positive absorption bands at 809 and 819 nm.
  2. A slow appearance of a band shift at 798 nm.
  3. A shift of the peak wavelength of the Qy absorbance band of the primary donor P-860 from 992 to 861 nm, and of its Qx band from 603 to 600 nm.
The spectra at 24, 66, 116, and 290 K have been analyzed by Gaussian deconvolution. The 800 nm region of the spectrum at 24 K can be decomposed in a combination of two band shifts and an appearing band. The temperature dependence of the spectra in this region is well explained by spectral broadening of the two shifting bands combined with a decrease in intensity of the appearing band when the temperature increases. The two shifting bands in the 800 nm region are identified as the two bands at 803 and 813 nm which together make up the 800 nm band in the absorption spectrum and are assigned to the two accessory RC bacteriochlorophylls (BChls). The band shift of the 813 nm pigment is appreciably larger than that of the 803 nm pigment. The appearing band at 808 nm is attributed to monomeric absorption of 3P-860, the triplet state being localized on one BChl. We find no evidence for admixture of a charge transfer (CT) state of 3P-860 with one of the accessory BChls at higher temperature.  相似文献   

17.
Chlorosomes of photosynthetic green bacteria are unique molecular assemblies providing efficient light harvesting followed by multi-step transfer of excitation energy to reaction centers. In each chlorosome, 104–105 bacteriochlorophyll (BChl) c/d/e molecules are organized by self-assembly into high-ordered aggregates. We studied the early-time dynamics of the excitation energy flow and energy conversion in chlorosomes isolated from Chloroflexus (Cfx.) aurantiacus bacteria by pump-probe spectroscopy with 30-fs temporal resolution at room temperature. Both the S2 state of carotenoids (Cars) and the Soret states of BChl c were excited at ~490 nm, and absorption changes were probed at 400–900 nm. A global analysis of spectroscopy data revealed that the excitation energy transfer (EET) from Cars to BChl c aggregates occurred within ~100 fs, and the Soret → Q energy conversion in BChl c occurred faster within ~40 fs. This conclusion was confirmed by a detailed comparison of the early exciton dynamics in chlorosomes with different content of Cars. These processes are accompanied by excitonic and vibrational relaxation within 100–270 fs. The well-known EET from BChl c to the baseplate BChl a proceeded on a ps time-scale. We showed that the S1 state of Cars does not participate in EET. We discussed the possible presence (or absence) of an intermediate state that might mediates the Soret → Qy internal conversion in chlorosomal BChl c. We discussed a possible relationship between the observed exciton dynamics and the structural heterogeneity of chlorosomes.  相似文献   

18.
The mutant lacking enzymes BciA and BchU, that catalyzed reduction of the C8-vinyl group and methylation at the C20 position of bacteriochlorophyll (BChl) c, respectively, in the green sulfur bacterium Chlorobaculum tepidum, were constructed. This mutant accumulated C8-vinyl-BChl d derivatives, and a molecular structure of the major pigment was fully characterized by its NMR, mass, and circular dichroism spectra, as well as by chemical modification: (31 R)-8-vinyl-12-ethyl-(R[V,E])BChl d was confirmed as a new BChl d species in the cells. In vitro chlorosome-like self-aggregates of this pigment were prepared in an aqueous micellar solution, and formed more rapidly than those of (31 R)-8,12-diethyl-(R[E,E])BChl d isolated from the green sulfur bacterium Chlorobaculum parvum NCIB8327d synthesizing BChl d homologs. Their red-shifted Q y absorption bands were almost the same at 761 nm, and the value was larger than those of in vitro self-aggregates of R[E,E]BChl c (737 nm) and R[V,E]BChl c (726 nm), while the monomeric states of the former gave Q y bands at shorter wavelengths than those of the latter. Red shifts by self-aggregation of the two BChl d species were estimated to be 110 nm and much larger than those by BChls c (75 nm for [E,E] and 64 nm for [V,E]).  相似文献   

19.
The chloroplasts of individual cells of Mesotaenium caldariorum were examined microphotometrically under non-polarized and polarized measuring light. The measurement with non-polarized light showed different absorption bands of the thylakoids depending on the position of their surface with respect to the incident light beam: in the edge position, the absorption bands lie at 672 nm, in the face position at 678 nm. From this difference in absorption maxima, we conclude that the molecules related to the sub-bands at the two wavelengths are oriented differently. The Qy transition of the molecules which absorb light at 678 nm must be oriented parallel to the face of the thylakoids (fraction I), while that of the molecules absorbing at 672 nm is oriented perpendicular to the face (fraction II). Measurement with polarized light leads to the same conclusion that two fractions of differently oriented chlorophylls exist: In the edge position, a very large difference between E and E (dichroism) was found in red light, with a maximum of E lying at 675 nm and a maximum of E at 670 nm, with a shoulder at 650 nm. In the blue region, especially in the Soret band zone, the chloroplast showed a negative dichroism in the edge position, which changes over to positive values when the wavelength exceeds 450 nm. In the face position no dichroism in red or blue light could be detected. Comparison of the ‘edge position dichroism’ in red light with that in blue light justifies the supposition that the chlorin planes of the chlorophyll molecules may be oriented perpendicular or parallel to the thylakoid face, in the case of perpendicular orientation with the Qy transitions of fraction II and the x-transitions (Bx, Qx) of fraction I projecting out of the plane, and for parallel orientation with all transition moments lying parallel to the plane (fraction I). The relative dichroism, (E ? E)(E + E), measured at the edge position amounts to 0.34 (i.e., 34% of the total absorption) at 680 nm. These data probably do not reflect the total quantity of oriented chlorophyll because from the opposite orientations of the Qy transition moments of fraction I and II pigment a partial quenching of the measurable dichroism results. The red light absorption bands of the two chlorophylls oriented in an opposite manner (fractions I and II) correspond to the known bands of Photosystem I and II.  相似文献   

20.
Occurrence of excitonic interactions in light-harvesting complex II (LHC II) was investigated by nonlinear polarization spectroscopy in the frequency domain (NLPF) at room temperature. NLPF spectra were obtained upon probing in the chlorophyll (Chl) a/b Soret region and pumping in the Qy region. The lowest energy Chl a absorbing at 678 nm is strongly excitonically coupled to Chl b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号