共查询到20条相似文献,搜索用时 15 毫秒
1.
An axolemma-rich membrane vesicle fraction was prepared from the leg nerve of the lobster, Homerus americanus. In this preparation Ca2+ transport across the membrane was shown to require a Na+ gradient (Na+-Ca2+ exchange), and external K+ was found to facilitate this Na+-Ca2+ exchange activity. In addition, at high Ca2+ concentrations (20 mM) a Ca2+-Ca2+ exchange system was shown to operate, which is stimulated by Li+. The Na+-Ca2+ exchange system is capable of operating in the reverse direction, with Ca2+ uptake coupled with Na+ efflux. Such a vesicular preparation has the potential for providing useful experimental approaches to study the mechanism of this important Ca2+ extrusion system in the nervous system. 相似文献
2.
Michel Desilets Magda Horackova 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1982,721(2):144-157
We developed a technique that yields isolated adult rat myocytes, 70% of which are elongated and morphologically similar to intact tissue. Electrophysiological studies showed most of these cells were quiescent, Ca2+-tolerant and exhibited normal action potentials accompanied by contractions. We analyzed 45Ca2+ uptake data in terms of instantaneous, fast and slow compartments. 69% of total exchangeable Ca2+ was found in the slow compartment; the rest was almost equally divided between the instantaneous and fast compartments. Replacement of extracellular Na+ by Li+ or Tris increased 45Ca2+ uptake by the fast compartment; high [K+]o increased this uptake further. These increases appeared to be related also to internal concentrations of Na+. This conclusion was supported by experiments with digitonin-treated cells. Our results indicate that the way Na+-dependent 45Ca2+ uptake is affected by [Na+]o, [Na+]i and [K+]o is compatible with the Na+-Ca2+ exchange mechanism. Our preparation should prove useful in studies of regulation of Ca2+ transport in cardiac muscles. 相似文献
3.
Vesicles isolated from rat heart, particularly enriched in sarcolemma markers, were examined for their sidedness by investigation of side-specific interactions of modulators with the asymmetric (Na+ + K+)-ATPase and adenylate cyclase complex. The membrane preparation with the properties expected for inside-out vesicles showed the highest rate of ATP-driven Ca2+ transport. The Ca2+ pump was stimulated 1.7- and 2.1-fold by external Na+ and K+, respectively, the half-maximal activation occurring at 35 mM monovalent cation concentration. In vesicles loaded with Ca2+ by pump action in a medium containing 160 mM KCl, a slow spontaneous release of Ca2+ started after 2 min. The rate of this release could be dramatically increased by the addition of 40 mM NaCl to the external medium. In contrast, 40 mM KCl exerted no appreciable effect on vesicles loaded with Ca2+ in a medium containing 160 mM NaCl. Ca2+ movements were also studied in the absence of ATP and Mg2+. Vesicles containing an outwardly directed Na+ gradient showed the highest Ca2+ uptake activity. These findings suggested the operation of a Ca2+/Na+ antiporter in addition to the active Ca2+ pump in these sarcolemmal vesicles. A valinomycin-induced inward K+-diffusion potential stimulated the Na+- Ca2+ exchange, suggesting its electrogenic nature. If in the absence of ATP and Mg2+ the transmembrane Nai+/Nao+ gradient exceeded 160/15 mM concentrations, Ca2+ uptake could be stimulated by the addition of 5 mM oxalate, indicating Na+ gradient-induced Ca2+ uptake to be a translocation of Ca2+ to the lumen of the vesicle. A sarcoplasmic reticulum contamination, removed by further sucrose gradient fractionation, contained rather low Na+-Ca2+ exchange activity. This result suggests that the activity can be entirely accounted for by the sarcolemmal content of the cardiac membrane preparation. 相似文献
4.
Ricardo Pablo Garay 《生物化学与生物物理学报:生物膜》1982,688(3):786-792
Human erythrocytes are able to incorporate cyclic AMP (cAMP) in amounts larger than those required to saturate cAMP-dependent protein kinase. In contrast to previous observations in avian red blood cells in which cAMP stimulates the Na+/K+ cotransport system, we demonstrate that cAMP inhibits this system in human erythrocytes. The cotransport inhibition is enhanced by addition of phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine to the incubation medium. The cAMP concentration giving half-maximal cotransport inhibition showed a wide variation among different individuals (from 0.1 to 5 mM external cAMP concentration). In contrast to cAMP, cyclic GMP showed little effect on the cotransport system. Ca2+ introduced into the cell interior was an inhibitor of the Na+/K+ cotransport system. These results suggest that in human cells in which endogeneous levels of cAMP and Ca2+ are modulated by hormones, the Na+/K+ cotransport system may be under hormonal regulation. 相似文献
5.
The characteristics of α-aminoisobutyric acid translocation were examined in membrane vesicles from obligately alkalophilic Bacillus alcalophilus and its non-alkalophilic mutant derivative, KM23. Vesicles from both strains exhibited α-aminoisobutyric acid uptake upon energization with ascorbate and N,N,N′,N′-tetramethyl-p-phenylenediamine. The presence of Na+ caused a pronounced reduction in the Km for α-aminoisobutyric acid in wild-type but not KM23 vesicles; the maximum velocity (V) was unaffected in vesicles from both strains. Passive efflux and exchange of α-aminoisobutyric acid from wild-type vesicles were Na+-dependent and occurred at comparable rates (with efflux slightly faster than exchange). This latter observation suggests that the return of the unloaded carrier to the inner surface is not rate-limiting for efflux. The rates of α-aminoisobutyric acid efflux and exchange were also comparable in KM23 vesicles, but were Na+-independent. Furthermore, in vesicles from the two strains, both efflux and exchange were inhibited by generation of a transmembrane electrochemical gradient of protons, outside positive. This suggests that the ternary complex between solute, carrier, and coupling ion bears a positive charge in both strains even though the coupling ion is changed. Evidence from experiments with an alkalophilic strain that was deficient in l-methionine transport indicated that the porters, i.e., the solute-translocating elements, used by non-alkalophilic mutants are not genetically distinct from those used by the alkalophilic parent; that is, the change in coupling ion cannot be explained by the expression of a completely new set of Na+-independent, H+-coupled porters upon mutation of B. alcalophilus to non-alkalophily. 相似文献
6.
Isolated muscle cells from adult rat heart have been used to study the relationship between myocardial glucose transport and the activity of the Na+/K+ pump. 86Rb+-uptake by cardiac cells was found to be linear up to 2 min with a steady-state reached by 40–60 min, and was used to monitor the activity of the Na+/K+ pump. Ouabain (10?3 mol/I) inhibited the steady-state uptake of 86Rb+ by more than 90%. Both, the ouabain-sensitive and ouabain-insensitive 86Rb+-uptake by cardiac cells were found to be unaffected by insulin treatment under conditions where a significant stimulation of 3-O-methylglucose transport occurred. 86Rb+-uptake was markedly reduced by the presence of calcium and/or magnesium, but remained unresponsive towards insulin treatment. Inhibition of the Na+/K+ pump activity by ouabain and a concomitant shift in the intracellular Na+:K+ ratio did not affect basal or insulin stimulated rates of 3-O-methylglucose transport in cardiac myocytes. The data argue against a functional relationship between the myocardial Na+/K+ pump and the glucose transport system. 相似文献
7.
The paper analyzes the factors affecting the H+-K+ exchange catalyzed by rat liver mitochondria depleted of endogenous Mg2+ by treatment with the ionophore A23187. The exchange has been monitored as the rate of K+ efflux following addition of A23187 in low-K+ media. (1) The H+-K+ exchange is abolished by uncouplers and respiratory inhibitors. The inhibition is not related to the depression of ΔpH, whereas a dependence is found on the magnitude of the transmembrane electrical potential, Δψ. Maximal rate of K+ efflux is observed at 180–190 mV, whereas K+ efflux is inhibited below 140–150 mV. (2) Activation of H+-K+ exchange leads to depression of ΔpH but not of Δψ. Respiration is only slightly stimulated by the onset of H+-K+ exchange in the absence of valinomycin. These findings indicate that the exchange is electroneutral, and that the Δψ control presumably involves conformational changes of the carrier. (3) Incubation in hypotonic media at pH 7.4 or in isotonic media at alkaline pH results in a marked activation of the rate of H+-K+ exchange, while leaving unaffected the level of Mg2+ depletion. This type of activation results in partial ‘uncoupling’ from the Δψ control, suggesting that membrane stretching and alkaline pH induce conformational changes on the exchange carrier equivalent to those induced by high Δψ. (4) The available evidence suggests that the activity of the H+-K+ exchanger is modulated by the electrical field across the inner mitochondrial membrane. 相似文献
8.
Ca2+ transport was studied in membrane vesicles of alkalophilic Bacillus. When Na+-loaded membrane vesicles were suspended in KHCO3/KOH buffer (pH 10) containing Ca2+, rapid uptake of Ca2+ was observed. The apparent value for Ca2+ measured at pH 10 was about 7 μM, and the value shifted to 24 μM when measured at pH 7.4. The efflux of Ca2+ was studied with Ca2+-loaded vesicles. Ca2+ was released when Ca2+-loaded vesicles were suspended in medium containing 0.4 M Na+.Ca2+ was also transported in membrane vesicles driven by an artificial pH gradient and by a membrane potential generated by K+-valinomycin in the presence of Na+.These results indicate the presence of Ca2+/Na+ and H+/Na+ antiporters in the alkalophilic Bacillus A-007. 相似文献
9.
B. Vestergaard-Bogind 《生物化学与生物物理学报:生物膜》1983,730(2):285-294
Ionophore A23187-mediated Ca2+-induced oscillations in the conductance of the Ca2+-sensitive K+ channels of human red cells were monitored with ion specific electrodes. The membrane potential was continuously reflected in CCCP-mediated pH changes in the buffer-free medium, changes in extracellular K+ activity were followed with a K+-selective electrode, and changes in the intracellular concentration of ionized calcium were calculated on the basis of cellular 45Ca content. An increased cellular 45Ca content at the successive minima of the oscillations where the K+ channels are closed indicates that the activation of the channels might be a process and that accommodation to enhanced levels of intracellular free calcium may occur. An incipient inactivation of the K+ channels at intracellular ionized calcium levels of about 10 μM and a concurrent membrane potential of about ?65 mV was observed. At a membrane potential of about ?70 mV and an intracellular concentration of about 2·10?4M no inactivation of K+ channels took place. Inactivation of the K+ channels is suggested to be a compound function of the intracellular level of free calcium and the membrane potential. The observed sharp peak values in cellular 45Ca content support the notion that a necessary component of the oscillatory system is a Ca2+ pump operating with a significant delay in the activation/inactivation process in response to changes in cellular concentration of ionized calcium. 相似文献
10.
Roxanne Deslauriers Irena Ekiel Thérèse Kroft Ian C.P. Smith 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1982,721(4):449-457
High resolution 31P-NMR has been used for the non-invasive observation of metabolites and metabolic rates in blood of normal mice and of mice infected with Plasmodium berghei, the causative agent of malaria. 31P-NMR was used to quantitate levels of 2,3-diphosphoglycerate in whole cells as a function of the degree of parasitemia and yielded good agreement with the results of enzymatic assays. The time-dependence of 31P metabolites was monitored in both normal and infected erythrocytes, greater rates of decay of 2,3-diphosphoglycerate being observed in malarial blood which correlate with the level of parasitemia. Very high metabolic rates of infected cells render measurement of intracellular pH unreliable on freshly drawn whole blood. When appropriate measures are taken to avoid this complication, no difference is observed in the intracellular pH of parasitized and non-parasitized erythrocytes from infected animals. In both normal and parasitized mice the intraerythrocytic pH is more acidic than that of the suspending medium by 0.15 pH unit at 25°C. Unlike free-living protozoa, the parasitic protozoan Plasmodium does not contain detectable levels of phosphonates or polyphosphates, in either whole cells or perchloric acid extracts thereof. 相似文献
11.
The effect of Sr2+ on the set point for external Ca2+ was studied in rat heart and liver mitochondria with the aid of a Ca2+-sensitive electrode. In respiring mitochondria the set point is determined by the rates of Ca2+ influx on the Ca2+ uniporter and efflux by various mechanisms. We studied the Ca2+-Na+ exchange pathway in heart mitochondria and the Δψ-modulated efflux pathway in liver mitochondria. Prior accumulation of Sr2+ was found to shift the set points towards lower external Ca2+ both in heart mitochondria under conditions of Ca2+-Na+ exchange and in liver mitochondria under conditions that should promote opening of the Δψ-modulated pathway. The effect on the set point was found to be due to inhibition of Ca2+ efflux by Sr2+ taken up by the mitochondria, while Sr2+ efflux was too slow to be measurable. 相似文献
12.
Felice Aull 《生物化学与生物物理学报:生物膜》1981,643(2):339-345
Bumetanide is a potent diuretic drug which has some structural features in common with furosemide. The steady-state exchange of K+ and Cl? was investigated in Ehrlich ascites tumor cells treated with bumetanide. This agent did not alter the cellular content of K+ or Cl? but the self-exchange of both ions was depressed. K+ self-exchange was inhibited by 55% at bumetanide concentrations as low as 10?6 M. Cl? self-exchange was less sensitive to this drug but at low concentrations (between 10?6 and 10?3 M) bumetanide was a more effective inhibitor of Cl? transfer than furosemide. The steady-state K+ flux of cells equilibrated in NO3? media was compared with the K+ flux in cells treated with 10?4 or 10?3 M bumetanide; the Cl? -sensitive K+ exchange was equivalent to the bumetanide-sensitive K+ exchange. Since the results suggested that a bumetanide-sensitive (Cl?, K+) cotransport could be operative in steady-state cells, the stoichiometry of the bumetanide-sensitive fluxes was determined by measuring Cl? and K+ fluxes simultaneously in the same cell suspension. At and 10?3 M bumetanide concentrations, the ratio of these fluxes was , respectively, consistent with the postulated cotransport mechanism. At 10?4 and 10?5 M, however, the ratio of the bumetanide-sensitive Cl?/K+ flux was significantly less than 1.0. Since the magnitude of the bumetanide-sensitive K+ flux at 10?4 M was close to that of the Cl?-sensitive flux, a ratio of less than 1.0 at this drug level indicates that Cl? sensitivity and drug sensitivity may not reflect inhibition of the same process under all circumstances. 相似文献
13.
An enriched fraction of plasma membranes was prepared from canine ventricle by a process which involved thorough disruption of membranes by vigorous homogenization in dilute suspension, sedimentation of contractile proteins and mitochondria at followed by sedimentation of a microsomal fraction at . The microsomal suspension was then fractionated on a discontinuous sucrose gradient. Particles migrating in the density range 1.0591–1.1083 were characterized by ( activity and [3H]ouabain binding as being enriched in sarcolemma and were comprised of nonaggregated vesicles of diameter approx. 0.1 μm. These fractions contained which appeared endogenous to the sarcolemma. The enzyme was solubilized using Triton X-100 and 1 M KCl and partially purified. Optimal Ca2+ concentration for enzyme activity was 5–10 μM. Both Na+ and K+ stimulated enzyme activity. It is suggested that the enzyme may be involved in the outward pumping of Ca2+ from the cardiac cell. 相似文献
14.
Robert Kurland Carolyn Newton Shlomo Nir Demetrios Papahadjopoulos 《生物化学与生物物理学报:生物膜》1979,551(1):137-147
23Na NMR relaxation rate measurements show that Na+ binds specificially to phosphatidylserine vesicles and is displaced partially from the binding site by K+ and Ca2+ but to a considerably less extent by tetraethylammonium ion. The data indicate that tetraethylammonium ion affects the binding of Na+ only slightly, by affecting the surface potential through its presence in the double layer, without competing for a phosphatidylserine binding site. Values for the intrinsic binding constant for the Na+-phosphatidylserine complex that would be consistent with the competition experiments (and the dependence of the relaxation rate on concentration of free Na+) fall in the range 0.4–1.2 M?1 with a better fit towards the higher values. We conclude that in the absence of competing cations in solution an appreciable fraction of the phosphatidylserine sites could be associated with bound Na+ at 0.1 M Na+ concentration. 相似文献
15.
Na+-ATPase of high-K+ and low-K+ sheep red cells was examined with respect to the sidedness of Na+ and K+ effects, using inside-out membrane vesicles and very low ATP concentrations (?2 μM). With varying amounts of Na+ in the medium, i.e., at the cytoplasmic surface, Nacyt+, the activation curves show that high-K+ Na+-ATPase has a higher affinity for Nacyt+ compared to low-K+. The apparent affinity for Nacyt+ is also increased by increasing the ATP concentrations in high-K+ but not low-K+. With Nacyt+ present, Na+-ATPase is stimulated by intravesicular Na+, i.e., Na+ at the originally external surface, Naext+, to a greater extent in low-K+ than high-K+. Intravesicular K+ (Kext+) activates Na+-ATPase in high-K+ but not in low-K+ vesicles and extravesicular K+ (Kcyt+) inhibits low-K+ but not high-K+ Na+-ATPase. Thus, the genetic difference between high-K+ and low-K+ is expressed as differences in apparent affinities for both Na+ and K+ and these differences are evident at both cytoplasmic and external membrane surfaces. 相似文献
16.
A membrane fraction enriched in axolemma was obtained from optic nerves of the squid (Sepiotheutis sepioidea) by differential centrifugation and density gradient fractionation. The preparation showed an oligomycin- and NaN3-insensitive (Ca2+ + Mg2+)-ATPase activity. The dependence of the ATPase activity on calcium concentration revealed the presence of two saturable components. One had a high affinity for calcium () and the second had a comparatively low affinity (). Only the high-affinity component was specifically inhibited by vanadate (K1 = 35 μM). Calmodulin (12.5 μ/ml) stimulated the (Ca2+ + Mg2+)-ATPase by approx. 50%, and this stimulation was abolished by trifluoperazine (10 μM). Further treatment of the membrane fraction with 1% Nonidet P-40 resulted in a partial purification of the ATPase about 15-fold compared to the initial homogenate. This (Ca2+ + Mg2+)-ATPase from squid optic nerve displays some properties similar to those of the uncoupled Ca2+-pump described in internally dialyzed squid axons, suggesting that it could be its enzymatic basis. 相似文献
17.
Teruko Ueda 《生物化学与生物物理学报:生物膜》1983,734(2):342-346
Plasma membranes of rabbit thymus lymphocytes accumulated Ca2+ when a Na+ gradient (intravesicular > extravesicular) was formed across the membranes. Dissipation of the Na+ gradient by the addition of Na+ to the external medium decreased Ca2+ uptake. Ca2+ preloaded into the lymphocytes was extruded when Na+ was added to the external medium. The Ca2+ uptake decreased at acidic pH but increased at alkaline pH (above 8) and the activity was saturable for Ca2+ (apparent Km for Ca2+ was 61 μM and apparent Vmax was 11.5 nmol/mg protein per min). Na+-dependent uptake of Ca2+ was inhibited by tetracaine and verapamil, and partially inhibited by La3+. The uptake was not influenced by orthovanadate. 相似文献
18.
The proton ejection coupled to electron flow from succinate and/or endogenous substrate(s) to cytochrome c using the impermeable electron acceptor ferricyanide is studied in tightly coupled mitochondria isolated from two strains of the yeast Saccharomyces cerevisiae. (1) The observed H+ ejection/2e? ratio approaches an average value of 3 when K+ (in the presence of valinomycin) is used as charge-compensating cation. (2) In the presence of the proton-conducting agent carbonyl cyanide m-chlorophenylhydrazone, an H+ ejection/2e? ratio of 2 is observed. (3) The low stoichiometry of 3H+ ejected (instead of 4) per 2e? and the high rate of H+ back-decay (0.1615 and a half-time of 4.6 s for 10 mg protein) into the mitochondrial matrix are related to the presence of an electroneutral K+/H+ antiporter which is demonstrated by passive swelling experiments in isotonic potassium acetate medium. 相似文献
19.
20.
Amiloride and harmaline were tested as inhibitors of proton movements in brush-border membrane vesicles from rat kidney cortex. Transmembrane pH differences were visualized using acridine orange. Fluorescence quenching due to Na+ gradient-driven intravesicular acidification was inhibited by amiloride and harmaline. However, a similar inhibition was observed for the Na+ gradient-driven electrogenic proton movements in the presence of gramicidin. Moreover, amiloride and harmaline decreased the fluorescence signal of electrogenic proton movements driven by a K+ gradient in the presence of valinomycin. The degree of inhibition of intravesicular acidification by both drugs was concentration dependent. Half-maximal inhibition (I50) of Na+/H+ exchange and K+ gradient-driven proton movements occurred at 0.21 and 0.6 amiloride, respectively. The I50 for harmaline was 0.21 mM in both cases. Amiloride also decreased the initial quenching of acridine orange fluorescence due to a preset pH gradient without affecting the rate of dissipation of the pH gradient. This effect was independent of the buffer capacity. In contrast, harmaline seemed to dissipate pH gradient in the same way as a permeant buffer. Amiloride and harmaline led to a concentration-dependent fluorescence decrease even in aqueous solution. The results suggest an interaction of amiloride and harmaline with acridine orange which overlaps a possible specific inhibition of Na+/H+ exchange by these drugs. 相似文献