首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UV CD and IR spectra of the water-soluble bacteriochlorophyll-protein antenna isolated from Prosthecochloris aestuarii indicate that about 50% of the protein is in a β-sheet conformation while for the dominant antenna complexes isolated from bacteria (B800-850) and from green plants (LHC), the α-helix (45%) is more abundant than the β-sheet (~ 10%) conformation. Furthermore, IR dichroism studies show that the α-helical segments of a large variety of intrinsic membrane Chl-protein complexes (antenna and reaction centers) are tilted on the average at 30–35° away from the membrane normal. The observation that in these complexes the Chl planes are also tilted at about the same angle suggests that the transmembrane orientation of the α-helices determines the positioning of the Chl molecules in photosynthetic membranes.  相似文献   

2.
The structure and orientation of the major protein constituent of photosynthetic membranes in green plants, the chlorophyll ab light-harvesting complex (LHC) have been investigated by ultraviolet circular dichroism (CD) and polarized infrared spectroscopies. The isolated purified LHC has been reconstituted into phosphatidylcholine vesicles and has been compared to the pea thylakoid membrane. The native orientation of the pigments in the LHC reconstituted in vesicles was characterized by monitoring the low-temperature polarized absorption and fluorescence spectra of reconstituted membranes. Conformational analysis of thylakoid and LHC indicate that a large proportion of the thylakoid protein is in the α-helical structure (56 ± 4%), while the LHC is for 44 ± 7% α-helical. By measuring the infrared dichroism of the amide absorption bands of air-dried oriented multilayers of thylakoids and LHC reconstituted in vesicles, we have estimated the degree of orientation of the α-helical chains with respect to the membrane normal. Infrared dichroism data demonstrate that transmembrane α-helices are present in both thylakoid and LHC with the α-helix axes tilted at less than 30° in LHC and 40° in thylakoid with respect to the membrane normal. In thylakoids, an orientation of the polar C=O ester groups of the lipids parallel to the membrane plane is detected. Our results are consistent with the existence of 3–5 transmembrane α-helical segments in the LHC molecules.  相似文献   

3.
Bacteriorhodopsin has been reconstituted into lipid vesicles with dipalmitoyl and dimyristoyls phosphatidylcholine. Circular dichroism (CD) measurements show that the proteins are in a monomeric state above the main lipid phase transition temperature (Tc), 41 and 23°C for dipalmitoyl and dimyristoyl phosphatidylcholine, respectively. Below Tc, the CD spectrum is the same as that found for the purple membrane. The latter result implies that the orientation of the chromophore at these temperatures is most likely the same as in the purple membrane (70° ± 5° from the normal to the membrane plane).Transient dichroism measurements show that below Tc the proteins are immobile, while above this temperature protein rotation around an axis normal to the plane of the membrane is occurring. In addition, from the data the angle of the chromophore for the rotating proteins with respect to the rotational diffusion axis can be calculated. This angle is found to be 30° ± 3° and 29° ± 4° in dimyristoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine, respectively. This is considerably smaller than the value of 70° ± 5° for the natural biomembrane. A reversible reorientation of the chromophore above and below the respective main Tc transition temperature could explain the change of angle observed provided that all the molecules rotate above Tc.  相似文献   

4.
The conformation and the orientation of the protein secondary structures in purple membrane was analyzed by infrared absorption and linear dichroism of oriented membranes as well as by UV circular dichroism of bacteriorhodopsin in intact purple membrane and in lipid vesicles. A large amount (74 ± 5%) of transmembrane α-helices is detected with no significant contribution of β-sheet strands running perpendicular to the membrane plane. Thus, these data do not support the recent structural model proposed by Jap et al. (Biophys. J. 1983, 43:81-89).  相似文献   

5.
Polarized Fourier transform infrared spectroscopy has been used to study the structure of purple membrane from Halobacterium halobium. Membranes were oriented by drying a suspension of membrane fragments onto Irtran-4 slides. Dichroism measurements of the amide I, II and A peaks were used to find the average spatial orientation of the bacteriorhodopsin alpha-helices. By deriving a function that relates the observed dichroism to the orientational order parameters for the peptide groups, helical axis distribution, and mosaic spread of the membranes, the average orientation of the alpha-helices was found to lie in a range of less than 26 degrees away from the membrane normal, agreeing with electron microscopic measurements. The frequency of the amide I and A peaks is at least 10 cm-1 higher than values found for most alpha-helical polypeptides and proteins. This may indicate that bacteriorhodopsin contains distorted alpha-helical conformations.  相似文献   

6.
Lysenin is a sphingomyelin-recognizing toxin which forms stable oligomers upon membrane binding and causes cell lysis. To get insight into the mechanism of the transition of lysenin from a soluble to a membrane-bound form, surface activity of the protein and its binding to lipid membranes were studied using tensiometric measurements, Fourier-transform infrared spectroscopy (FTIR) and FTIR-linear dichroism. The results showed cooperative adsorption of recombinant lysenin-His at the argon-water interface from the water subphase which suggested self-association of lysenin-His in solution. An assembly of premature oligomers by lysenin-His in solution was confirmed by blue native gel electrophoresis. When a monolayer composed of sphingomyelin and cholesterol was present at the interface, the rate of insertion of lysenin-His into the monolayer was considerably enhanced. Analysis of FTIR spectra of soluble lysenin-His demonstrated that the protein contained 27% β-sheet, 28% aggregated β-strands, 10% α-helix, 23% turns and loops and 12% different kinds of aggregated forms. In membrane-bound lysenin-His the total content of α-helices, turns and loops, and β-structures did not change, however, the 1636cm−1 β-sheet band increased from 18% to 31% at the expense of the 1680cm−1 β-sheet structure. Spectral analysis of the amide I band showed that the α-helical component was oriented with at 41° to the normal to the membrane, indicating that this protein segment could be anchored in the hydrophobic core of the membrane.  相似文献   

7.
The orientation of the 568 nm transition dipole moment of the retinal chromophore of bacteriorhodopsin has been determined in purple membranes from Halobacterium halobium and in reconstituted vesicles. The angle between the 568 nm transition dipole moment and the normal to the plane of the membrane was measured in two different ways.In the first method the angle was obtained from transient dichroism measurements on bacteriorhodopsin incorporated into large phosphatidylcholine vesicles. Following flash excitation with linearly polarized light, the anisotropy of the 568 nm ground-state depletion signal first decays but then reaches a time-independent value. This result, obtained above the lipid phase transition, is interpreted as arising from rotational motion of bacteriorhodopsin which is confined to an axis normal to the plane of the membrane. It is shown that the relative amplitude of the time-independent component depends on the orientation of the 568 nm transition dipole moment. From the data an angle of 78 ° ± 3 ° is determined.In the second method the linear dichroism was measured as a function of the angle of tilt between the oriented purple membranes and the direction of the light beam. The results were corrected for the angular distribution of the membranes within the oriented samples, which was determined from the mosaic spread of the first-order lamellar neutron diffraction peak. In substantial agreement with the results of the transient dichroism method, linear dichroism measurements on oriented samples lead to an angle of 71 ° ± 4 °.No significant wavelength dependence of the dichroic ratio across the 568 nm band was observed, implying that the exciton splitting in this band must be substantially smaller than the recently suggested value of 20 nm (Ebrey et al., 1977).The orientation of the 568 nm transition dipole moment, which coincides with the direction of the all-trans polyene chain of retinal, is not only of interest in connection with models for the proton pump, but can also be used to calculate the inter-chromophore distances in the purple membrane.  相似文献   

8.
Optical and structural properties of the B875 light-harvesting complex of purple bacteria were examined by measurements of low-temperature circular dichroism (CD) and excitation spectra of fluorescence polarization. In the B875 complex isolated from wild-type Rhodopseudomonas sphaeroides, fluorescence polarization increased steeply across the long-wavelength Qy bacteriochlorophyll a (BChl) absorption band at both 4 and approx. 300 K. With the native complex in the photosynthetic membranes of Rhodospirillum rubrum and Rps. sphaeroides wild-type and R26-carotenoidless strains, this significant increase in polarization from 0.12 to 0.40 was only observed at low temperature. A polarization of ?0.2 was observed upon excitation in the Qx BChl band. The results indicate that about 15% of the BChl molecules in the complex absorb at wavelengths about 12 nm longer than the other BChls. All BChls have approximately the same orientation with their Qy transition dipoles essentially parallel and their Qx transitions perpendicular to the plane of the membrane. At low temperature, energy transfer to the long-wavelength BChls is irreversible, yielding a high degree of polarization upon direct excitation, whereas at room temperature a partial depolarization of fluorescence by energy transfer between different subunits occurs in the membrane, but not in the isolated complex. CD spectra appear to reflect the two spectral forms of B875 BChl in Rps. sphaeroides membranes. They also reveal structural differences between the complexes of Rps. sphaeroides and Rhs. rubrum, in both BChl and carotenoid regions. The CD spectrum of isolated B875 indicates that the interactions between the BChls but not the carotenoids are altered upon isolation.  相似文献   

9.
Infrared spectroscopy has been applied to the study of a number of aqueous systems of model and natural biomembranes. The absorption bands arising from water and buffer solutions were eliminated by means of an infrared spectrometer data station. Spectra were examined using H2O and 2H2O aqueous buffer systems. Pure lecithin-water systems, and various model biomembranes containing cholesterol, gramicidin A, bacteriorhodopsin or Ca2+-ATPase were examined. The infrared spectra of the reconstituted biomembranes were compared with those of the corresponding natural biomembranes, i.e. the purple membrane of Halobacterium halobium and also sarcoplasmic reticulum membranes, respectively.Changes in lipid chain conformation caused by the various intrinsic molecules incorporated within the model lipid bilayer structures were monitored by studying the shifts in frequency (cm?1) of the CH2 symmetric and asymmetric absorption bands arising from the lipid chains. The effect of gramicidin A and also the intrinsic proteins, as indicated by the shift of band frequencies, are quite different from that of cholesterol at temperatures above the main lipid transition temperature tc. Cholesterol causes a reduction in gauche isomers which increases with concentration of cholesterol within the lipid bilayer. Whilst gramicidin A and the intrinsic proteins at low concentration cause a reduction of gauche isomers, at higher concentrations of these molecules, however, there is little difference in gauche isomer content when the intrinsic molecule is present compared with that of the fluid lipid alone. These results are considered and compared with previously published studies using deuterium nuclear magnetic resonance spectroscopy on similar model biomembrane systems. Below the lipid tc value, all the intrinsic molecules produce an increase in gauche isomers presumably by disturbing the lipid chain packing in the crystalline lipid arrangement.Information about the polypeptide structure within gramicidin A. the reconstituted proteins and also the proteins in the natural biomembranes was obtained by examining the region of the infrared spectrum between 1600 and 1700 cm?1 associated with the amide I and amide II bands. An examination of the infrared band frequencies of the different systems in this region leads to the conclusions: (1) that gramicidin A within a phospholipid bilayer structure probably has a single helix rather than a double helix structure; (2) that there are differences in band widths of the reconstituted Ca2+-ATPase and bacteriorhodopsin compared with the spectra of the corresponding sarcoplasmic reticulum and purple membrane; (3) different membrane proteins adopt different conformations as evinced by a comparison of the spectra of the sarcoplasmic reticulum and purple membrane; (4) the polypeptide arrangement in the purple membrane is mainly helical but the abnormal frequency of the amide I band suggests that some distortion of the helix occurs: and (5) the sarcoplasmic reticulum membrane contains unordered as well as α-helix polypeptide arrangements.  相似文献   

10.
The low-temperature linear dichroism spectrum of thylakoids oriented in polyacrylamide gel can be adequately described by a linear combination of the corresponding spectra of particles of light-harvesting complex, Photosystem I and Photosystem II, isolated by Triton X-100 extraction. The main conclusions which can be derived from this observation are: (1) The in vivo orientation of the pigments within each of the three complexes is not significantly affected by the extraction and purification procedures. (2) The various photosynthetic pigments are oriented roughly to the same extent in each of the three main biochemical constituents of the thylakoid. (3) All the complexes investigated behave like ellipsoids, the largest dimensions of which are lying in the plane of the photosynthetic membrane.  相似文献   

11.
The twin-arginine-translocase (Tat) can transport proteins in their folded state across bacterial or thylakoid membranes. In Bacillus subtilis the Tat-machinery consists of only two integral (inner) membrane proteins, TatA and TatC. Multiple copies of TatA are supposed to form the transmembrane channel, but little structural data is available on this 70-residue component. We used a multi-construct approach for expressing several characteristic fragments of TatAd, to determine their individual structures and to cross-validate them comprehensively within the architecture of the full-length protein. Here, we report the design, high-yield expression, detergent-aided purification and lipid-reconstitution of five constructs of TatAd, overcoming difficulties associated with the very different hydrophobicities and sizes of these membrane protein fragments. Circular dichroism (CD) and oriented CD (OCD) were used to determine their respective conformations and alignments in suitable, negatively charged phospholipid bilayers. CD spectroscopy showed an N-terminal α-helix, a central helical stretch, and an unstructured C-terminus, thus proving the existence of these secondary structures in TatAd for the first time. The OCD spectra demonstrated a transmembrane orientation of the N-terminal α-helix and a surface alignment of the central amphiphilic helix in lipid bilayers, thus supporting the postulated topology model and function of TatA as a transmembrane channel.  相似文献   

12.
Purple membrane fragments from Halobacterium halobium were oriented by a static electric field in a water suspension. It was found that an electric field of approx. 20 V/cm is sufficient to achieve practically complete orientation; the purple membranes have a permanent electric dipole moment of (6 ±1)· 10?23 C · m, the orientation of the retinal transition moment relative to the direction of the electric dipole moment, θ, is (59 ± 1)0, and the purple membrane rotational diffusion constant Drot = 0.65 s?1. It was found that because of the electrophoretic movement of the particles a hydrodynamic velocity gradient builds up which also orients the purple membranes.  相似文献   

13.
《BBA》2020,1861(8):148204
Precise folding of photosynthetic proteins and organization of multicomponent assemblies to form functional entities are fundamental to efficient photosynthetic electron transfer. The bacteriochlorophyll b-producing purple bacterium Blastochloris viridis possesses a simplified photosynthetic apparatus. The light-harvesting (LH) antenna complex surrounds the photosynthetic reaction center (RC) to form the RC-LH1 complex. A non-membranous tetraheme cytochrome (4Hcyt) subunit is anchored at the periplasmic surface of the RC, functioning as the electron donor to transfer electrons from mobile electron carriers to the RC. Here, we use atomic force microscopy (AFM) and single-molecule force spectroscopy (SMFS) to probe the long-range organization of the photosynthetic apparatus from Blc. viridis and the unfolding pathway of the 4Hcyt subunit in its native supramolecular assembly with its functional partners. AFM images reveal that the RC-LH1 complexes are densely organized in the photosynthetic membranes, with restricted lateral protein diffusion. Unfolding of the 4Hcyt subunit represents a multi-step process and the unfolding forces of the 4Hcyt α-helices are approximately 121 picoNewtons. Pulling of 4Hcyt could also result in the unfolding of the RC L subunit that binds with the N-terminus of 4Hcyt, suggesting strong interactions between RC subunits. This study provides new insights into the protein folding and interactions of photosynthetic multicomponent complexes, which are essential for their structural and functional integrity to conduct photosynthetic electron flow.  相似文献   

14.
To elucidate the structural characteristics of alcohol-denatured proteins, we measured the vacuum-ultraviolet circular dichroism (VUVCD) spectra of six proteins-myoglobin, human serum albumin, α-lactalbumin, thioredoxin, β-lactoglobulin, and α-chymotrypsinogen A-down to 170 nm in trifluoroethanol solutions (TFE: 0-50%) and down to 175 nm in methanol solutions (MeOH: 0-70%) at pH 2.0 and 25°C, using a synchrotron-radiation VUVCD spectrophotometer. The contents of α-helices, β-strands, turns, poly-L-proline type II helices (PPIIs), and unordered structures of these proteins were estimated using the SELCON3 program, including the numbers of α-helix and β-strand segments. Furthermore, the positions of α-helices and β-strands on amino acid sequences were predicted by combining these secondary-structure data with a neural-network method. All alcohol-denatured proteins showed higher α-helix contents (up to ~ 90%) compared with the native states, and they consisted of several long helical segments. The helix-forming ability was higher in TFE than in MeOH, whereas small amounts of β-strands without sheets were formed in the MeOH solution. The produced α-helices were transformed dominantly from the β-strands and unordered structures, and slightly from the turns. The content and mean length of α-helix segments decreased as the number of disulfide bonds in the proteins increased, suggesting that disulfide bonds suppress helix formation by alcohols. These results demonstrate that alcohol-denatured proteins constitute an ensemble of many long α-helices, a few β-strands and PPIIs, turns, and unordered structures, depending on the types of proteins and alcohols involved.  相似文献   

15.
The nature and possible causes of polarized light-scattering artefacts in linear dichroism measurements are investigated. Using criteria described in this article, the available orientation techniques have been critically assessed in order to obtain the linear dichroism spectra of thylakoids and of pigment-protein complexes isolated from pea. It is demonstrated here that the polyacrylamide gel squeezing technique of Abdourakhmanov et al. (Abdourakhmanov, I.A., Ganago, A.O., Erokhim, Yu.E., Solov'ev, A.A. and Chugunov, V.A. (1979) Biochim. Biophys. Acta 546, 183–186) does not lead to pigment degradation and that the linear dichroism spectra obtained in these conditions are essentially free of scattering artefacts. The linear dichroism spectra of light-harvesting complex isolated in different states of aggregation or incorporated into phospholipid vesicles are compared to the spectra of thylakoids. This comparison indicates: (1) that the isolation procedure of Burke et al. (Burke, J.J., Ditto, C.L. and Arntzen, C.J. (1978) Arch. Biochem. Biophys. 187, 252–263) leads to light-harvesting complex in which the in vivo orientation of pigments is preserved; (2) that the antenna chlorophyll a molecules of this complex have a significant degree of orientation with respect to the plane of the thylakoid.  相似文献   

16.
The orientations of high potential cytochromes with respect to photosynthetic membranes was investigated in spinach chloroplasts and in Rhodopseudomonas viridis. The general approach consists in detection with polarized light of photoinduced absorbance changes related to the oxidation of the cytochromes. The orientation of cytochrome c-558 was measured at room temperature in chromatophores and whole cells of Rps. viridis, oriented on glass slides and in a magnetic field, respectively. The orientation of cytochrome b-559 of green plants was detected at 77 K in magnetically oriented chloroplasts. In both cases the dichroic ratio for the band shows that the heme plane makes an angle greater than 35°C with the membrane plane. Moreover, the dichroic ratio is not constant throughout the and β bands, for both cytochrome c-558 and b-559. Linear dichroism spectra of oriented pure horse heart cytochrome c and cytochrome c2 of Rhodopseudomonas sphaeroides in stretched polyvinyl alcohol films show that the variations of the dichroic ratio in the and β bands can be explained by the occurrence of x- and y-polarized transitions absorbing at slightly different wavelengths.  相似文献   

17.
Using a polyacrylamide gel squeezing technique, linear dichroism spectra of thylakoids from wild-type and chlorophyll-b less barley have been obtained at 100 K. The calculated difference linear dichroism spectra, based on normalization at 690–695 nm, are identical to those of the light-harvesting complex (LHC) isolated by Triton solubilization. This observation is in agreement with previous conclusions (Tapie, P., Haworth, P., Hervo, G. and Breton, J. (1982) Biochim. Biophys. Acta 682, 339–344) regarding: (i) scattering artifacts are absent in linear dichroism spectra determined using polyacrylamide gels, (ii) the in vivo orientation of LHC pigments is maintained in the isolated complex and (iii) the largest dimension(s) of the isolated LHC is (are), in vivo, parallel to the plane of the photosynthetic membrane.  相似文献   

18.
The difference in the surface charge distribution between light-adapted and dark-adapted purple membranes was investigated with electric dichroism measurements from approximately pH 5 to pH 11. Purple membrane sheets in solution are oriented in a weak electric field by their permanent dipole moment, which is due to the charge distribution of the membrane surfaces and/or within the membrane. The degree of orientation of purple membrane sheets was obtained from the measurement of “electrical anisotropy” of retinal chromophore in the membranes. At about pH 7, there was no difference in the “electric anisotropy” between light- and dark-adapted purple membranes. At about pH 9, the electric anisotropy of dark-adapted purple membrane was larger than that of light-adapted purple membrane. But at around pH 6 the difference was opposite. Linear dichroism experiments did not show any change of retinal tilt angle with respect to the membrane normal between the two forms from approximately pH 5 to pH 10. This result indicates that the changes in the “electric anisotropy” are not due to the change of retinal tilt angle, but due to the change in the permanent dipole moment of the membrane. To estimate the change in surface charges from the permanent dipole moment, we investigated the difference of the permanent dipole moment between the native purple membrane and papain-treated purple membrane in which negative charges in the cytoplasmic-terminal part are removed. This estimation suggests that this light-dark difference at around pH 9 can be accounted for by a change of ~0.5 electric charge per bacteriorhodopsin (bR) molecule at either of the two surfaces of the membrane. We also found from pH electrode measurements that at about pH 8 or 9 light adaptation was accompanied by an uptake of ~0.1 protons per bR. A possible movement of protons during light-dark adaptation is discussed. The direction of the permanent dipole moment does not change with papain treatment. The permanent dipole moment in papain-treated purple membrane is estimated to be 27 ±2 debye/bR.  相似文献   

19.
Linear dichroism (LD) spectroscopy is an important technique in the study of the orientation and organization of pigments in the photosynthetic membrane complexes in vivo and in vitro. In this work, the orientation of the pigments in the isolated photosystem Ⅱ (PSⅡ) sub-core reaction center complexes was analyzed and characterized by means of low temperature absorption and LD spectroscopy. The preparations containing different amounts of CP47 isolated from spinach (Spinacia oleracea L.) chloroplast were used in order to investigate the orientation of pigments in the PSⅡ sub-core CP47/D1/D2/Cyt b-559 (CP47/D1/D2) complexes. Chlorophyll a (Chl a) absorbing at 680 nm in CP47/D1/D2/Cyt b-559 complex showed an orientation of the Q y transition parallel to the membrane plane. It is proposed that there are two forms of β-carotene (β-Car) in CP47/D1/D2/Cyt b-559 complex, denoted as β-Car (Ⅰ)and β-Car (Ⅱ), with different orientations, β-Car (Ⅰ) at 470 and 505 nm is roughly parallel to the membrane plane, and β-Car (Ⅱ) at 460 and 490 nm seems to be perpendicular orientation. Upon the photoinhibitory experiment β-Car (Ⅱ) was found to be photosensitive and easily photodamaged. It also showed that the positive LD signal observed at 680 nm was quite complicated. This signal is tentatively attributed to P680 and some Chl a of antenna in CP47 protein based upon our measurements.  相似文献   

20.
用垂直转移法在石英片上制成的PM—SP—LB多层膜的可见区吸收谱表明吸收峰峰位与成膜液一致,均在574nm左右,比PM水悬浮液的吸收峰位略有红移;稳态线二色性表明,除PM碎片平躺在多层膜平面内外,在提拉时的竖直方向存在BR的取向优势,优势率约为0.51左右;同时还表明,25mN/m条件下制备的PM—SP—LB多层膜中BR分子的视黄醛生色团的跃迁矩与膜平面法向所成的角接近于天然紫膜中的值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号