首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 650 毫秒
1.
The lipid dynamics of the adrenocortical microsomal membranes was studied by monitoring the fluorescence anisotropy and excited state lifetime of a set of anthroyloxy fatty acid probes (2-, 7-, 9- and 12-(9-anthroyloxy)-stearic acid (AP) and 16-(9-anthroyloxy)palmitic acid (AS). It was found that a decreasing polarity gradient from the aqueous membrane interface to the membrane interior, was present. This gradient was not modified by the proteins, as evidenced by comparison of complete membranes and derived liposomes, suggesting that the anthroyloxy probes were not in close contact with the proteins. An important change of the value of the mean rotational relaxation time as a function of the position of the anthroyl ring along the acyl chain was evidenced. In the complete membranes, a relatively more fluid medium was evidenced in the C16 as compared to the C2 region, while the rotational motion appeared to be the most hindered at the C7–C9 level. In the derived liposomes, a similar trend was observed but the mobility was higher at all levels. The decrease of the mean rotational relaxation time was more important for 12-AS and 16-AP. Temperature dependence of the mean rotational relaxation time of 2-AS, 12-AS and 16-AP in the complete membranes revealed the existence of a lipid reorganization occurring around 27°C and concerning mainly the C16 region. The extent to which the acyl chain reacted to this perturbation at the C12 level depended on pH. The presence of proteins increased the apparent magnitude of this reorganization and also modified the critical temperature from approx. 23°C in the derived liposomes to approx. 27°C in the complete membranes. Thermal dependence of the maximum velocity of the 3-oxosteroid Δ54-isomerase, the second enzyme in the enzymatic sequence, responsible for the biosynthesis of the 3-oxo4-steroids in the adrenal cortex microsomes, was studied. The activation energy of the catalyzed reaction was found to be low and constant (2–5 kcal · mol?1) in the temperature range 16–40°C at pH 7.5, 8.5 and 9, corresponding to the minimum, intermediate and maximum rate, respectively. A drastic increase of the activation energy (20 kcal · mol?1) was observed at temperature below 16°C at pH 7.5. A correlated change of the pKESapp as function of temperature was detected; at 36°C pKESapp = 8.3 while at 13°C the value shifted to 8.7. The pH range of the group ionization was narrower at 13°C. In contrast with the behaviour of the 3β-hydroxy5-steroid dehydrogenase, the 3-oxosteroid Δ54-isomerase was apparently unaffected by the lipid reorganization at 27°C. It is suggested that this enzyme possesses a different and more fluid lipid environment than the bulk lipids.  相似文献   

2.
3.
The distribution of a small lipid soluble molecule across a lipid bilayer has been determined using fluorescence quenching techniques. The neutral form of the amine, N,N-dimethylaniline (DMA) quenches the fluorescence of a series of n-(9-anthroyloxy) fatty acids (n = 2,6,9,12,16) which place a fluorophore at a graded series of positions from the surface to the centre of the lipid bilayer. A method is described for determining the partition coefficient of a quencher at each transverse position. The results show that DMA is located at all depths within the bilayer leaflet but that it is concentrated at the bilayer centre and to a lesser extent at the bilayer surface.  相似文献   

4.
Film studies at the air-water interface have been carried out for pure films of 2,2′-(vinylenedi-p-phenylene)bisbenzoxazole (VPBO), d-3-aminodesoxy-equlenin (EQ) and N-octadecylnapthyl-2-amino-6-sulfonic acid (ONS), and for mixed films with tetradecanoic acid for the first two fluorescent probes. Pure film isotherms indicate highly rigid non-monomolecular films for both VPBO and EQ, revealing the presence of strong intermolecular forces. In mixed films with tetradecanoic acid VPBO rapidly segregates with resultant film loss over a wide concentration range. EQ, however, can be stabilized by the host-lipid at low concentrations. This, coupled with an ability to only slightly affect the host-lipid liquid-condensed/liquid-expanded phase change, suggests that EQ can be regarded as “non-perturbing” and should be retained in condensed lipid phases.ONS, because of its unusual polar headgroup, resembled hexadecanoic acid more than octadecanoic acid. While difficulties in spreading ONS precluded the study of mixed films, the indications are that it would be a satisfactory expanded lipid state probe if mixing can be brought about.  相似文献   

5.
The fluorescence quenching of the n-(9-anthroyloxy) (AO) fatty acid probes has been investigated in aqueous dispersions, vesicles of egg phosphatidylcholine and vesicles formed from red cell ghosts. Negatively charged (KI), neutral (acrylamide) and positively charged (CuSO4) quenchers were used to monitor the location of the probes. The fluorescence of the probes, with the exception of the shortest chain (11-(9-anthroyloxy)undecanoic acid) is not quenched by acrylamide when associated with vesicles. This indicates that in association with vesicles, the 9-anthroyloxy moiety of the long chain probes is buried within the hydrocarbon region and thus well shielded from the aqueous phase. Measurements with KI indicate that the probes are present in the membrane at depths corresponding to the position of the 9-anthroyloxy moiety on the fatty acid, and that the quencher itself forms a concentration gradient within the membrane. Very little or no CuSO4 quenching was observed for n-(9-anthroyloxy)stearic acid probes (n-AS)with n > 2, suggesting that in these vesicles Cu2+ does not significantly penetrate the bilayer.  相似文献   

6.
Synthesis and physical properties of a new anthracene fatty acid, 9-(2-anthryl)nonanoic acid, and the corresponding anthracene-phosphatidylcholines which were obtained by condensing the acid with sn-1-palmitoyl-lysophosphatidylcholine (PAPC) and with egg lysophosphatidylcholine (EAPC) are described. Differential scanning calorimetry experiments show that these lipids can undergo a liquid-crystal to gel phase transition at temperatures of 15°C and 18°C for EAPC and PAPC, respectively. In monolayers, PAPC exhibits a compression curve nearly superimposable to that of dipalmitoylphosphatidylcholine (DPPC), with a molecular area of 0.48 nm2 at π = 30 mN m?1. The data indicate that in these lipids, the anthracene group is only slightly more bulky than a normal acyl chain and that it does not significantly affect the regular phospholipid molecular packing. In ethanol solutions or when incorporated into egg phosphatidylcholine liposomes in a molar ratio of 1%, these lipids display UV absorption spectra and fluorescence emission spectra similar to those of 2-methyl anthracene. For EAPC liposomes, a broad and structureless fluorescence emission spectrum centered at around 450 nm, was recorded, suggesting the occurrence of anthracene excimers. As ascertained by UV spectrophotometry, differential scanning calorimetry, fluorescence polarization and anthracene photodimerization experiments, EAPC displays good miscibility properties with lipids in the liquid state (egg phosphatidylcholine) or in the gel state (distearoylphosphatidylcholine (DSPC)). The potential of these anthracene derivatives for studying the dynamics and the topological distribution of lipids in biomembranes is discussed.  相似文献   

7.
8.
Dielectric measurements on lecithin/cholesterol bimolecular lipid membranes have indicated that the series of extrinsic fluorescent probe molecules, the n-(9-anthroyloxy) fatty acids, cause significant perturbation to the bilayer structure at concentrations equivalent to those used in fluorescence experiments (0.1 mol%). Perturbations were observed in the capacitance and conductance of the electrically distinct substructural regions of the bilayer that were consistent with the putative location of the probe molecules. Inclusion of stearic acid decreased the thickness of the hydrocarbon region of the membrane, presumably by expanding the average surface area per unit membrane mass, and also significantly disrupted the surface regions. The attachment of the anthroyloxy moiety to position 2 of a fatty acid accentuated both these effects. Attachment at position 12 had the reverse effect by increasing the volume of the hydrocarbon region without further disturbance of the surface organisation. The 9-positioned probe had an intermediate effect. The degree of perturbation by the 2-positioned probe was dependent on the probe concentration within the range (probe:lipid) 1:1000 to 1:10 000. The technique therefore detects perturbation of structure at probe levels which are lower than those commonly used in fluorescence-labelling experiments.  相似文献   

9.
An instrument that measures the temperature dependence of fluorescence polarisation and intensity directly and continuously is described. The behaviour of four fluorescent probes bound to a number of well characterised model systems was then examined. The motional properties of the probes were determined from the polarisation and intensity data and were found to be sensitive to the crystallineliquid crystalline phase transitions in phospholipid vesicles of dimyristoyl and dipalmitoyl phosphatidylcholine. Binary mixture of dilauroyl and dipalmitoyl phosphatidycholine show lateral phase separation and in this system the probes partition preferentially into the more ‘fluid’ phase. In systems that have been reported to contain ‘short range order’ or ‘liquid clustering’, such as dioleoyl phosphatidylcholine and liquid paraffin, the motion of the probes was found to have anomalous Arrhenius behaviour consistent with the idea that homogeneous phases were not being sampled. The significance of these findings for the interpretation of the behaviour of fluorescent probes bound to natural membranes is discussed.  相似文献   

10.
Dynamic quenching of fluorophores and quenchers in lipid micelles and bilayers can yield information about the bimolecular rate constant for the quenching reaction, and hence information about the microviscosity of the fluorophore-quencher environment. When the fluorophore and quencher have relatively fixed transverse positions in the bilayer, the analysis of Sikaris et al. (Chem. Phys. Lipids. 29 (1981) 23) can be used to separate the microviscosity and proximity contributions to quenching. We now extend this method to show explicitly the effect of static quenching on the analysis. We show by simulation and experiment that a correction factor must be included when static quenching contributes to the observed quenching efficiency.  相似文献   

11.
EL4 cells were cultured with exogenous fatty acids under conditions that resulted in their incorporation into membrane phospholipids. The behavior of the fluorescent lipid probes diphenylhexatriene and perylene was monitored in intact EL4 cells and in isolated EL4 plasma membranes. In whole cells substituted with unsaturated fatty acids, there was always a marked decrease in the P value of both probes compared to the P value of the probes in unsubstituted cells. In whole cells substituted with saturated fatty acids, on the other hand, P values for both probes were unchanged compared to unsubstituted cells. In plasma membrane isolated from EL4 cells, no difference in P values for either probe was observed among membranes from unsubstituted, saturated fatty acid substituted or unsaturated fatty acid substituted cells, even when the degree of fatty acid substitution was quite substantial. Most of the fluorescent signal for both probes in whole cells appeared to come from cytoplasmic lipid droplets. The value of techniques such as fluorescent polarization for monitoring physical properties of membranes (such as ‘fluidity’) is discussed.  相似文献   

12.
Phloretin and phloretin-like dipolar non-electrolytes strongly quench the fluorescence of several membrane-bound probes, including 1,6-diphenylhexa-1,3,5-triene and anthroyl derivatives of long-chain fatty acids. Fluorescence intensity measurements therefore provide a simple and sensitive method to study the equilibrium binding properties and permeability of phloretin-like molecules in biological and artificial membrane systems. The dissociation constants for the binding of phloretin and naringenin to phosphatidylcholine vesicle membranes are determined, assuming the Stern-Volmer relation, from the fluorescence intensity of intramembrane probes as a function of phloretin and naringenin concentrations. Results (phloretin, 9 ± 1 μM; naringenin, 21 ± 4 μM) agree with the dissociation constants obtained using absorption titration performed in the absence of fluorescent probes. Fluorescence nanosecond lifetime measurements show that the mechanism of quenching of diphenylhexatriene and 16-anthroylpalmitic acid by phloretin and naringenin is largely diffusional in nature. The transmembrane movement of phloretin through phosphatidylcholine vesicles was observed by the stopped-flow technique, in which phloretin is mixed rapidly with a vesicle solution containing a membrane-bound fluorescent probe. The time course obtained by fluorescence measurements was identical to that obtained in a parallel measurement of the time course of optical absorption of phloretin. Stopped-flow data for the permeability of phosphatidylcholine liposomes and red blood cell membranes are also presented. The use of a membrane-bound indicator greatly extends the range of concentrations and pH values as well as the types of systems which can be characterized by optical means.  相似文献   

13.
The influence of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and several other pesticides on the physical state of membrane phospholipids was investigated using model lipids. The thermal dependence of fluorescence intensity of the probe parinaric acid in dipalmitoylphosphatidylcholine liposomes and lipid vesicles of mixed composition were recorded. DDT was incorporated into the liposomal bilayer. The insecticide lowered the phase transition temperature and broadened the temperature range of the transition. The effects were concentration-dependent.The results may be interpreted as a sort of blurred and facilitated phase transition of bilayer lipids caused by intercalation of DDT between fatty acyl chains of membrane phospholipids.  相似文献   

14.
Pyrene lecithin, a new excimer-forming lipid molecule, has been synthesized to examine the transversal mobility of probe molecules in lecithin bilayer vesicles. The rate of the lipid exchange is obtained by following the excimer yield as a function of time after mixing of fluorescence doped and undoped vesicles. A rapid exchange (τ12 = 11 s) is followed by a slow transfer (t12 = 8 h). Above the lipid phase transition the fast transfer can be attributed to an exchange of lipid molecules from the outer layer of one vesicle to the outer layer of another one. The slow exchange is interpreted in terms of the ‘flip-flop’ process between the two layers of a single bilayer vesicle.Using pyrene and pyrene decanoic acid as probe molecules only the fast transfer through the water phase is observed (τ12 = 4 s for pyrene and τ12 = 7 s for pyrene decanoic acid). This indicates that molecules like fatty acids or apolar membrane constituents must equilibrate very rapidly in a single bilayer vesicle.The water solubility or the critical micelle concentration of the probe molecules is determined and related to the transfer rates. An exchange process through the water phase via a monomeric state can be excluded.  相似文献   

15.
The characteristics of small unilamellar, large unilamellar and large multilamellar vesicles of dimyristoylphosphatidylcholine and their interaction with α-lactalbumin are compared at pH 4. (1) By differential scanning calorimetry and from steady-state fluorescence anisotropy data of the lipophilic probe 1,6-diphenyl-1,3,5-hexatriene it is shown that the transition characteristics of the phospholipids in the large unilamellar vesicles resemble more those of the multilamellar vesicles than of the small unilamellar vesicles. (2) The size and composition of the lipid-protein complex formed with α-lactalbumin around the transition temperature of the lipid are independent of the vesicle type used. Fluorescence anisotropy data indicate that in this complex the motions of the lipid molecules are strongly restricted in the presence of α-lactalbumin. (3) The previous data and a comparison of the enthalpy changes, ΔH, of the interaction of the three vesicle types with α-lactalbumin allow us to derive that the enthalpy state of the small unilamellar vesicles just below 24°C is about 24 kJ/mol lipid higher than the enthalpy state of both large vesicle types at the same temperature. The abrupt transition from endothermic to exothermic ΔH values around 24°C for large vesicles approximates the transition enthalpy of the pure phospholipid  相似文献   

16.
In order to investigate the role of the plasma membrane in determining the kinetics of removal of cholesterol from cells, the efflux of [3H]cholesterol from intact cells and plasma membrane vesicles has been compared. The release of cholesterol from cultures of Fu5AH rat hepatoma and WIRL-3C rat liver cells to complexes of egg phosphatidylcholine (1 mg / ml) and human high-density apolipoprotein is first order with respect to concentration of cholesterol in the cells, with half-times (t12) for at least one-third of the cell cholesterol of 3.2 ± 0.6 and 14.3 ± 1.5 h, respectively. Plasma membrane vesicles (0.5–5.0 μm diameter) were produced from both cell lines by incubating the cells with 50 mM formaldehyde and 2 mM dithiothreitol for 90 min. The efflux of cholesterol from the isolated vesicles follows the same kinetics as the intact, parent cells: the t12 values for plasma membrane vesicles of Fu5AH and WIRL cells are 3.9 ± 0.5 and 11.2 ± 0.7 h, respectively. These t12 values reflect the rate-limiting step in the cholesterol efflux process, which is the desorption of cholesterol molecules from the plasma membrane into the extracellular aqueous phase. The fact that intact cells and isolated plasma membranes release cholesterol at the same rate indicates that variations in the plasma membrane structure account for differences in the kinetics of cholesterol release from different cell types. In order to investigate the role of plasma membrane lipids, the kinetics of cholesterol desorption from small unilamellar vesicles prepared from the total lipid isolated from plasma membrane vesicles of Fu5AH and WIRL cells were measured. Half-times of cholesterol release from plasma membrane lipid vesicles of Fu5AH and WIRL cells were the same, with values of 3.1 ± 0.1 and 2.9 ± 0.2 h, respectively. Since bilayers formed from isolated plasma membrane lipids do not reproduce the kinetics of cholesterol efflux observed with the intact plasma membranes, it is likely that the local domain structure, as influenced by membrane proteins, is responsible for the differences in t12 values for cholesterol efflux from these cell lines.  相似文献   

17.
Studies of the influence of fatty acids, which were the component of intestinal mucosal lipids, on the permeability of several drugs across bilayer lipid membranes generated from egg phosphatidylcholine and intestinal lipid have been pursued. The permeability coefficients of p-aminobenzoic acid, salicylic acid and p-aminosalicylic acid (anionic-charged drug) increased when fatty acids such as lauric, stearic, oleic, linoleic and linolenic acid were incorporated into the bilayer lipid membranes generated from phosphatidylcholine. In the presence of methyl linoleate and oleyl alcohol, no enhancing effect on p-aminobenzoic acid transfer was obtained. The effect of fatty acids was more marked at pH 6.5 than at pH 4.5. In contrast, upon the addition of fatty acids to intestinal lipid membranes which originally contained fatty acids, the permeability coefficient of p-aminobenzoic acid tended to decrease, though the permeability through intestinal lipid membranes was larger than that of phosphatidylcholine membranes. The permeability of p-aminobenzoic acid across bilayer lipid membranes from intestinal phospholipids was significantly decreased to about equal that of phosphatidylcholine membranes, and reverted to the value of intestinal lipid membranes when fatty acids were added to intestinal phospholipids. It seemed reasonable to assume that free fatty acids in the intestinal neutral lipid fraction could contribute to the increase in the permeability of p-aminobenzoic acid. On the basis of above results, possible mechanisms for good absorbability of weakly acidic drugs from the intestine are discussed.  相似文献   

18.
We present a method by which it is possible to describe the binding of fatty acids to phospholipid bilayers. Binding constants for oleic acid and a number of fatty acids used as spectroscopic probes are deduced from electrophoresis measurements. There is a large shift in pK value for the fatty acids on binding to the phospholipid bilayers, consistent with stronger binding of the uncharged form of the fatty acid. For dansylundecanoic acid, fluorescence titrations are consistent with the binding constants derived from the electrophoresis experiments. For 12-(9-anthroyloxy)stearic acid, fluorescence and electrophoresis data are inconsistent, and we attribute this to quenching of fluorescence at high molar ratios of 12-anthroylstearic acid to phospholipid in the bilayer.  相似文献   

19.
20.
Insulin increased the lipid order of rat and mouse liver plasma membrane domains sampled by the hydrophobic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene in a concentration-dependent saturable manner. The ordering is half maximal at 5.1 · 10?11M and fully saturated at 1.7 · 10?10M insulin. Membranes prepared from obese hyperglycemic (ob / ob) mice demonstrated a right-shift in the dose-dependent ordering induced by insulin, such that ordering was half maximal at 1.2 · 10?10M and fully saturated at 2.0 · 10?10M. Insulin also increased the order of rat liver plasma membranes labeled with the cis- and trans-parinaric acid methyl esters. The ordering caused by insulin as detected with cis methyl parinarate was complete within approx. 15 min. after hormone addition at 37°C, and the ordering was approximately double that observed with the trans isomer. Additional ESR experiments demonstrated that the addition of insulin increased the outer hyperfine splittings of spectra recorded from membranes labeled with the steroid-like spin labels, nitroxide cholestane and nitroxide androstane, but not the fatty acid spin probe, 5-nitroxide stearate. Studies utilizing model membrane systems strongly suggest that the 5-nitroxide stearate samples a cholesterol-poor domain of the membrane, while the steroid-like probes preferentially sample cholesterol-rich regions of the membrane. Finally, insulin-induced membrane ordering was dose-dependently inhibited by cytochalasin B in the range 1–50 μM. From these results, we conclude that (1) the ordering effect of insulin addition to isolated liver plasma membrane fractions occurs within the physiological range of hormone concentration, and the dose-response is right-shifted in membranes from ‘insulin resistant’ animals; (2) the relative responses of the fluorescent and spin probes suggest that the effects of insulin are confined to specific domains within the membrane matrix; and (3) the direct effects of insulin on the membranes may involve protein components having cytochalasin B binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号