首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The role of a β-D-galactosyl-specific lectin, first reported by Teichberg et al., in the fusion of myoblasts in vitro was investigated. The concentration of this lectin in embryonic chick skeletal muscle was found to reach maximal levels at the time of myoblast fusion in vivo. β-D-Galactosyl-β-thiogalactopyranoside and lactose are potent inhibitors of agglutination of trypsinized rabbit erythrocytes caused by the lectin. However, at concentrations of 50 mM these compounds had no effect on either nonsynchronous fusion of myoblasts or on the release of synchronized myoblast cultures from EGTA fusion block. The presence of the agglutinin in the external membranes of chick myoblasts and myotubes could not be demonstrated. It is, therefore, concluded that the involvement of the lectin in the fusion of chick myoblasts remains questionable.  相似文献   

2.
Hyaluronic acid synthesis was examined in cultures of differentiating chick embryo muscle cells before, during and after fusion. Prior to fusion, hyaluronic acid was synthesized and secreted into the medium, but once fusion began this synthesis was reduced significantly. Synthesis then increased again after completion of fusion. Thus, production of hyaluronic acid was lowest at the time of or right before cell fusion. When myoblasts were transformed by Rous sarcoma virus (RSV), a higher amount of hyaluronic acid was synthesized, and cells were not able to fuse. The turnover rate of hyaluronic acid might be different between myotubes and RSV-transformed myoblasts. The addition of exogenous hyaluronic acid to myoblast cultures resulted in the partial inhibition of fusion. The effect was reversible because fusion took place after removal of the exogenous hyaluronic acid. These observations suggest that hyaluronic acid plays an important role in the differentiation of myogenic cells, and that elevated hyaluronic acid synthesis may partly be the reason for inhibition of myotube formation upon transformation by Rous sarcoma virus.  相似文献   

3.
We have determined the asymmetric distribution of two aminophospholipids phosphatidylethanolamine and phosphatidylserine in the plasma membrane of chick embryo fibroblast and myoblasts. Right-side-out membrane preparations were incubated with two different amidating reagents, trinitrobenzenesulfonate and isethionylacetimidate, under nonpenetrating conditions. Inside-out membranes were incubated with trinitrobenzenesulfonate. In fibroblasts, the similar plateau values suggested that 35% of the phosphatidylethanolamine and 20% of the phosphatidylserine is externally disposed. These values agree with previous measurements on fibroblast plasma membranes. In myoblasts, however, labelling plateaux were achieved which suggested that 65% of the phosphatidylethanolamine and 45% of the phosphatidylserine is externally disposed. This represents a 2-3-fold increase in potentially fusogenic lipids on the external leaflet of the plasma membrane. This unique distribution of aminophospholipids in myoblasts extends through the stage of development during which myoblasts become competent to fuse and form myotubes in culture. Two inferences may be drawn from these results. First, the external concentration of aminophospholipids in myoblasts is enriched significantly over that of fibroblasts or erythrocytes. This orientation may contribute to its fusion competence. Second, although large amounts of externally disposed aminophospholipid may be necessary for myoblast fusion, they do not confer fusion competence.  相似文献   

4.
Myoblast differentiation and fusion to multinucleated muscle cells can be studied in myoblasts grown in culture. Calpain (Ca2+-activated thiol protease) induced proteolysis has been suggested to play a role in myoblast fusion. We previously showed that calpastatin (the endogenous inhibitor of calpain) plays a role in cell membrane fusion. Using the red cell as a model, we found that red cell fusion required calpain activation and that fusibility depended on the ratio of cell calpain to calpastatin. We found recently that calpastatin diminishes markedly in myoblasts during myoblast differentiation just prior to the start of fusion, allowing calpain activation at that stage; calpastatin reappears at a later stage (myotube formation). In the present study, the myoblast fusion inhibitors TGF-β, EGTA and calpeptin (an inhibitor of cysteine proteases) were used to probe the relation of calpastatin to myoblast fusion. Rat L8 myoblasts were induced to differentiate and fuse in serum-poor medium containing insulin. TGF-β and EGTA prevented the diminution of calpastatin. Calpeptin inhibited fusion without preventing diminution of calpastatin, by inhibiting calpain activity directly. Protein levels of μ-calpain and m-calpain did not change significantly in fusing myoblasts, nor in the inhibited, non-fusing myoblasts. The results indicate that calpastatin level is modulated by certain growth and differentiation factors and that its continuous presence results in the inhibition of myoblast fusion.  相似文献   

5.
Myoblasts fuse to form myotubes, which mature into skeletal muscle fibres. Recent studies indicate that an endogenous retroviral fusion gene, syncytin-1, is important for myoblast fusions in man. We have now expanded these data by examining the immunolocalization of syncytin in human myoblasts induced to fuse. Additionally, we have compared the localization of syncytin with the localization of caveolin-3 and of myogenin, which are also involved in myoblast fusion and maturation. Syncytin was localized to areas of the cell membrane and to filopodial structures connecting myoblasts to each other and to myotubes. Weaker staining was present over intracellular vesicles and tubules. Caveolin-3 was detected in the sarcolemma and in vesicles and tubules in a subset of myoblasts and myotubes. The strongest staining occurred in multinucleated myotubes. Wide-field fluorescence microscopy indicated a partial colocalization of syncytin and caveolin-3 in a subset of myoblasts. Super-resolution microscopy showed such colocalization to occur in the sarcolemma. Myogenin was restricted to nuclei of myoblasts and myotubes and the strongest staining occurred in multinucleated myotubes. Syncytin staining was observed in both myogenin-positive and myogenin-negative cells. Antisense treatment downmodulated syncytin-1 expression and inhibited myoblast cell fusions. Importantly, syncytin-1 antisense significantly decreased the frequency of multinucleated myotubes demonstrating that the treatment inhibited secondary myoblast fusions. Thus, syncytin is involved in human myoblast fusions and is localized in areas of contact between fusing cells. Moreover, syncytin and caveolin-3 might interact at the level of the sarcolemma.  相似文献   

6.
Presumptive myoblasts from explants of chick embryo pectoral muscle proliferate, differentiate, and fuse to form multinucleate myotubes. One event critical to multinucleate cell formation is the specific adhesion of myoblasts before union of their membranes. In the studies reported here five known inhibitors of myotube formation--trifluoperazine, sodium butyrate, chloroquine, 1,10 phenanthroline, and tunicamycin--were tested for their effect on the Ca++-dependent myoblast adhesion step. The first four inhibitors of myotube formation do not perturb myoblast adhesion but rather block fusion of aggregated cells, which suggests that these agents perturb molecular events required for the union of the lipid bilayers. By contrast, tunicamycin exerts its effect by inhibiting the myoblast adhesion step, thereby blocking myotube formation. The effect of tunicamycin can be blocked by a protease inhibitor, however, which implies that the carbohydrate residues protect the glycoproteins from proteolytic degradation rather than participate directly in cell-cell adhesion. Whereas trypsin treatment of myoblasts in the absence of Ca++ destroys the cells' ability to exhibit Ca++-dependent adhesion, the presence of Ca++ during trypsin treatment inhibits the enzyme's effect, which suggests that myoblast adhesion is mediated by a glycoprotein(s) that has a conformation affected by Ca++. Finally, myoblast adhesion is inhibited by an antiserum raised against fusion-competent myoblasts. The effect of the antiserum is blocked by a fraction from the detergent extract of pectoral muscle that binds to immobilized wheat germ agglutinin, which again suggests that glycoproteins mediate Ca++-dependent myoblast adhesion.  相似文献   

7.
The reversible arrest of myoblast differentiation by ethidium bromide (EB) has been used to examine the nature of the transition from the proliferative state to terminal differentiation resulting in fusion into muscle fibers. If EB is introduced at the time that myoblasts are shifted to medium that induces fusion, all apparent cytodifferentiation is suspended. When such EB arrested myoblasts are released from EB inhibition they fuse without reentering the cell cycle. If EB arrested myoblasts are released into proliferation promoting medium rather than medium that induces fusion they neither fuse nor proliferate. In this case they remain quiescent in the proliferating medium for an extended period, however, if these myoblasts are subsequently shifted to medium that induces fusion, they fuse without reentering the cell cycle. Apparently the myoblasts have become postmitotic and competent to fuse into muscle fibers during their initial exposure to fusion inducing medium, even though cytodifferentiation has been blocked. Exposure of these postmitotic fusion competent myoblasts to proliferation promoting medium does not stimulate them to reenter the cell cycle but does prevent fusion into muscle fibers. These results are most consistent with a quantal division model of myoblast differentiation rather than a gradual transition from the proliferative state to a state in which fusion occurs.  相似文献   

8.
The reversible arrest of myoblast differentiation by ethidium bromide (EB) has been used to examine the nature of the transition from the proliferative state to terminal differentiation resulting in fusion into muscle fibers. If EB is introduced at the time that myoblasts are shifted to medium that induces fusion, all apparent cytodifferentiation is suspended. When such EB arrested myoblasts are released from EB inhibition they fuse without reentering the cell cycle. If EB arrested myoblasts are released into proliferation promoting medium rather than medium that induces fusion they neither fuse nor proliferate. In this case they remain quiescent in the proliferating medium for an extended period, however, if these myoblasts are subsequently shifted to medium that induces fusion, they fuse without reentering the cell cycle. Apparently the myoblasts have become postmitotic and competent to fuse into muscle fibers during their initial exposure to fusion inducing medium, even though cytodifferentiation has been blocked. Exposure of these postmitotic fusion competent myoblasts to proliferation promoting medium does not stimulate them to reenter the cell cycle but does prevent fusion into muscle fibers. These results are most consistent with a quantal division model of myoblast differentiation rather than a gradual transition from the proliferative state to a state in which fusion occurs.  相似文献   

9.
顾锦法  颜贻谦 《生理学报》1989,41(2):191-195
用培养过鸡胚(来亨鸡)或胎鼠(ICR小鼠)肌组织的成纤维细胞的条件培养液,定量地研究它们对胎鼠或鸡胚的成肌细胞的增殖和融合的影响。所得结果如下:(1) 胎鼠的成纤维细胞条件培养液促进胎鼠或鸡胚成肌细胞增殖,分别为对照组的2.65倍,(P<0.001)或2.35倍,(P<0.01);(2) 鸡胚的成纤维细胞条件培养液促进鸡胚或胎鼠的成肌细胞增殖,分别为对照组的2.66倍,(P<0.01)或2.17倍,(P<0.01);(3) 胎鼠的成纤维细胞条件培养液增加胎鼠或鸡胚的成肌细胞的融合率,分别为对照组的1.9倍或2.6倍;鸡胚的成纤维细胞条件培养液只增加鸡胚成肌细胞的融合率,为对照组的2.1倍,但对胎鼠成肌细胞的融合无明显的影响。 实验结果提示:成纤维细胞条件培养液促进成肌细胞的增殖,两种动物间无明显的差异,但在融合上却有一定的种属特异性。  相似文献   

10.
A role for acetylcholine receptors in the fusion of chick myoblasts   总被引:5,自引:3,他引:2       下载免费PDF全文
The role of acetylcholine receptors in the control of chick myoblast fusion in culture has been explored. Spontaneous fusion of myoblasts was inhibited by the nicotinic acetylcholine receptor antagonists alpha-bungarotoxin, Naja naja toxin and monoclonal antibody mcAb 5.5. The muscarinic antagonists QNB and n-methyl scopolamine were without effect. Atropine had no effect below 1 microM, where it blocks muscarinic receptors; at higher concentrations, when it blocks nicotinic receptors also, atropine inhibited myoblast fusion. The inhibitions imposed by acetylcholine receptor antagonists lasted for approximately 12 h; fusion stimulated by other endogenous substances then took over. The inhibition was limited to myoblast fusion. The increases in cell number, DNA content, the level of creatine phosphokinase activity (both total and muscle-specific isozyme) and the appearance of heavy chain myosin, which accompany muscle differentiation, followed a normal time course. Pre-fusion myoblasts, fusing myoblasts, and young myotubes specifically bound labeled alpha-bungarotoxin, indicating the presence of acetylcholine receptors. The nicotinic acetylcholine receptor agonist, carbachol, induced uptake of [14C]Guanidinium through the acetylcholine receptor. Myoblasts, aligned myoblasts and young myotubes expressed the synthetic enzyme Choline acetyltransferase and stained positively with antibodies against acetylcholine. The appearance of ChAT activity in myogenic cultures was prevented by treatment with BUDR; nonmyogenic cells in the cultures expressed ChAT at a level which was too low to account for the activity in myogenic cultures. We conclude that activation of the nicotinic acetylcholine receptor is part of the mechanism controlling spontaneous myoblast fusion and that myoblasts synthesize an endogenous, fusion-inducing agent that activates the nicotinic ACh receptor.  相似文献   

11.
《The Journal of cell biology》1989,109(4):1779-1786
During myogenesis myoblasts fuse to form multinucleate cells that express muscle-specific proteins. A specific cell-cell adhesion process precedes lipid bilayer union during myoblast fusion (Knudsen, K. A., and A. F. Horwitz. 1977. Dev. Biol. 58:328-338) and is mediated by cell surface glycoproteins (Knudsen, K. A., 1985. J. Cell Biol. 101:891- 897). In this paper we show that myoblast adhesion and myotube formation are inhibited by treating fusion-competent myoblasts with phosphatidylinositol-specific phospholipase C (PI-PLC). The effect of PI-PLC on myoblast adhesion is dose dependent and inhibited by D-myo- inositol 1-monophosphate and the effect on myotube formation is reversible, suggesting a specific, nontoxic effect on myogenesis by the enzyme. A soluble form of adhesion-related glycoproteins is released from fusion-competent myoblasts by treatment with PI-PLC as evidenced by (a) the ability of phospholipase C (PLC)-released material to block the adhesion-perturbing activity of a polyclonal antiserum to intact myoblasts; and (b) the ability of PLC-released glycoprotein to stimulate adhesion-perturbing antisera when injected into mice. PI-PLC treatment of fusion-competent myoblasts releases an isoform of N-CAM into the supernate, suggesting that N-CAM may participate in mediating myoblast interaction during myogenesis.  相似文献   

12.
Myogenic differentiation in vitro involves at least three events at the cell surface: binding of prostaglandin to the cells, contact-mediated cell-cell recognition, and fusion of the myoblast membranes into myotubes. While the earlier events are thought to be necessary for subsequent fusion, the sequence of events has not been determined. A major impediment to determining the initial event has been the lack of synchrony of cell differentiation in vitro. To overcome this, we cultured chick embryo myoblasts as a suspension of single cells in gyratory rotation in medium without added Ca2+. Under these conditions, myoblasts exhibited characteristic prostaglandin binding at 34 h. Within 30 min, the cells began to aggregate. Because this occurred without change of medium or conditions of rotation, we termed the process autoaggregation. Within 8-10 h. cells within these autoaggregates began to fuse into syncytia. These results suggest that an early cell surface event in embryonic myogenesis is the characteristic binding of prostaglandin to the myoblasts. The results demonstrate that this binding precedes any direct cell-cell contact and suggest that it causes the subsequent change in myoblast cell-cell adhesion.  相似文献   

13.
A rabbit polyclonal antiserum was raised against membrane vesicles shed from the surface of fusing L6 rat myoblasts. In immunoblots the antiserum recognized fibronectin, a protein of approximately 100,000 Da (100-kDa), and a protein of approximately 60,000 Da (60 kDa). If added prior to cellular alignment, immunoglobulins from this serum inhibited fusion of both rat (L6) and mouse (C2) myoblasts in a dose-dependent fashion. To determine which component of this serum was responsible for fusion inhibition, antibodies against fibronectin, the 100- and 60-kDa proteins were microaffinity purified and tested, individually, for their effects on myoblast fusion. Antibodies against fibronectin had no effect on fusion. Antibodies against the 100-kDa protein released most cells from the substratum. Antibodies against the 60-kDa protein completely inhibited fusion. Fusion inhibition was accompanied by a corresponding inhibition of expression of two differentiation markers, creatine phosphokinase and the acetylcholine receptor. The 60-kDa protein was found, by immunoblot analysis, in smooth muscle-like cells (BC3H1 cells) and in variant L6 cells that do not differentiate and do not fuse. However, in the differentiation incompetent cells, the 60-kDa antigen appeared to be present in reduced amount. Indirect immunofluorescence of unpermeabilized L6 cells revealed alterations in the distribution of all three antigens during development. Fibronectin first appeared in long fibrillar arrays above the surface of cells that were beginning to align and fuse; fibronectin was not present on myotubes. The 100-kDa protein was seen initially in prominent fibrillar projections at the tips of prefusion myoblasts. During fusion the antigen was observed at sites of cell-cell contact and on extracellular vesicles. The 100-kDa protein appeared to be less abundant on myotubes. The 60-kDa protein first appeared in regions of cell-cell contact on cells that were beginning to align and fuse. As. fusion progressed, the 60-kDa protein was also found in extracellular vesicles. The 60-kDa protein was not observed on myotubes. As a result of this study we have identified two previously undescribed cell surface proteins involved in rodent skeletal myogenesis. The first is an approximately 100-kDa protein involved in early interactions of skeletal myoblasts with their substratum. The second is an approximately 60-kDa protein involved in myoblast differentiation. Both proteins are shed from the myoblast surface during myotube formation.  相似文献   

14.
Rat myoblast nuclei were labeled with various concentrations of bromodeoxyuridine (BrdU), an analogue of thymidine, for 24 or 48 hr. Almost every myoblast was labeled with BrdU at concentrations between 10(-7) M and 10(-5) M. When the cells were labeled with 0.5 microM or more, the percentage of labeled cells remained over 90% and 80% at 2 and 5 days, respectively. However, when the cells were labeled with BrdU concentration lower than 10(-7) M the percentage of labeled nuclei decreased more rapidly with time. The BrdU-labeled cells were mixed with an unlabeled population to determine whether their capacity to fuse was reduced. At a BrdU concentration of 0.5 x 10(-6) M, labeled myoblasts fused to a similar extent as unlabeled myoblasts, and a high percentage of marked cells were still perceptively labeled after 5 days. In contrast, the fusion capacity of myoblasts incubated with more than 10(-6) M BrdU was inhibited after only few rounds of DNA synthesis. These myoblasts were eventually able to fuse, however, when the BrdU diminished in the DNA due to cell division. These results indicate that labeling with BrdU at a concentration of 0.5 x 10(-6) M and an incorporation time of 48 hr is optimal to obtain perceptible immunocytochemical staining without affecting myoblast fusion. Such BrdU immunolabeling could be used as a nuclear marker for hybridization studies.  相似文献   

15.
Three members of the family of protease-activated receptors (PARs), PARs-1, -3 and -4, have been identified as thrombin receptors. PAR-1 is expressed by primary myoblast cultures, and expression is repressed once myoblasts fuse to form myotubes. The current study was undertaken to investigate the hypothesis that thrombin inhibits myoblast fusion. Primary rodent myoblast cultures were deprived of serum to promote myoblast fusion and then cultured in the presence or absence of thrombin. Thrombin inhibited myoblast fusion, but another notable effect was observed; 50% of control cells were apoptotic within 24 h of serum deprivation, whereas less than 15% of thrombin-treated cells showed signs of apoptosis. Proteolysis was required for the effect of thrombin, but no other serine protease tested mimicked the action of thrombin. Neither a PAR-1- nor a PAR-4-activating peptide inhibited apoptosis or fusion, and myoblast cultures were negative for PAR-3 expression. Myoblasts exposed to thrombin for 1 h and then changed to medium without thrombin accumulated apoptosis inhibitory activity in their medium over the subsequent 20 h. Thus the protective action of thrombin appears to be effected through cleavage of an unidentified thrombin receptor, leading to secretion of a downstream apoptosis inhibitory factor. These results demonstrate that thrombin functions as a survival factor for myoblasts and is likely to play an important role in muscle development and repair.  相似文献   

16.
When trifluoperazine (TFP), a calmodulin antagonist, was given to chick or rat myoblasts in cultures, formation of multinucleated myotubes was inhibited. The inhibition of cell fusion by TFP in rat cultures prevents the normal increase in the amount of acetylcholine receptors (AChR) and creatine kinase (CK), while the levels of these proteins in chick muscle cultures are hardly affected. Another calmodulin antagonist, compound 48/80, inhibits fusion at doses that correspond closely to its antagonistic effects on calmodulin. Thus, our results suggest a possible role for calmodulin in the regulation of myoblast fusion, but not on the appearance of muscle proteins.  相似文献   

17.
The fusion of myoblasts to myotubes requires an endogenous soluble metalloendoprotease. To determine whether this protease is released by fusing myoblasts, or stays within the cell, we examined the effects of membrane-impermeant and a membrane-permeant metalloendoprotease inhibitors. Membrane-permeant 1,10-phenanthroline, and membrane-impermeant bathophenanthroline disulfonic acid both inhibited soluble metalloendoprotease activity in homogenized myoblasts with equal potency. However, while 1,10-phenanthroline inhibited fusion, bathophenanthroline disulfonic acid had no effect. In addition, metalloendoprotease activity could not be detected in the media of fusing myoblasts, but was in the cells. These observations support the conclusion that the soluble metalloendoprotease required in fusion remains within the myoblast.  相似文献   

18.
Soluble extracts of embryonic chick pectoral muscle and myoblast clone L6 agglutinated trypsin treated glutaraldehyde fixed rabbit erythrocytes. Agglutination activity was blocked by thiodigalactoside, lactose and related saccharides but not by many other saccharides. Agglutination activity of chick pectoral muscle extracts increased at least one order of magnitude between 8 and 16 days of chick embryo development, as the pectoral muscle differentiated. With L6 myoblasts there was a three-fold increase in activity of the extracts as the myoblasts fused to form multinucleated myotubes.  相似文献   

19.
The effects of defined acyl chain, unilamellar phosphatidylcholine vesicles on the development of cultured embryonic chick muscle was studied. An inhibition of myoblast fusion was observed when vesicles were incubated with cells below the vesicle gel-liquid crystalline phase transition temperature (Tc). This inhibition could be at least partially reversed by culturing the vesicletreated cells above the Tc of vesicles. Evidence supporting adhesion as the mechanism of vesiclecell interaction mediating inhibition of myoblast fusion was derived from scanning electron microscopy (SEM) which demonstrated the presence of vesicle-like particles on the cell membrane under conditions in which myoblast fusion was inhibited. Pretrypsinization of myoblasts before their incubation with vesicles prevented this fusion inhibition, suggesting that vesicles may interact with cell membrane proteins which are involved in the myoblast fusion and/or recognition process.  相似文献   

20.
Ruiz-Gómez M  Coutts N  Price A  Taylor MV  Bate M 《Cell》2000,102(2):189-198
Aggregation and fusion of myoblasts to form myotubes is essential for myogenesis in many organisms. In Drosophila the formation of syncytial myotubes is seeded by founder myoblasts. Founders fuse with clusters of fusion-competent myoblasts. Here we identify the gene dumbfounded (duf) and show that it is required for myoblast aggregation and fusion. duf encodes a member of the immunoglobulin superfamily of proteins that is an attractant for fusion-competent myoblasts. It is expressed by founder cells and serves to attract clusters of myoblasts from which myotubes form by fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号