首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The occurrence of an optimal ionic strength for the steady-state activity of isolated cytochrome aa3 can be attributed to two opposite effects: upon lowering of the ionic strength the affinity between cytochrome c and cytochrome aa3 increases, whereas in the lower ionic strength region the formation of a less active cytochrome c-aa3 complex limits the ferrocytochrome c association to the low affinity site.2. At low ionic strength, the reduction of cytochrome c-aa3 complex by ferrocytochrome c1 proceeds via non-complex-bound cytochrome c. Under these conditions the positively charged cytochrome c provides the electron transfer between the negatively charged cytochromes c1 and aa3.3. Polylysine is found to stimulate the release of tightly bound cytochrome c from the cytochrome c-aa3 complex. This property points to the existence of negative cooperativity between the two binding sites. We suggest that the stimulation is not restricted to polylysine, but also occurs with cytochrome c.4. Dissociation rates of both high and low affinity sites on cytochrome aa3 were determined indirectly. The dissociation constants, calculated on the basis of pre-steady-state reaction rates at an ionic strength of 8.8 mM, were estimated to be 0.6 nM and 20 μM for the high and low affinity site, respectively.  相似文献   

2.
(1) Using the pulse-radiolysis and stopped-flow techniques, the reactions of iron-free (porphyrin) cytochrome c and native cytochrome c with cytochrome aa3 were investigated. The porphyrin cytochrome c anion radical (generated by reduction of porphyrin cytochrome c by the hydrated electron) can transfer its electron to cytochrome aa3. The bimolecular rate constant for this reaction is 2·107 M?1·s?1 (5 mM potassium phosphate, 0.5% Tween 20, pH 7.0, 20°C). (2) The ionic strength dependence of the cytochrome c-cytochromeaa3 interaction was measured in the ionic strength range between 40 and 120 mM. At ionic strengths below 30 mM, a cytochrome c-cytochrome aa3 complex is formed in which cytochrome c is no longer reducible by the hydrated electron. A method is described by which the contributions of electrostatic forces to the reaction rate can be determined. (3) Using the stopped-flow technique, the effect of the dielectric constant (?) of the reaction medium on the reaction of cytochrome c with cytochrome aa3 was investigated. With increasing ? the second-order rate constant decreased.  相似文献   

3.
1. Using stopped-flow technique we have investigated the electron transfer form cytochrome c to cytochrome aa3 and to the (porphyrin) cytochrome c-cytochromeaa3 complex.2. In a low ionic strength medium, the pre-steady state reaction occurs in a biphasic way with rate constants of at least 2 · 108 M?1 · s?1 and about 107 M?1 · s?1 (I = 8.8 mM, pH 7.0, 10° C), respectively.3. A comparison of the rate constants, determined in the presence of an excess of cytochrome c with those found in the presence of an excess of cytochrome aa3 reveals the existence of two slower reacting sites on the functional unit (2 hemes and 2 coppers) of cytochrome aa3. On basis of these results we discuss various models. If no site-site interactions are assumed (non-cooperative model) cytochrome aa3 has 2 high and 2 low affinity sites available for the reaction with ferrocytochrome c. If negative cooperativity occurs, cytochrome aa3 has 2 high affinity sites which change into 2 low affinity sites upon binding of one cytochrome c molecule. The latter model is favoured.  相似文献   

4.
The kinetics of electron transfer between the isolated enzymes of cytochrome c1 and cytochrome c have been investigated using the stopped-flow technique. The reaction between ferrocytochrome c1 and ferricytochrome c is fast; the second-order rate constant (k1) is 3.0 · 107 M?1 · s?1 at low ionic strength (I = 223 mM, 10°C). The value of this rate constant decreases to 1.8 · 105 M?1 · s?1 upon increasing the ionic strength to 1.13 M. The ionic strength dependence of the electron transfer between cytochrome c1 and cytochrome c implies the involvement of electrostatic interactions in the reaction between both cytochromes. In addition to a general influence of ionic strength, specific anion effects are found for phosphate, chloride and morpholinosulphonate. These anions appear to inhibit the reaction between cytochrome c1 and cytochrome c by binding of these anions to the cytochrome c molecule. Such a phenomenon is not observed for cacodylate. At an ionic strength of 1.02 M, the second-order rate constants for the reaction between ferrocytochrome c1 and ferricytochrome c and the reverse reaction are k1 = 2.4 · 105 M?1 · s?1 and k?1 = 3.3 · 105 M?1 · s?1, respectively (450 mM potassium phosphate, pH 7.0, 1% Tween 20, 10°C). The ‘equilibrium’ constant calculated from the rate constants (0.73) is equal to the constant determined from equilibrium studies. Moreover, it is shown that at this ionic strength, the concentrations of intermediary complexes are very low and that the value of the equilibrium constant is independent of ionic strength. These data can be fitted into the following simple reaction scheme: cytochrome c2+1 + cytochrome c3+ai cytochrome c3+1 + cytochrome c2+.  相似文献   

5.
Oxidation of ferrocytochrome c by molecular oxygen catalysed by cytochrome c oxidase (cytochrome aa3) is coupled to translocation of H+ ions across the mitochondrial membrane. The proton pump is an intrinsic property of the cytochrome c oxidase complex as revealed by studies with phospholipid vesicles inlayed with the purified enzyme. As the conformation of cytochrome aa3 is specifically sensitive to the electrochemical proton gradient across the mitochondrial membrane, it is likely that redox energy is primarily conserved as a conformational “strain” in the cytochrome aa3 complex, followed by relaxation linked to proton translocation. Similar principles of energy conservation and transduction may apply on other respiratory chain complexes and on mitochondrial ATP synthase.  相似文献   

6.
J. Wilms  J. Lub  R. Wever 《BBA》1980,589(2):324-335
1. The steady-state oxidation of ferrocytochrome c by dioxygen catalyzed by cytochrome c oxidase, is inhibited non-competitively towards cytochrome c by methanethiol, ethanethiol, 1-propanethiol and 1-butanethiol with Ki values of 4.5, 91, 200 and 330 μM, respectively.2. The inhibition constant Ki of ethanethiol is found to be constant between pH 5 and 8, which suggests that only the neutral form of the thiol inhibits the enzyme.3. The absorption spectrum of oxidized cytochrome c oxidase in the Soret region shows rapid absorbance changes upon addition of ethanethiol to the enzyme. This process is followed by a very slow reduction of the enzyme. The fast reaction, which represents a binding reaction of ethanethiol to cytochrome c oxidase, has a k1 of 33 M?1 · s?1 and dissociation constant Kd of 3.9 mM.4. Ethanethiol induces fast spectral changes in the absorption spectrum of cytochrome c, which are followed by a very slow reduction of the heme. The rate constant for the fast ethanethiol reaction representing a bimolecular binding step is 50 M?1 · s?1 and the dissociation constant is about 2 mM. Addition of up to 25 mM ethanethiol to ferrocytochrome c does not cause spectral changes.5. EPR (electron paramagnetic resonance) spectra of cytochrome c oxidase, incubated with methanethiol or ethanethiol in the presence of cytochrome c and ascorbate, show the formation of low-spin cytochrome a3-mercaptide compounds with g values of 2.39, 2.23, 1.93 and of 2.43, 2.24, 1.91, respectively.  相似文献   

7.
The EPR signals of oxidized and partially reduced cytochrome oxidase have been studied at pH 6.4, 7.4, and 8.4. Isolated cytochrome oxidase in both non-ionic detergent solution and in phospholipid vesicles has been used in reductive titrations with ferrocytochrome c.The g values of the low- and high-field parts of the low-spin heme signal in oxidized cytochrome oxidase are shown to be pH dependent. In reductive titrations, low-spin heme signals at g 2.6 as well as rhombic and nearly axial high-spin heme signals are found at pH 8.4, while the only heme signals appearing at pH 6.4 are two nearly axial g 6 signals. This pH dependence is shifted in the vesicles.The g 2.6 signals formed in titrations with ferrocytochrome c at pH 8.4 correspond maximally to 0.25–0.35 heme per functional unit (aa3) of cytochrome oxidase in detergent solution and to 0.22 heme in vesicle oxidase. The total amount of high-spin heme signals at g 6 found in partially reduced enzyme is 0.45–0.6 at pH 6.4 and 0.1–0.2 at pH 8.4. In titrations of cytochrome oxidase in detergent solution the g 1.45 and g 2 signals disappear with fewer equivalents of ferrocytochrome c added at pH 8.4 compared to pH 6.4.The results indicate that the environment of the hemes varies with the pH. One change is interpreted as cytochrome a3 being converted from a high-spin to a low-spin form when the pH is increased. Possibly this transition is related to a change of a liganded H2O to OH? with a concomitant decrease of the redox potential. Oxidase in phosphatidylcholine vesicles is found to behave as if it experiences a pH, one unit lower than that of the medium.  相似文献   

8.
S.P.J. Brooks  P. Nicholls 《BBA》1982,680(1):33-43
Citrate and other polyanion binding to ferricytochrome c partially blocks reduction by ascorbate, but at constant ionic strength the citrate-cytochrome c complex remains reducible; reduction by TMPD is unaffected. At a constant high ionic strength citrate inhibits the cytochrome c oxidase reaction competitively with respect to cytochrome c, indicating that ferrocytochrome c also binds citrate, and that the citrateferrocytochrome c complex is rejected by the binding site at high ionic strength. At lower ionic strengths, citrate and other polyanions change the kinetic pattern of ferrocytochrome c oxidation from first-order towards zero-order, indicating preferential binding of the ferric species, followed by its exclusion from the binding site. The turnover at low cytochrome c concentrations is diminished by citrate but not the Km (apparent non-competitive inhibition) or the rate of cytochrome a reduction by bound cytochrome c. Small effects of anions are seen in direct measurements of binding to the primary site on the enzyme, and larger effects upon secondary site binding. It is concluded that anion-cytochrome c complexes may be catalytically competent but that the redox potentials and/or intramolecular behaviour of such complexes may be affected when enzyme-bound. Increasing ionic strength diminishes cytochrome c binding not only by decreasing the ‘association’ rate but also by increasing the ‘dissociation’ rate for bound cytochrome c converting the ‘primary’ (T) site at high salt concentrations into a site similar kinetically to the ‘secondary’ (L) site at low ionic strength. A finite Km of 170 μM at very high ionic strength indicates a ratio of KMK0M of about 5000. It is proposed that anions either modify the E10 of cytochrome c bound at the primary (T) site or that they perturb an equilibrium between two forms of bound c in favour of a less active form.  相似文献   

9.
10.
《BBA》1987,893(2):251-258
(1) Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate of purified cytochrome c oxidase preparations revealed that bovine kidney, skeletal muscle and heart contain different cytochrome c oxidase isoenzymes, which show differences in mobility of the subunits encoded by the nuclear genome. No differences in subunit pattern were observed between the oxidase preparations isolated from kidney and liver. (2) The kinetics of the steady-state reactions between bovine ferrocytochrome c and the four types of bovine cytochrome c oxidase preparation were compared under conditions of both high- and low-ionic strength. Also the pre-steady-state kinetics were studied. Only minor differences were observed in the electron-transfer activity of the isoenzymes. Thus, our experiments do not support the notion that the subunits encoded by the nuclear genome act as modulators conferring different activities to the isoenzymes of cytochrome c oxidase. (3) The cytochrome c oxidase preparation from bovine skeletal muscle was found to consist mainly of dimers, whereas the enzymes isolated from bovine kidney, liver and heart were monomeric.  相似文献   

11.
Horse heart ferrocytochrome c was oxidized by injection of ferrihexacyanide and the amount of protons released was measured quantitatively over the pH range 7–11, leading to the two electron-transfer-linked pKH's of 9.1 and 10.4. The kinetic result that the proton changes took place more rapidly than the changes in the 695-mμ absorption band for both types of rapid pH changes on oxidized cytochrome c (pH 7 → 10 and pH 10 → 7) led to the proposal of a cyclic reaction scheme. Involved protonreleasing amino acid residues are discussed.  相似文献   

12.
Isolated cytochrome c1 contains endogenous reducing equivalents. They can be removed by treating the protein with sodium dithionite followed by chromatography. This treatment has no effect on the reaction with cytochrome c, nor does it alter the optical spectrum, or the polypeptide or amino acid composition of the protein. Both the titration of dithionite-treated ferrocytochrome c1 with potassium ferricyanide and the anaerobic titration of dithionite-treated ferricytochrome c1 with NADH in the presence of phenazine methosulphate lead to the same value for the absorbance coefficient of cytochrome c1 : 19.2 mM?1 · cm?1 at 552.4 nm for the reduced-minus-oxidised form. This value was also obtained when the haem content was determined by comparing the spectra of the reduced pyridine haemochromes of cytochrome c and cytochrome c1. Comparison of the optical spectra of cytochrome c and cytochrome c1 by integration shows equal transition moments for the transitions in the porphyrin systems of both proteins. A set of equations is presented with which the concentration of the cytochromes aa3, b, c and c1 can be calculated from one reduced-minus-oxidised difference spectrum of a mixture of these proteins.  相似文献   

13.
James A. Mccray  Toru Kihara 《BBA》1979,548(2):417-426
The oxidation of reduced cytochrome c by ferricyanide has been studied over a wide range of ferricyanide concentrations using a continuous-flow apparatus. The formation of a ferrocytochrome c-ferricyanide complex has been demonstrated and the binding and electron transfer processes separated to give both the oxidation electron transfer rate and the binding rate parameters. The electron transfer rate has been found to be 1.86 · 103 s?1 in H2O buffer and 1.36 · 103 s?1 in 2H2O demonstrating that a deuterium isotope effect of similar magnitude (R = 1.37) to that found in the cytochrome reactions in photosynthetic bacteria [18] is also found in the reaction studied here. The binding association rate parameters also show a similar deuterium isotope effect suggesting that water rotation may be involved in both the binding of ferricyanide to reduced cytochrome c and the subsequent oxidation electron transfer.  相似文献   

14.
The kinetic properties of a 1:1 covalent complex between horse-heart cytochrome c and yeast cytochrome c peroxidase (ferrocytochrome-c:hydrogen-peroxide oxidoreductase, EC 1.11.1.5) have been investigated by transient-state and steady-state kinetic techniques. Evidence for heterogeneity in the complex is presented. About 50% of the complex reacts with hydrogen peroxide with a rate 20–40% faster than that of native enzyme; 20% of the complex exists in a conformation which does not react with hydrogen peroxide but converts to the reactive form at a rate of 20 ± 5 s−1; 30% of the complex does not react with hydrogen peroxide to form the oxidized enzyme intermediate, cytochrome c peroxidase Compound I. Intramolecular electron transfer between covalently bound ferrocytochrome c and an oxidized site in cytochrome c peroxidase Compound I is too fast to measure, but a lower limit of 600 s−1 can be estimated at 5°C in a 10 mM potassium phosphate buffer at pH 7.5. Free ferrocytochrome c reduces cytochrome c peroxidase Compound I covalently bound to ferricytochrome c at a rate 10−4 to 10−5-times slower than for free Compound I. The transient-state ferrocytochrome c reduction rates of Compound I covalently linked to ferricytochrome c are about 70-times too slow to account for the steady-state catalytic properties of the 1:! covalent complex. This indicates that hydrogen peroxide can interact with the 1:1 complex at sites other than the heme of cytochrome c peroxidase, generating additional species capable of oxidizing free ferrocytochrome c.  相似文献   

15.
β-Lactoglobulin forms a soluble complex with cytochrome c in mildly alkaline solutions of low ionic strength. Sedimentation velocity experiments suggest that the complex (maximum s20 = 3.7) consists of one cytochrome c molecule per β-lactoglobulin monomer unit. At pH 8 or higher, the presence of β-lactoglobulin causes reduction of ferri- to ferrocytochrome c. The initial rate of reduction at a single temperature depends primarily on the concentration of β-lactoglobulin, although the final percentage ferrocytochrome c obtained is constant at molar ratios of three or more β-lactoglobulin monomers to one cytochrome c molecule. The temperature dependence of the initial rate of iron reduction resembles that for alkaline denaturation of β-lactoglobulin. The displacement of N-dansylaziridine, a sulfhydryl specific dye, from bovine β-lactoglobulin during iron reduction, and the formation of nonreducing complexes between the analogous swine protein (no sulfhydryls) and cytochrome c suggest that the sulfhydryl group of β-lactoglobulin is the electron donor.  相似文献   

16.
17.
18.
Allantoin in the presence of calcium ions has been implicated as a potential toxic agent in Reye's syndrome. An investigation of possible alternative sources of allantoin in humans, which lack the enzyme uricase, has been initiated. Urate is a strong reducing agent which can reduce cytochrome c nonenzymatically, with the concomitant production of CO2 and H+. The stoichiometries measured for the various reactants and products were 1 urate:2 cytochrome c:1 H+:1 CO2. The initial reaction rate depended on the concentrations of both urate and cytochrome c, with reaction kinetics that were first order with respect to urate and second order with respect to cytochrome c. The participation of molecular oxygen in this reaction could not be detected. The pH and ionic strength optima for this reaction were determined to be 9.5–10.5 and 10−5m, respectively. Based on the results reported here, the following balanced equation can be written: urate−2 + 2 cytochrome c+3 + 2 H2O → allantoin + 2 cytochrome c+2 + H+ + HCO3. We propose that allantoin can be generated from the oxidation of urate by cytochrome c+3, and that this is a potential source of allantoin in human tissues.  相似文献   

19.
1. Cytochrome c3, a unique hemoprotein with a negative redox potential and four heme groups bound to a single polypeptide chain, reacts with imidazole in the reduced state to form a low-spin ferro · imidazole complex which is spectrally characterized by a 3.1 nm blue shift in the α-peak (from 550.5 to 547.4 nm). The spectral imidazole · cytochrome c3 complex is detectable at 77 but not at 298 K.2. Mammalian ferrocytochrome c did not undergo a spectral interaction with imidazole at either 77 or 298 K, indicating that the imidazole · cytochrome c3 complex reflects a unique event for cytochrome c3.3. Formation of the imidazole · cytochrome c3 complex is strongly dependent on imidazole concentration (apparent Kd of approx. 50 mM), and is abolished in the presence of 100 mM phosphate. This latter effect is attributable to formation of an imidazole · phosphate complex. A pH titration of the imidazole · cytochrome c3 spectral complex implicates ionization of an imidazole function (pK = 8.5).4. EPR studies at 8.5 K of ferricytochrome c3 before and after one reduction-oxidation cycle indicate that at least two of the hemes undergo reaction with imidazole forming two different low-spin ferric heme · imidazole complexes, with significant shifts in the g values of two heme signals.5. The spectral and EPR results are consistent with formation as the primary event of a low-spin ferrocytochrome c3 · imidazole complex in which increased hydrophobicity and protonation-deprotonation effects are contributary to the consequent lability of cytochrome c3.  相似文献   

20.
Ionic strength effects on cytochrome aa3 kinetics   总被引:2,自引:0,他引:2  
1. The occurrence of an optimal ionic strength for the steady-state activity of isolated cytochrome aa3 can be attributed to two opposite effects: upon lowering of the ionic strength the affinity between cytochrome c and cytochrome aa3 increases, whereas in the lower ionic strength region the formation of a less active cytochrome c-aa3 complex limits the ferrocytochrome c association to the low affinity site. 2. At low ionic strength, the reduction of cytochrome c-aa3 complex by ferrocytochrome c1 proceeds via non-complex-bound cytochrome c. Under these conditions the positively charged cytochrome c provides the electron transfer between the negatively charged cytochromes c1 and aa3. 3. Polylysine is found to stimulate the release of tightly bound cytochrome c from the cytochrome c-aa3 complex. This property points to the existence of negative cooperativity between the two binding sites. We suggest that the stimulation is not restricted to polylysine, but also occurs with cytochrome c. 4. Dissociation rates of both high and low affinity sites on cytochrome aa3 were determined indirectly. The dissociation constants, calculated on the basis of pre-steady-state reaction rates at an ionic strength of 8.8 mM, were estimated to be 0.6 nM and 20 microM for the high and low affinity site, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号