首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 μM ATP and 50 μM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 μM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+-ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 μM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

2.
Effects of commonly used purification procedures on the yield and specific activity of (Na+ + K+)-ATPase (Mg2+-dependent, Na+ + K+-activated ATP phosphohydrolase, EC 3.6.1.3), the turnover number of the enzyme, and the kinetic parameters for the ATP-dependent ouabain-enzyme interaction were compared in canine brain, heart and kidney. Kinetic parameters were estimated using a graphical analysis of non-steady state kinetics. The protein recovery and the degree of increase in specific activity of (Na+ + K+)-ATPase and the ratio between (Na+ + K+)-ATPase and Mg2+-ATPase activities during the successive treatments with deoxycholate, sodium iodide and glycerol were dependent on the source of the enzyme. A method which yields highly active (Na+ + K+)-ATPase preparations from the cardiac tissue was not suitable for obtaining highly active enzyme preparations from other tissues. Apparent turnover numbers of the brain (Na+ + K+)-ATPase preparations were not significantly affected by the sodium iodide treatment, but markedly decreased by deoxycholate or glycerol treatments. Similar glycerol treatment, however, failed to affect the apparent turnover number of cardiac enzyme preparations. Cerebral and cardiac enzyme preparations obtained by deoxycholate, sodium iodide and glycerol treatments had lower affinity for ouabain than renal enzyme preparations, primarily due to higher dissociation rate constants for the ouabain enzyme complex. This tissue-dependent difference in ouabain sensitivity seems to be an artifact of the purification procedure, since less purified cerebral or cardiac preparations had lower dissociation rate constants. Changes in apparent association rate constants were minimal during the purification procedure. These results indicate that the presently used purification procedures may alter.  相似文献   

3.
The classical E2-P intermediate of (Na+ + K+)-ATPase dephosphorylates readily in the presence of K+ and is not affected by the addition of ADP. To determine the significane in the reaction cycle of (Na+ + K+)-ATPase of kinetically atypical phosphorylations of rat brain (Na+ + K+)-ATPase we compared these phosphorylated components with the classical E2-P intermediate of this enzyme by gel electrophoresis. When rat brain (Na+ + K+)-ATPase was phosphorylated in the presence of high concentrations of Na+ a proportion of the phosphorylated material formed was sensitive to ADP but resistant to K+. Similarly, if phosphorylation was carried out in the presence of Na+ and Ca2+ up to 300 pmol/mg protein of a K+-resistant, ADP-sensitive material were formed. If phosphorylation was from [γ-32P]CTP up to 800 pmol 32P/mg protein of an ADP-resistant, K+-sensitive phosphorylated matterial were formed. On gel electrophoresis these phosphorylated materials co-migrated with authentic Na+-stimulated, K+-sensitive, E2-P-phosphorylated intermediate of (Na+ + K+)-ATPase, supporting suggestions that they represent phosphorylated intermediates in the reaction sequence of this enzyme.  相似文献   

4.
The K+-dependent p-nitrophenylphosphatase activity catalyzed by purified (Na+ + K+)-ATPase from pig kidney shows substrate inhibition (Ki about 9.5 mM at 2.1 mM Mg2+). Potassium antagonizes and sodium favours this inhibition. In addition, K+ reduces the apparent affinity for substrate activation, whereas p-nitrophenyl phosphate reduces the apparent affinity for K+ activation. In the absence of Mg2+, p-nitrophenyl phosphate, as well as ATP, accelerates the release of Rb+ from the Rb+ occluded unphosphorylated enzyme. With no Mg2+ and with 0.5 mM KCl, trypsin inactivation of (Na+ + K+)-ATPase as a function of time follows a single exponential but is transformed into a double exponential when 1 mM ATP or 5 mM p-nitrophenyl phosphate are also present. In the presence of 3 mM MgCl2, 5 mM p-nitrophenyl phosphate and without KCl the trypsin inactivation pattern is that described for the E1 enzyme form; the addition of 10 mM KCl changes the pattern which, after about 6 min delay, follows a single exponential. These results suggest that (i) the shifting of the enzyme toward the E1 state is the basis for substrate inhibition of the p-nitrophenulphosphatase acitivy of (Na+ + K+)-ATPase, and (ii) the substrate site during phosphatase activity is distinct from the low-affinity ATP site.  相似文献   

5.
Ca2+ inhibited the Mg2+-dependent and K+-stimulated p-nitrophenylphosphatase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase. In the absence of K+, however, a Mg2+-dependent and Ca2+-stimulated phosphatase was observed, the maximal velocity of which, at pH 7.2, was about 20% of that of the K+-stimulated phosphatase. The Ca2+-stimulated phosphatase, like the K+-stimulated activity, was inhibited by either ouabain or Na+ or ATP. Ouabain sensitivity was decreased with increase in Ca2+, but the K0.5 values of the inhibitory effects of Na+ and ATP were independent of Ca2+ concentration. Optimal pH was 7.0 for Ca2+-stimulated activity, and 7.8–8.2 for the K+-stimulated activity. The ratio of the two activities was the same in several enzyme preparations in different states of purity. The data indicate that (a) Ca2+-stimulated phosphatase is catalyzed by (Na+ + K+)-ATPase; (b) there is a site of Ca2+ action different from the site at which Ca2+ inhibits in competition with Mg2+; and (c) Ca2+ stimulation can not be explained easily by the action of Ca2+ at either the Na+ site or the K+ site.  相似文献   

6.
The effect of l-3,5,3′-triiodothyronine (T3) and thyroxine (T4) on (Na+ + K+)-ATPase activities was examined in rabbit kidneys because in this tissue almost 80% of the metabolism is connected to active sodium transport. T3-receptor concentrations were estimated as 0.62 and 0.80 pmol/mg per DNA in the cortex and outer medulla, respectively. A dose of 0.5 mg T3/kg body weight for 3 days increased basal metabolic rate by almost 60%, and the mitochondrial 1-α-glycerophosphate dehydrogenase activity was increased by 50% in both the cortex and medulla. (Na+ + K+)-ATPase activity in the liver was raised by almost 50%. However, no changes in (Na+ + K+)-ATPase activities or binding sites for [3H]ouabain in either the kidney cortex or medulla could be observed. T4 at 16 mg/kg daily for 14 days was also without effect on renal (Na+ + K+)-ATPase activities. Furthermore, the response to T3 was absent at high sodium excretion rates induced by unilateral nephrectomy and extracellular volume expansion. Thus, despite stimulation of basal metabolic rate and renal 1-α-glycerophosphate dehydrogenase activity by T3 and T4, the (Na+ + K+)-ATPase activity in the rabbit kidney is identical in euthyroid and hyperthyroid states. However, thyroid hormones prevent the normal natriuretic response to extracellular volume expansion.  相似文献   

7.
Chick brain microsomal ATPase was strongly inhibited by Cu2+. (Na+ + K+)-ATPase was more susceptible to low levels of Cu2+ than Mg2+-ATPase. The inhibition of (Na+ + K+)-ATPase could be partially protected from Cu2+ in the presence of ATP in the preincubation period. When Cu2+ (6 μM) was preincubated with the enzyme in the absence of ATP, only sulfhydryl-containing amino acids (d-penicillamine and l-cysteine) could reverse the inhibition. At lower concentrations of Cu2+ (< 1.4 μM), in the absence of ATP during preincubation, the inhibition could be completely reversed by the addition of 5 mM l-phenylalanine and l-histidine as well as d-penicillamine and l-cysteine.Kinetic analysis of action of Cu2+ (1.0 μM) on (Na+ + K+)-ATPase revealed that the inhibition was uncompetitive with respect to ATP. At a low concentration of K+ (5 mM), V with Na+ was markedly decreased in the presence of Cu2+ and Km was about twice that of the control. However, at high K+ concentration (20 mM), the Km for Na+ was not affected. At both low (25 mM) and high (100 mM) Na+, Cu2+ displayed non-competitive inhibition of the enzyme with respect to K+.On the basis of these data, we suggest that Cu2+ at higher concentrations (> 6 μM) inactivates the enzyme irreversibly, but that at lower concentrations (< 1.4 μM), Cu2+ interacts reversibly with the enzyme.  相似文献   

8.
The (Na+ + K+)-stimulated ATPase activity decreases with increasing pressure and a plot of the logarithm of the activity versus pressure shows a change in slope at a defined breakpoint pressure (Pb). The value of Pb increases linearly with increasing temperature. A dTdP value of 27.7 ± 0.4 (S.D.) K/1000 atm is obtained. This is in very good agreement with the pressure shift for the melting transitions in phospholipids and aliphatic chains. This strongly indicates that an aliphatic chain melting process is involved in the breakpoint in the Arrhenius plot and pressure dependence of (Na+ + K+)-ATPase. The p-nitrophenyl phosphatase activity of this enzyme also decreases with pressure. In this case the plot of the logarithm of the activity versus pressure is linear without a break-point. The temperature dependence for (Na+ + K+)-ATPase was also studied in the presence of fluidizing drugs: desipramine and benzylalcohol. The presence of these drugs had no effect on the inflection point in the Arrhenius plot.  相似文献   

9.
N-Ethylmaleimide was employed as a surface label for sarcolemmal proteins after demonstrating that it does not penetrate to the intracellular space at concentrations below 1·10?4 M. The sarcolemmal markers, ouabain-sensitive (Na+ + K+)-ATPase and Na+/Ca2+-exchange activities, were inhibited in N-ethylmaleimide perfused hearts. Intracellular activities such as creatine phosphokinase, glutamate-oxaloacetate transaminase and the internal phosphatase site of the Na+ pump (K+-p-nitrophosphatase) were not affected. Almost 20% of the (Ca2+ + Mg2+)-ATPase and Ca2+ pump were inhibited indicating the localization of a portion of this activity in the sarcolemma. Sarcolemma purified by a recent method (Morcos, N.C. and Drummond, G.I. (1980) Biochim. Biophys. Acta 598, 27–39) from N-ethylmaleimide-perfused hearts showed loss of approx. 85% of its (Ca2+ + Mg2+-ATPase and Ca2+ pump compared to control hearts. (Ca2+ + Mg2+)-ATPase and Ca2+ pump activities showed two classes of sensitivity to vanadate ion inhibition. The high vanadate affinity class (K12 for inhibition approx. 1.5 μM) may be localized in the sarcolemma and represented approx. 20% of the total inhibitable activity in agreement with estimates from N-ethylmaleimide studies. Sucrose density fractionation indicated that only a small portion of Mg2+-ATPase and Ca2+-ATPase may be associated with the sarcolemma. The major portion of these activities seems to be associated with high density particles.  相似文献   

10.
It is not known whether ouabain injected into the kidney in vivo is bound exclusively to the (Na+ + K+)-ATPase and whether the reduction of sodium pumping capacity is large enough to account for the reduction in sodium reabsorption. In the present study on dogs the total amount of parenchymal ouabain was therefore estimated and the specific renal binding compared to the reduction in (Na+ + K+)-ATPase activity. Ouabain, 120 nmol/kg body weight, was injected into the renal artery in vivo reducing the (Na+ + K+)-ATPase activity by 3lmost 80%. After nephrectomy, tissue ouabain could be quantified by radioimmunoassay after heating the homogenate to 70°C for 30 min; negligible amounts were detectable without heating. No correlation between ouabain binding and tissue volume, protein content, DNA content or Mg2+-ATPase content could be found when comparing the following four fractions of the kidney: outer cortex, inner cortex, outer medulla and papilla. For the whole kidney, mean parenchymal tissue concentration of ouabain equalled 0.58 ± 0.03 μmol/100 g wet tissue. Only 21.3 ± 1.2% of the ouabain was confined to the outer medulla corresponding to 54 ± 4 nmol giving a tissue concentration of 1.08 ± 0.05 μmol/100 g wet tissue. The renal ouabain concentrations were highly correlated to the reduction in (Na+ + K+)-ATPase activity, giving a ratio between the reduction in hydrolysis rate and bound ouabain (turnover number) of 6105 min?1 which is close to the value of 7180 min?1 found by in vitro Scatchard analysis. No ouabain seems to be bound to other tissue components than the (Na+ + K+)-ATPase and the present method is therefore a simple way of measuring the number of inhibited (Na+ + K+)-ATPase molecules after in vivo injection of ouabain.  相似文献   

11.
The effects of four inhibitors of specific sodium-transport mechanisms on diuresis in the tsetse fly Glossina morsitans, have been determined. Ouabain (1.0, 0.1 mM) and ethacrynic acid (1.0, 0.2 mM) reduced the rate of water loss, whereas amiloride (1.0 mM) and furosemide (1.0 mM) did not. The effects of ouabain, ethacrynic acid and meal size upon the anterior mid-gut (Na+ + K+)-ATPase activity were also determined. For ouabain, the negative logarithm causing 50% inhibition of (Na+ + K+)-ATPase (pI50) was 6.0, whilst ethacrynic acid together with meal size did not affect the activity of this enzyme. These results show that diuresis in this insect involves the active transport of sodium ions by both electrogenic and Na+K+ exchange pumps.  相似文献   

12.
An NaI-extraction procedure was modified to prepare muscle fiber segments with Mg2+-dependent, ouabain-sensitive (Na+ + K+)-ATPase activity. This enzyme was assayed in preparations of skeletal muscle from normal and dystrophic mice. The ouabain-sensitive (Na+ + K+)-ATPase activity of dystrophic muscle preparations was found to be significantly lower than that of control preparations.  相似文献   

13.
The mechanism of action of the cytotoxic protein P6 isolated from cobra venom (Naja naja) which shows preferential cytotoxicity particularly to Yoshida sarcoma cells has been studied by its effects on the membrane-bound enzyme (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) of a variety of cell systems. Evidence obtained with Yoshida sarcoma cells, dog and human erythrocytes and three tissue culture cell lines KB (human oral carcinoma), Hela (human cervix carcinoma) and L-132 (human lung embryonic) shows that inhibition of (Na+ + K+)-ATPase by the P6 protein can be correlated with its lytic activity. (Na+ + K+)-ATPase of Yoshida sarcoma membrane fragments inactivated by P6 protein could be reconstituted by the addition of phosphatidylserine and phosphatidic acid. It is conceivable that lysis of cells by the P6 protein may be due to an imbalance of K+ and Na+ in the cell which leads to swelling and disintegration of the membrane structure. Observations indicate that the P6 protein combines with membrane constituents of susceptible cells. The overall evidence suggests that both the specificity of its protein structure and the highly basic nature of the P6 protein are factors which enable it to compete with the lipid moiety maintaining the (Na+ + K+)-ATPase of the susceptible cells in proper conformation for activity.  相似文献   

14.
Showdomycin [2-(β-d-ribofuranosyl)maleimide] is a nucleoside antibiotic containing a maleimide ring and which is structurally related to uridine. Showdomycin inhibited rat brain (Na+ + K+)-ATPase irreversibly by an apparently bimolecular reaction with a rate constant of about 11.01·mol?1·min?1. Micromolar concentrations of ATP protected against this inhibition but uridine triphosphate or uridine were much less effective. In the presence of K+, 100 μM ATP was unable to protect against inhibition by showdomycin. These observations show that showdomycin inhibits (Na+ + K+)-ATPase by reacting with a specific chemical group or groups at the nucleotide-binding site on this enzyme. Inhibition by showdomycin appears to be more selective for this site than that due to tetrathionate or N-ethylmaleimide. Since tetrathionate is a specific reactant for sulfhydryl groups it appears likely that the reactive groups are sulfhydryl groups. The data thus show that showdomycin is a relatively selective nucleotide-site-directed inhibitor of (Na+ + K+)-ATPase and inhibition is likely due to the reaction of showdomycin with sulfhydryl group(s) at the nucleotide-binding site on this enzyme.  相似文献   

15.
The specific activity of (Na+ + Mg2+)-dependent ATPase is three times greater in the microsomes of sea-water eels than in freshwater eels; the specific activity is one quarter of that of (Na+ + K+ + Mg2+)-dependent ATPase in both cases.(Na+ + Mg2+)-dependent ATPase is optimally active in a medium containing 8 mM NaCl, 4 mM MgCI2, 4 mM ATP, pH 8.8 and at 30 °C; the enzyme is inhibited by ouabain, by NaCl concentrations > 100 mM and by treatment with urea.It is concluded that the (Na+ + Mg2+)-dependent ATPase activity of gills arises from the presence of a (Na+ + K+ + Mg2+)-dependent ATPase.  相似文献   

16.
D.L. Clough 《Life sciences》1984,35(19):1937-1946
Vanadate (VO4?3) produces a positive inotropic effect in rats and also promotes diuresis as well as natriuresis. Although the mechanism(s) of these effects is uncertain, in the kidney, VO4?3 may act through inhibition of (Na++K+)-ATPase activity, whereas in the heart, other or additional mechanisms are likely. Under the assay conditions used in the present study, microsomal (Na++K+)-ATPase activities from rat kidney cortex and medulla were inhibited to a greater extent than was left ventricular (Na++K+)-ATPase activity over a range of VO4?3 concentrations. The apparent dissociation constant for left ventricular (Na++K+)-ATPase (10.95 ± 1.26 × 10?7M VO4?3) was significantly greater than that of (Na++K+)-ATPase from the cortex (3.46±0.96×10?7 M VO4?3) or the medulla (3.32±0.7×10?7M VO4?3, N=6, P<.05) whereas there were no significant differences between the effects of VO4?3 on (Na++K+)-ATPase from the cortex and medulla. The greater inhibition by VO4, of (Na++K+)-ATPase from the cortex relative to that of the left ventricle, occurred over a range of Na+ and K+ concentrations, and K+ enhanced the inhibition by VO4?3 to a greater extent for (Na++K+)-ATPase from the cortex than the left ventricle. These results suggest that renal (Na++K+)-ATPase is more sensitive than left ventricular (Na++K+)-ATPase to inhibition by VO4?3 and would, therefore, be more likely to be modulated invivo.  相似文献   

17.
The validity of 5′-nucleotidase as a plasma membrane marker enzyme in beef thyroid has been tested by comparing the subcellular distribution of its activity to that of (Na+K+)-activated ATPase and adenyl cyclase. The specific activity and total activity of (Na+K+)-ATPase and adenyl cyclase were greatest in the 1000 × g (“nuclear”) and 33 000 × g (“mitochondrial and lysosomal”) fractions. In contrast, 5′-nucleotidase activity was concentrated in the 165 000 × g (“microsomal”) pellet and supernatant. Partially purified plasma membranes were separated from the 1000 (N2), 30 000 (M2) and 165 000 × g (P2) pellets by discontinuous sucrose gradient centrifugation. Again a discordant distribution of these enzyme activities was observed. (Na+K+)-ATPase specific activity was increased approximately 30-fold over the homogenate in Fractions N2 and M2. Basal, thyroid-stimulating hormone-and fluoride-stimulated adenyl cyclase activities were concentrated in the same fractions. 5′-Nucleotidase activity was preferentially located in M2 and P2. These differences in distribution pattern suggest that 5′-nucleotidase activity is not uniquely located in the plasma membrane in the thyroid.  相似文献   

18.
The involvement of membrane (Na+ + K+)-ATPase (Mg2+-dependent, (Na+ + K+)-activated ATP phosphohydrolase, E.C. 3.6.1.3) in the oxygen consumption of rat brain cortical slices was studied in order to determine whether (Na+ + K+)-ATPase activity in intact cells can be estimated from oxygen consumption. The stimulation of brain slice respiration with K+ required the simultaneous presence of Na+. Ouabain, a specific inhibitor of (Na+ + K+)-ATPase, significantly inhibited the (Na+ + K+)-stimulation of respiration. These observations suggest that the (Na+ + K+)-stimulation of brain slice respiration is related to ADP production as a result of (Na+ + K+)-ATPase activity. However, ouabain also inhibited non-K+-stimulated respiration. Additionally, ouabain markedly reduced the stimulation of respiration by 2,4-dinitrophenol in a high (Na+ + K+)-medium. Thus, ouabain depresses brain slice respiration by reducing the availability of ADP through (Na+ + K+)-ATPase inhibition and acts additionally by increasing the intracellular Na+ concentration. These studies indicate that the use of ouabain results in an over-estimation of the respiration related to (Na+ + K+)-ATPase activity. This fraction of the respiration can be estimated more precisely from the difference between slice respiration in high Na+ and K+ media and that in choline, K+ media. Studies were performed with two (Na+ + K+)-ATPase inhibitors to determine whether administration of these agents to intact rats would produce changes in brain respiration and (Na+ + K+)-ATPase activity. The intraperitoneal injection of digitoxin in rats caused an inhibition of brain (Na+ + K+)-ATPase and related respiration, but chlorpromazine failed to alter either (Na+ + K+)-ATPase activity or related respiration.  相似文献   

19.
MnCl2 was partially effective as a substitute for MgCl2 in activating the K+-dependent phosphatase reaction catalyzed by a purified (Na+ + K+)-ATPase enzyme preparation from canine kidney medulla, the maximal velocity attainable being one-fourth that with MgCl2. Estimates of the concentration of free Mn2+ available when the reaction was half-maximally stimulated lie in the range of the single high-affinity divalent cation site previously identified (Grisham, C.M. and Mildvan, A.S. (1974) J. Biol. Chem. 249, 3187–3197). MnCl2 competed with MgCl2 as activator of the phosphatase reaction, again consistent with action through a single site. However, with MnCl2 appreciable ouabaininhibitable phosphatase activity occurred in the absence of added KCl, and the apparent affinities for K+ as activator of the reaction and for Na+ as inhibitor were both decreased. For the (Na+ + K+)-ATPase reaction substituting MnCl2 for MgCl2 was also partially effective, but no stimulation in the absence of added KCl, in either the absence or presence of NaCl, was detectable. Moreover, the apparent affinity for K+ was increased by the substitution, although that for Na+ was decreased as in the phosphatase reaction. Substituting MnCl2 also altered the sensitivity to inhibitors. For both reactions the inhibition by ouabain and by vanadate was increased, as was binding of [48V]-vanadate to the enzyme; furthermore, binding in the presence of MnCl2 was, unlike that with MgCl2, insensitive to KCl and NaCl. Inhibition of the phosphatase reaction by ATP was decreased with 1 mM but not 10 mM KCl. Finally, inhibition of the (Na+ + K+)-ATPase reaction by Triton X-100 was increased, but that by dimethylsulfoxide decreased after such substitution.  相似文献   

20.
(Na+,K+)-ATPase is able to catalyze a continuous ATP?Pi exchange in the presence of Na+ and in the absence of a transmembrane ionic gradient. At pH 7.6 the Na+ concentration required for half-maximal activity is 85 mM and at pH 5.1 it is 340 mM. In the presence of optimal Na+ concentration, the rate of exchange is maximal at pH 6.0 and varies with ADP and Pi concentration in the assay medium. ATP?Pi exchange is inhibited by K+ and by ouabain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号