首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new approach is presented which allows to describe the binding of different local anesthetics to lipids. Lipids (dl-α-dipalmitoylphosphatidylcholine, phosphatidylserine, cardiolipin) are spread at the air-water interface and the anesthetic (procaine, butacaine, tetracaine) injected into the aqueous subphase. The equilibrium constants associated to the interfacial reaction: D+ (subphase) + L? (monolayer) ? DL (monolayer) (where D+ denotes the anesthetics, L? the lipid anionic site and DL the complex) are calculated from an experimental evaluation of the surface potential of the lipid monolayer. This mode of determination is based essentially on the good correlation between the experimental values of the surface potential and the theoretical predictions from the Gouy-Chapman theory. Fluorescence measurements on liposomes are carried out in order to locate the position of the drug in the lipid layer. This method can be extended to any positively charged drug-anionic lipid interaction.  相似文献   

2.
Surface potentials of phosphatidylserine monolayers have been measured in the presence of different divalent ion concentrations in order to determine the way in which divalent ions bind to the membrane surface. The association constants for divalent ions (Mg2+, Ca2+ and Mn2+) with the phosphatidylserine membrane have been obtained from the experimental data and simple ion binding theory. The order of divalent ion binding to the membrane is Mn2+ > Ca2+ > Mg2+. However, none of the divalent ions used completely neutralized the negative charge of phosphatidylserine even at relatively high concentrations. The amounts of the divalent ions bound depended upon the concentration of the monovalent ions present in the subphase. It is suggested that the amounts of bound ions obtained from the use of radioisotope tracer methods may include a considerable contribution from the excess free ions in the double layer region of the phosphatidylserine membrane.  相似文献   

3.
The effects of phospholipid vesicles and divalent cations in the subphase solution on the surface tension of phospholipid monolayer membranes were studied in order to elucidate the nature of the divalent cation-induced vesicle-membrane interaction. The monolayers were formed at the air/water interface. Various concentrations of unilamellar phospholipid (phosphatidylserine, phosphatidylcholine and their mixtures) vesicles and divalent cations (Mg2+, Ca2+, Mn2+, etc.) were introduced into the subphase solution of the monolayers. The changes of surface tension of monolayers were measured by the Wilhelmy plate (Teflon) method with respect to divalent ion concentrations and time.When a monolayer of phosphatidylserine and vesicles of phosphatidylserine/phosphatidylcholine (1 : 1) were used, there were critical concentrations of divalent cations to produce a large reduction in surface tension of the monolayer. These concentrations were 16 mM for Mg2+, 7 mM for Sr2+, 6 mM for Ca2+, 3.5 mM for Ba2+ and 1.8 mM for Mn2+. On the other hand, for a phosphatidylcholine monolayer and phosphatidylcholine vesicles, there was no change in surface tension of the monolayer up to 25 mM of any divalent ion used. When a phosphatidylserine monolayer and phosphatidylcholine vesicles were used, the order of divalent ions to effect the large reduction of surface tension was Mn2+ > Ca2+ > Mg2+ and their critical concentrations were in between the former two cases. The threshold concentrations also depended upon vesicle concentrations as well as the area/molecule of monolayers. For phosphatidylserine monolayers and phosphatidylserine/phosphatidylcholine (1 : 1) vesicles, above the critical concentrations of Mn2+ and Ca2+, the surface tension decreased to a value close to the equilibrium pressure of the monolayers within 0.5 h.This decrease in surface tension of the monolayers is interpreted partly as the consequence of fusion of the vesicles with the monolayer membranes. The  相似文献   

4.
23Na NMR relaxation rate measurements show that Na+ binds specificially to phosphatidylserine vesicles and is displaced partially from the binding site by K+ and Ca2+ but to a considerably less extent by tetraethylammonium ion. The data indicate that tetraethylammonium ion affects the binding of Na+ only slightly, by affecting the surface potential through its presence in the double layer, without competing for a phosphatidylserine binding site. Values for the intrinsic binding constant for the Na+-phosphatidylserine complex that would be consistent with the competition experiments (and the dependence of the relaxation rate on concentration of free Na+) fall in the range 0.4–1.2 M?1 with a better fit towards the higher values. We conclude that in the absence of competing cations in solution an appreciable fraction of the phosphatidylserine sites could be associated with bound Na+ at 0.1 M Na+ concentration.  相似文献   

5.
The nature of the unusual cation–π interactions between cations (H+, Li+, Na+, Be2+ and Mg2+) and the electron-deficient B=B bond of the triplet state HB=BH ( $ {}^3\Sigma_g^{-} $ ) was investigated using UMP2(full) and UB3LYP methods at 6–311++G(2df,2p) and aug-cc-pVTZ levels, accompanied by a comparison with 1:1 and 2:1 σ-binding complexes between BH and the cations. The binding energies follow the order HB=BH...H+ > HB=BH...Be2+ > HB=BH...Mg2+ ? HB=BH...Li+ > HB=BH...Na+ and HB=BH (1Δg)...M+/M2+ > H2C=CH2...M+/M2+ > HC≡CH...M+/M2+ > HB=BH ( $ {}^3\Sigma_g^{-} $ )...M+/M2+. Furthermore, except for HB...H+, the σ-binding interaction energy of the 1:1 complex HB...M+/M2+ is stronger than the cation–π interaction energy of the C2H2...M+/M2+, C2H4...M+/M2+, B2H2 (1Δg)...M+/M2+ or B2H2 ( $ {}^3\Sigma_g^{-} $ )...M+/M2+ complex, and, for the 2:1 σ-binding complexes, except for HBBe2+...BH, they are less stable than the cation–π complexes of B2H2 (1Δg) or B2H2 ( $ {}^3\Sigma_g^{-} $ ). The atoms in molecules (AIM) theory was also applied to verify covalent interactions in the H+ complexes and confirm that HB=BH ( $ {}^3\Sigma_g^{-} $ ) can be a weaker π-electron donor than HB=BH (1Δg), H2C=CH2 or HC≡CH in the cation–π interaction. Analyses of natural bond orbital (NBO) and electron density shifts revealed that the origin of the cation–π interaction is mainly that many of the lost densities from the π-orbital of B=B and CC multiple bonds are shifted toward the cations.
Figure
The nature of the unusual cation–π interactions between cations (H+, Li+, Na+, Be2+ and Mg2+) and the electron-deficient B=B bond of the triplet state HB=BH ( $ {}^3\Sigma_g^{-} $ ) as investigated using UMP2(full) and UB3LYP methods at 6-311++G(2df,2p) and aug-cc-pVTZ levels  相似文献   

6.
The adsorption of 45Ca to monolayers of phosphatidylinositol and dicetylphosphoric acid has been measured as a function of subphase pH with simultaneous recordings of surface pressure and interfacial potential. Below pH 3 little calcium was adsorbed and the films are assumed to be unionized. With acid subphases between pH 3 and 6.5 adsorption of calcium occurred initially, but it was then gradually lost due to an ageing process in the films. This time dependent change in the properties of the film was independent of the presence of Ca2+, but was dependent on the H+ concentration in the subphase; it was however not due to an acid hydrolysis of the monolayer. Ca2+ was permanently adsorbed at pH values above 6.5 with an increasing affinity up to pH 11.  相似文献   

7.
Lymphocyte plasma membranes bind 45Ca2+ with three affinity sites: KAl = 4.0 . 106 M?1, KA2 = 8.5 . 104 M?1 and KA3 = 4.2 . 102 M?1, and Ca2+ binding capacities are 0.10, 1.2 and 85 nmoles Ca2+/mg protein. In the presence of 15 μg/ml ConA the Ca2+ binding constants were KA1 = 4.6 . 106 M?1, KA2 = 4.4 . 104 M?1 and KA3 = 4.2 . 102 M?1. The Ca2+ binding capacity was increased by ConA, to 0.13, 2.4 and 91 nmoles/mg protein. The Ca2+ ATPase activity of lymphocyte membranes was increased by ConA from 1 to 2 μmol P/protein × h. The 45Ca2+ uptake was stimulated by ConA and PHA to about 16 %.  相似文献   

8.
An internal NMR monitor for the study of lanthanide ion (Ln3+) binding to phospholipid bilayer membranes has been developed. The dimethylphosphate anion, DMP?, forms labile complexes with Ln3+ in aqueous solution and in solutions also containing bilayer dispersions. The hyperfine shift in the DMP? resonance induced by Pr3+ ions has been used to determine the overall thermodynamic formation constants for the Pr(DMP)2+ and Pr(DMP)2+ complexes: 81 (M?1) and 349 (M?2) at 52°C; the limiting hyperfine shift (31P) at 52°C is 91.5 ppm downfield. These parameters, applied to the observed DMP? hyperfine shift in the presence of the membrane, establish both the free Pr3+ concentration and the amount of Pr3+ bound to the phospholipid surface. Extensive data for the binding of Pr3+ to the outer surfaces of sonicated vesicles yield a limiting hyperfine shift per Pr3+ of 181.6 ppm downfield for the dipalmitoylphosphatidylcholine 31P resonance at 52°C, clearly demonstrating that the binding stoichiometry is two DPPCs per Pr3+. A Hill analysis indicates that the binding data are more anti-cooperative than a realistic Langmuir isotherm, yet more cooperative than a Stern isotherm incorporating electrostatic considerations at the Debye-Hückel level. Fittings to specific models lead to a cooperative model in which tense (T) sites, with low affinity for Pr3+, present in the absence of metal ions, quickly give way to relaxed (R) sites (two DPPCs per site), with much higher affinity for Pr3+, as the amount of Pr3+ bound to the surface increases. The intrinsic equilibrium constants for the binding of Pr3+ to DPPC vesicles are 2 M?1 and 3 000 M?1 for the T and R sites, respectively, at 52°C. The distribution coefficient between these sites ([R]/[T]) in the absence of Ln3+ is 0.14 at 52°C. We picture the binding site conversion as a head-group conformational change involving mostly the choline moiety. Sketchy results for binding on the inside vesicle surface indicate that the overall affinity for Pr3+ is significantly greater and suggest that the site stoichiometry may be different.  相似文献   

9.
Four complexes [Pd(L)(bipy)Cl]·4H2O (1), [Pd(L)(phen)Cl]·4H2O (2), [Pt(L)(bipy)Cl]·4H2O (3), and [Pt(L)(phen)Cl]·4H2O (4), where L = quinolinic acid, bipy = 2,2’-bipyridyl, and phen = 1,10-phenanthroline, have been synthesized and characterized using IR, 1H NMR, elemental analysis, and single-crystal X-ray diffractometry. The binding of the complexes to FS-DNA was investigated by electronic absorption titration and fluorescence spectroscopy. The results indicate that the complexes bind to FS-DNA in an intercalative mode and the intrinsic binding constants K of the title complexes with FS-DNA are about 3.5?×?104 M?1, 3.9?×?104 M?1, 6.1?×?104 M?1, and 1.4?×?105 M?1, respectively. Also, the four complexes bind to DNA with different binding affinities, in descending order: complex 4, complex 3, complex 2, complex 1. Gel electrophoresis assay demonstrated the ability of the Pt(II) complexes to cleave pBR322 plasmid DNA.  相似文献   

10.
Kinetic studies of the reduction of ferrioxamine B (Fe(Hdesf)+) by Cr(H2O)62+, V(H2O)62+, and dithionite have been performed. For Cr(H2O)62+ and V(H2O)62+, the rate is ?d[Fe(Hdesf)+]/dt = k[Fe(Hdesf)+][M2+]. For Cr(H2O)62+, k = 1.19 × 104 M?1 sec?1 at 25°C and μ = 0.4 M, and k is independent of pH from 2.6 to 3.5. For V(H2O)62+, k = 6.30 × 102 M?1 sec?1 at 25°C, μ = 1.0 M, and pH = 2.2. The rate is nearly independent of pH from 2.2 to 4.0. For Cr(H2O)62+ and V(H2O)62+, the activation parameters are ΔH = 8.2 kcal mol?1, ΔS ?12 eu and ΔH = 1.7 kcal mol?1, ΔS = ?40 eu (at pH 2.2) respectively. Reduction by Cr(H2O)62+ is inner-sphere, while reduction by V(H2O)62+ is outer-sphere. Reduction by dithionite follows the rate law ?d[Fe(Hdesf)+]/dt =kK12[Fe(Hdesf)+][S2O42?]12 where K is the equilibrium constant for dissociation of S2O42? into SO2? radicals. The value of k at 25°C and μ = 0.5 is 2.7 × 103 M?1 sec?1 at pH 5.8, 3.5 × 103 M?1 sec?1 at pH 6.8, and 4.6 × 103 M?1 sec?1 at pH 7.8, and ΔH = 6.8 kcal mol?1 and ΔS = ?19 eu at pH 7.8.  相似文献   

11.
Some properties of monolayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol (POPG) alone or of POPG in mixtures with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) have been measured near 35°C during dynamic compression and expansion at 3.6 cm2·s?1. (2) The mean values of minimum surface tension (corresponding to maximum surface pressure) which could be obtained with pure POPG monolayers at high compression ranged from 15 to 18 mN·m?1 in the presence of Na+, Ca2+ or low pH (2.0) in the subphase. (3) The presence of Ca2+ or low pH in the subphase increased the collapse plateau ratios obtained on cyclic compression. This might represent enhanced respreading into the monolayer of pure POPG from a collapsed form during reexpansion of the surface. (4) Monolayers containing 10% or 30% POPG and 90% or 70% DPPC could be compressed to surface tensions approaching zero. (5) In such mixed monolayers, 10% or 30% POPG did not appear to enhance respreading, as measured by collapse plateau ratios, in the presence of Na+ or Ca2+ in the subphase.  相似文献   

12.
The stimulation by Mg2+, Na+, K+, NH4 +, and ATP of (Na+, K+)-ATPase activity in a gill microsomal fraction from the freshwater prawn Macrobrachium rosenbergii was examined. Immunofluorescence labeling revealed that the (Na+, K+)-ATPase α-subunit is distributed predominantly within the intralamellar septum, while Western blotting revealed a single α-subunit isoform of about 108 kDa M r. Under saturating Mg2+, Na+, and K+ concentrations, the enzyme hydrolyzed ATP, obeying cooperative kinetics with V M = 115.0 ± 2.3 U mg?1, K 0.5 = 0.10 ± 0.01 mmol L?1. Stimulation by Na+ (V M = 110.0 ± 3.3 U mg?1, K 0.5 = 1.30 ± 0.03 mmol L?1), Mg2+ (V M = 115.0 ± 4.6 U mg?1, K 0.5 = 0.96 ± 0.03 mmol L?1), NH4 + (V M = 141.0 ± 5.6 U mg?1, K 0.5 = 1.90 ± 0.04 mmol L?1), and K+ (V M = 120.0 ± 2.4 U mg?1, K M = 2.74 ± 0.08 mmol L?1) followed single saturation curves and, except for K+, exhibited site–site interaction kinetics. Ouabain inhibited ATPase activity by around 73 % with K I = 12.4 ± 1.3 mol L?1. Complementary inhibition studies suggest the presence of F0F1–, Na+-, or K+-ATPases, but not V(H+)- or Ca2+-ATPases, in the gill microsomal preparation. K+ and NH4 + synergistically stimulated enzyme activity (≈25 %), suggesting that these ions bind to different sites on the molecule. We propose a mechanism for the stimulation by both NH4 +, and K+ of the gill enzyme.  相似文献   

13.
Electrochromic styryl dyes were used to investigate mutually antagonistic effects of Ca2+ and H+ on binding of the other ion in the E1 and P-E2 states of the SR Ca-ATPase. On the cytoplasmic side of the protein in the absence of Mg2+ a strictly competitive binding sequence, H2E1?HE1?E1?CaE1?Ca2E1, was found with two Ca2+ ions bound cooperatively. The apparent equilibrium dissociation constants were in the order of K1/2(2 Ca) = 34 nM, K1/2(H) = 1 nM and K1/2(H2) = 1.32 μM. Up to 2 Mg2+ ions were also able to enter the binding sites electrogenically and to compete with the transported substrate ions (K1/2(Mg) = 165 μM, K1/2(Mg2) = 7.4 mM). In the P-E2 state, with binding sites facing the lumen of the sarcoplasmatic reticulum, the measured concentration dependence of Ca2+ and H+ binding could be described satisfactorily only with a branched reaction scheme in which a mixed state, P-E2CaH, exists. From numerical simulations, equilibrium dissociation constants could be determined for Ca2+ (0.4 mM and 25 mM) and H+ (2 μM and 10 μM). These simulations reproduced all observed antagonistic concentration dependences. The comparison of the dielectric ion binding in the E1 and P-E2 conformations indicates that the transition between both conformations is accompanied by a shift of their (dielectric) position.  相似文献   

14.
We measured by batch microcalorimetry the standard enthalpy change ΔH° of the binding of Mn2+ to apo-bovine α-lactalbumin; ΔH° = −90 ± 4kJ·mol−1. The binding constants, KMn2+, calculated from the calorimetric and circular dichroism titration curves, are (4.6±1) · 105M−1, respectively. Batch calorimetry confirms the competitive binding of Ca2+, Mn2+ and Na+ to the same site. The relatively small enthalpy change for Mn2+ binding compared to Ca2+ binding favours a model of a rigid and almost ideal Ca2+-complexating site, different from the well-known EF-hand structures. Cation binding to the high-affinity site most probably triggers the movement of an α-helix which is directly connected to the complexating loop.  相似文献   

15.
16.
The rates of formation and dissociation of concanavalin A with some 4-methylumbelliferyl and p-nitrophenyl derivatives of α- and β-D-mannopyranosides and glucopyranosides were measured by fluorescence and spectral stopped-flow methods. All process examined were uniphasic. The second-order formation rate constants varied only from 6.8 · 104 to 12.8 · 104 M?. s?1, whereas the first-order dissociation rate constants ranged from 4.1. to 220 s?1, all at ph 5.0, I = 0.3 M, and 25°C. Dissociation rates thus controlled the value of binding constant. The effect of temperature on these reactions was examined, from which enthalpies and entropies of activation and of reaction could be calculated. The effects of pH at 25°C on the reaction rates of 4-methylumbelliferyl α-D-mannopyranoside and 4-methylumbelliferyl α-D-glucopyranoside with concanavalin A were examined. The value of the binding constant Kap (derived from the kinetics) at any pH could be related to the intrinsic binding constant K by the expression Kap = KaK(Ka + [H+])?1. The values of Ka, the ionization constant of the protein segment responsive to sugar binding, were 3 · 10?4 M and 1 · 10?4 M for 4-methylumbelliferyl α-D-mannopyranoside and 4-methylumbelliferyl α-D-glucopyranoside, respectively. The binding constant of p-nitrophenyl α-D-mannopyranoside is surprisingly much less sensitive to a pH change from 5.0 to 2.7. Ionic strength had little effect on the binding characteristics of 4-methylumbelliferyl α-D-mannopyranoside to concanavalin A at pH 5.2 and 25°C.  相似文献   

17.
The binding of[Co(CN)6]3?, and that of[Fe(CN)6]3? and [Ru(CN)6]4? using a competitive method, to horse cytochrome c has been studied by 59 Co NMR spectroscopy. At I = 0.07 M, without added salt and in 2H2O at ph* 7.3 (measured in 2H2O) and 25°C, there are at least two binding sites on ferricytochrome c and ferrocytochrome c for [Co(CN)6]3?. Association constants were determined to be 2.0 ± 0.6 × 103M?1 and 1.5 ± 0.5 × 102M?1 respectively. with no effect of the oxidation state of the cytochrome. At higher ionic strength (I = 0.12 M adjusted with KCl the binding markedly decreased, and, although it was not possible to determine the precise binding stoichiometry and magnitude of association constants, it is clear that the association constants are ≤ 1.5 × 10tM?1 The binding of [Ru(CN)6]4? at I = 0.07, without added salt and in 2H2O at pH 1.3 and 23°C, was not precisely defined, but its binding strength relative to that of [Fe(CN)6]3? was determined. Extrapolating this to I = 0.12 (KCl) suggests that under these conditions the association constant for [Ru(CN)6]4? binding to ferricytochrome c is ≤ 3 × 102M?1.  相似文献   

18.
Complexation in the H+-Si(OH)4-tropolone (HL) system was studied in 0.6 M (Na)Cl medium at 25° C. Speciation and formation constants were determined from potentiometric (glass electrode) and 29Si-NMR data. Experimental data cover the ranges 1.5 ? - log[H+] ? 8.4, 0.002 ? B ? 0.012 M, and 0 ? C ? 0.060 M (B and C stand for the total concentration of Si and tropolone, respectively). In acid solutions (-log[H+] ? 3) a hexacoordinated cationic complex, SiL3+, is formed with log K(Si(OH)4 + 3HL + H+ XXX SiL3+ + 4H2O) = 7.08 ± 0.03. Furthermore, the formation of a disilicic acid was established from 29Si-NMR data. The dimerization constant of Si(OH)4 was found to be 10 exp (1.2 ± 0.1). In model calculations the solubility of quartz and amorphous SiO2 in the presence of tropolone is demonstrated. Data were analyzed using the least-squares computer program LETAGROPVRID.  相似文献   

19.
The interaction of bovine prothrombin with Ca2+ and Mg2+ ions was investigated by following H+ release as a function of metal ion concentration at pH 6 and pH 7.4 at high and low ionic strength. Prothrombin Ca2+ and Mg2+ binding is characterized by high- and low-affinity sites. M2+ binding at these sites is associated with intramolecular conformational changes and also with intermolecular self-association. The pH dependence of H+ release by M2+ is bell shaped and consistent with controlling pKa values of 4.8 and 6.5. At pH 6 and low ionic strength, both Ca2+ and Mg2+ titrations following H+ release clearly show independent low- and high-affinity binding sites. Laser light scattering reveals that at pH 7.4 and low ionic strength, and at pH 6.0 and high ionic strength, the prothrombin molecular weight is between 73 and 98 kD. At pH 7.4 and high ionic strength, prothrombin is monomeric in the absence of metal ions, but appears to dimerize in the presence of M2+. At pH 6.0 and low ionic strength prothrombin exists as a dimer in the absence of metal ions and is tetrameric in the presence of Ca2+ and remains dimeric in the presence of Mg2+. These results and those for metal ion-dependent H+ release indicate that H+ release occurs concomitantly with association processes involving prothrombin.Abbreviations GLA -carboxyglutamic acid; fragment 1. amino terminal residues 1–156 of bovine prothrombin - MES 2-(N-morpholino) ethanesulfonic acid - MOPS 3-(N-morpholino) propanesulfonic acid - PS/PC phosphatidylserine/phosphatidylcholine vesicles - ionic strength  相似文献   

20.
Dissociation and alkali complex formation equilibria of nitrilotris(methylenephosphonic acid) (NTMP, H6L) have been studied by dilatometric, potentiometric and 31P NMR-controlled titrations. Dilatometry indicated the formation of alkali complexes ML (M=Li, Na, K, Rb, Cs) at high pH with a stability decreasing from Li to Cs. An efficient combination of potentiometric and NMR methods confirmed two types of alkali metal complexes MHL and ML. Stability constants for the equilibria following M+ + HL5− ? MHL4− and M+ + L6− ? ML5−, respectively, were determined: logKNaHL=1.08(0.07), logKKHL=0.86(0.08), logKNaL=2.24(0.03). Systematic errors are introduced by using alkali metal hydroxides as titrants for routine potentiometric determinations of dissociation constants pKa5app and pKa6app. Correction formulae were derived to convert actual dissociation constants pKa into apparent dissociation constants pKaapp (or vice versa). The actual dissociation constants were found: pKa5(H2L4− ? H+ + HL5−)=7.47(0.03) and pKa6(HL5− ? H+ + L6−)=14.1(0.1). The anisotropy of 31P chemical shifts of salts MnH6 − nL (M=Li, Na, n=0-5) is more sensitive towards titration (n) than isotropic solution state chemical shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号