首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allysine is the most important precursor of physiologically essential cross-links formation in collagen and elastin and is formed by enzymatic oxidative deamination of lysine residues. Because it is a highly reactive aldehyde, many cross-linking amino acid residues may arise from its reaction with other allysine residues or lysine or even histidine residues. We purified and isolated an allysine bisphenol derivative, 1-amino-1-carboxy-5,5-bis-p-hydroxyphenylpentane (ACPP), from the reaction products of phenol and allysine residue of bovine ligamentum nuchae by acid hydrolysis in 6 M HCl. The structure of ACPP was verified by UV, fast atom bombardment-MS, 1H- and 13C-nuclear magnetic resonance spectroscopies. The optimal reaction condition for ACPP synthesis accompanied by hydrolysis of such proteins was investigated and an ion-paired high-performance liquid chromatographic method for determination of allysine as ACPP was also developed.  相似文献   

2.
Insoluble elastin from copper-deficient animals has an amino acid composition intermediate between mature elastin and salt-soluble elastin (a higher lysine content and correspondingly low number of cross-links relative to the normal protein) and is solubilized by successive treatment with trypsin and chymotrypsin at 4 and 37 degrees C. Small amounts of B3H4 (11 mg--2 g of elastin) reduced allysine, allysine aldol, dehydronorleucine, and dehydromerodesmosine in insoluble elastin from copper-deficient pig aorta. In contrast, desmosine and isodesmosine were reduced only when a large excess of reductant (400 mg borohydride) was included in the reaction mixture. Reduction studies indicated that lysinonorleucine and merodesmosine were present in their dehydro forms to a greater extent in copper-deficient pig elastin than in normal elastin. After reduction with borohydride approximately 35% of the reduced form of the insoluble elastin remained insoluble after digestion with trypsin and chymotrypsin. A peptide containing the aldehyde oxidation product of lysine (allysine) and demonstrating an enrichment in glutamic acid was purified from the reduced form of copper-deficient pig elastin and partially sequenced. Its sequence (Gly-Ala-Glu-allysine-(Glu)...) and amino acid composition suggest: (1) clustering of glutamic acid residues in the elastin molecule, and (2) that allysine residues are not restricted to the alanine-enriched sites described for other elastin cross-links. Insoluble elastin from copper-deficient animals promises to be a useful tool for elastin sequence studies.  相似文献   

3.
A new pentafunctional cross-linking amino acid, termed allodesmosine, was isolated from bovine ligamentum nuchae elastin. This compound was a very hygroscopic, white amorphous solid with a faint yellow tinge, soluble in aqueous solvents but not dry methanol; it was characterized by UV, FAB mass and NMR spectroscopy. The compound was shown by UV and 1H-NMR to have a pyridinium ring structure similar to desmosine. Mass spectral analysis indicated a parent compound with a mass of 655. We postulated that it arose by condensation of a reduced aldol condensation product of allysine, allysine and lysine.  相似文献   

4.
Oxidative mechanisms during nuclear sclerosis of the lens are poorly understood, in particular metal-catalyzed oxidation. The lysyl oxidation product adipic semialdehyde (allysine, ALL) and its oxidized end-product 2-aminoadipic acid (2-AAA) were determined as a function of age and presence of diabetes. Surprisingly, whereas both ALL and 2-AAA increased with age and strongly correlated with cataract grade and protein absorbance at 350 nm, only ALL formation but not 2-AAA was increased by diabetes. To clarify the mechanism of oxidation, rabbit lenses were treated with hyperbaric oxygen (HBO) for 48 h, and proteins were analyzed by gas and liquid chromatography mass spectrometry for ALL, 2-AAA, and multiple glycation products. Upon exposure to HBO, rabbit lenses were swollen, and nuclei were yellow. Protein-bound ALL increased 8-fold in the nuclear protein fractions versus controls. A dramatic increase in methyl-glyoxal hydroimidazolone and carboxyethyl-lysine but no increase of 2-AAA occurred, suggesting more drastic conditions are needed to oxidize ALL into 2-AAA. Indeed the latter formed only upon depletion of glutathione and was catalyzed by H2O2. Neither carboxymethyl-lysine nor glyoxal hydroimidazolone, two markers of glyco-/lipoxidation, nor markers of lenticular glycemia (fructose-lysine, glucospane) were elevated by HBO, excluding significant lipid peroxidation and glucose involvement. The findings strongly implicate dicarbonyl/metal catalyzed oxidation of lysine to allysine, whereby low GSH combined with ascorbate-derived H2O2 likely contributes toward 2-AAA formation, since virtually no 2-AAA formed in the presence of methylglyoxal instead of ascorbate. An important translational conclusion is that chelating agents might help delay nuclear sclerosis.  相似文献   

5.
1. Irradiation with 100 krad of gamma rays of neutral-salt-soluble rat skin collagen decreased the content of aldol cross-links by a factor of three, whereas it did not affect the content of allysine. 2. On reduction with tritiated sodium borohydride, five new components were detected showing different stability towards acid and alkali.  相似文献   

6.
Hydrophobic protein (H protein) was isolated from membrane fractions of Bacillus subtilis and constituted into artificial membrane vesicles with lipid of B. substilis. Glutamate was accumulated into the vesicle when a Na+ gradient across the membrane was imposed. The maximum effect of Na+ on the transport was achieved at a concentration of about 40 mM, while the apparent Km for Na+ was approximately 8 mM. On the other hand, Km for glutamate in the presence of 50 mM Na+ was about 8 μM. Increasing the concentration of Na+ resulted in a decrease in Km for glutamate, maximum velocity was not affected. The transport was sensitive to monensin (Na+ ionophore).Glutamate was also accumulated when pH gradient (interior alkaline) across the membrane was imposed or a membrane potential was induced with K+-diffusion potential. The pH gradient-driven glutamate transport was sensitive to carbonylcyanide m-chlorophenylhydrazone and the apparent Km for glutamate was approximately 25 μM.These results indicate that two kinds of glutamate transport system were present in H protein: one is Na+ dependent and the other is H+ dependent.  相似文献   

7.
Oxidative deamination of the epsilon-amino group of lysyl residues to form allysine is the initial reaction in the cross-linking of collagen and elastin in vertebrates. The allysyl residues, generated by lysyl oxidase in this reaction, condense with either other allysyl residues or epsilon-amino groups of lysyl or hydroxylysyl to form aldol or Schiff base cross-links. This paper presents evidence that similar allysyl residues and Schiff base cross-links are synthesized in cell envelopes of Escherichia coli. Acid hydrolysis followed by amino acid analysis of envelopes either reduced with NaB[3H]4 or labeled with [14C]lysine and reduced with NaBH4 yielded allysine and two labeled fragments with elution profiles and molecular weights (250 and 330) consistent with Schiff base products derived at least in part from allysine. When [6-3H]lysine-labeled cell envelopes were incubated at 37 degrees C, gradual release of tritiated water occurred. This suggests that an enzymatic reaction catalyzes the deamination of lysine in E. coli membranes and that the higher molecular weight proteins detected in stationary phase or in log phase cell envelopes after NaBH4 reduction occur as a result of formation of Schiff base cross-links.  相似文献   

8.
Ca2+-ATPase and other membrane proteins of the sarcoplasmic reticulum membrane from rabbit skeletal muscle have been reconstituted into lipid vesicles with increasing amounts of phosphatidylcholine. The protein composition and phospholipid concentration of these vesicles were analyzed by determining the density of the reconstituted membrane vesicles on linear H2O-2H2O gradients, in a constant concentration of sucrose. In all combinations of the Ca2+-ATPase with a weight excess of phosphatidylcholine, the reconstituted vesicles had a phospholipid-to-protein ratio similar to that of the native sarcoplasmic reticulum membrane, even though both solubilization and mixing had occurred. These vesicles of low phospholipid and high protein content exhibited all the original Ca2+-ATPase activity and ATP-stimulated calcium transport. The Ca2+-ATPase, and the calcium-binding proteins to a lesser extent, may order the lipid in such a manner so as to maintain the initial stoichiometry of lipid to protein observed in the native sarcoplasmic reticulum membrane.  相似文献   

9.
The reductive methylation procedure of G.E. Means and R. E. Feeney (1968)Biochemistry7, 2192–2201) was adapted for 3H-labeling of membrane proteins using pigeon erythrocyte membrane. Usably high 3H incorporation into protein was obtained, e.g., 28 μCi/mg protein with 83 nmol (input) H2CO/mg protein, B3H4? at 10 Ci/mmol, and a B3H4?/H2CO ratio of 0.34. With this low H2CO/protein ratio, methylation did not perturb ATP-dependent 45Ca2+ uptake, Na+-dependent [14C]glycine uptake, membrane vesicle sealing, or isoelectric focusing patterns of methylated membrane proteins. The labeled membrane proteins were shown to be good tracers for the unlabeled proteins by using two-dimensional isoelectric focusing x sodium dodecyl sulfate gel electrophoresis.  相似文献   

10.
This investigation determined whether thylakoid proteins would be degraded more rapidly or not in senescing wheat (Triticum aestivum L. em. Thell.) leaves concurrently exposed to high temperatures. Excised leaves were pulse-labelled with [35S]-methionine for a 12 h period, and then incubated at 22,32 or 42°C for 0, 1, 2, or 3 d, before extracting a thylakoid enriched membrane sample. After electrophoretic separation, two prominent [35S]-labelled protein bands were chosen for further analyses. Band A contained the D-1 thylakoid protein and band B contained thylakoid proteins of the light harvesting complex (LHCII) associated with photosystem II (PSII). Total protein, [35S]-labelled protein, band A protein, and band B protein within the thylakoid enriched membrane samples were measured. Unlabelled thylakoid enriched membrane samples, extracted from leaves given similar treatments, were used to measure uncoupled whole-chain and photosystem II (PSII) electron transport and chlorophyll fluorescence. Accentuated decline in whole-chain and PSII electron transport, increasing Fo values, and decreasing Fmax values were a result of high temperature injury in leaves treated at 42°C. None of the thylakoid enriched membrane protein fractions were degraded more rapidly in high-temperature treated leaves. Degradation of the total [35S]-labelled membrane proteins and band B was inhibited by the 42°C treatment. The results indicate that high temperature stress may disrupt some aspects of normal senescence.  相似文献   

11.
We have studied the CO2 permeability of the erythrocyte membrane of the rat using a mass spectrometric method that employs 18 O-labelled CO2. The method yields, in addition, the intraerythrocytic carbonic anhydrase activity and the membrane HCO3 permeability. For normal rat erythrocytes, we find at 37 °C a CO2 permeability of 0.078 ± 0.015 cm/s, an intracellular carbonic anhydrase activity of 64,100, and a bicarbonate permeability of 2.1 × 10−3 cm/s. We studied whether the rat erythrocyte membrane possesses protein CO2 channels similar to the human red cell membrane by applying the potential CO2 channel inhibitors pCMBS, Dibac, phloretin, and DIDS. Phloretin and DIDS were able to reduce the CO2 permeability by up to 50%. Since these effects cannot be attributed to the lipid part of the membrane, we conclude that the rat erythrocyte membrane is equipped with protein CO2 channels that are responsible for at least 50% of its CO2 permeability.  相似文献   

12.
Summary Studies were performed to determine if the Na+–H+ exchanger, solubilized from renal brush border membranes from the rabbit and assayed in reconstituted artificial proteoliposomes, could be regulated by cAMP-dependent protein kinase. Octyl glucoside solubilized renal apical membrane proteins from the rabbit kidney were phosphorylated by incubation with ATP and highly purified catalytic subunit of cAMP-dependent kinase.22Na+ uptake was determined subsequently after reconstitution of the proteins into proteoliposomes. cAMP-dependent protein kinase resulted in sustained protein phosphorylation and a concentration-dependent decrease in the amiloride-sensitive component of pH gradient-stimulated sodium uptake. The inhibitory effect of cAMP-dependent protein kinase demonstrated an absolute requirement for ATP and was blocked by the specific protein inhibitor of this kinase. cAMP-dependent protein kinase also inhibited22Na+ uptake in the absence of a pH gradient (pHin 6.0. pHout 6.0) and the inhibitory effect was blocked by the specific inhibitor of the kinase. Solubilized membrane proteins exhibited little endogenous protein kinase or protein phosphatase activity.These studies indicate that Na+–H+ exchange activity of proteoliposomes reconstituted with proteins from renal brush border membranes is inhibited by phosphorylation of selected proteins by cAMP-dependent protein kinase. These findings also indicate that the regulatory components of the Na+–H+ exchanger remain active during the process of solubilization and reconstitution of renal apical membrane proteins.  相似文献   

13.
We previously demonstrated inhibition of Na+-dependent 32Pi transport in canine renal brush-border membranes in association with NAD+-induced ADP ribosylation of membrane protein(s) and postulated that NAD+ inhibits Pi transport across the brush-border membrane via ADP ribosylation. Recently it was shown that incubation of rat brush-border membrane with NAD+ resulted in release of Pi which was prevented by EDTA. It was proposed that NAD+-mediated inhibition of 32Pi transport might occur through this mechanism. To determine whether NAD+ inhibited 32Pi transport by a mechanism other than or in addition to release of Pi, we compared Na+-dependent 32Pi counterflow in brush-border membrane equilibrated with Pi or with Pi generated from NAD+. Release of Pi from NAD+ incubated with brush-border membrane was confirmed. The increased uptake of 32Pi which was demonstrated in brush-border membrane equilibrated with Pi was not measured when intravesicular Pi was generated from a concentration of NAD+ which effected ADP-ribosylation of brush border membranes (100 μM NAD+). In contrast, increased uptake of 32Pi was demonstrated when intravesicular Pi was generated from 1 μM NAD+ which did not effect ADP ribosylation. Mg2+-dependent ADP ribosylation of brush-border membrane incubated with NAD+ was demonstrated which persisted during the time interval of 32Pi uptake measurements. Our findings are compatible with the hypothesis that NAD+-induced ADP ribosylation of brush-border membrane protein(s) results in inhibition of Pi transport across the membrane in vivo. EDTA may act to prevent this inhibition in brush-border membrane by chelation of Mg2+ and decreased ADP ribosylation.  相似文献   

14.
The mechanism of action of the cytotoxic protein P6 isolated from cobra venom (Naja naja) which shows preferential cytotoxicity particularly to Yoshida sarcoma cells has been studied by its effects on the membrane-bound enzyme (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) of a variety of cell systems. Evidence obtained with Yoshida sarcoma cells, dog and human erythrocytes and three tissue culture cell lines KB (human oral carcinoma), Hela (human cervix carcinoma) and L-132 (human lung embryonic) shows that inhibition of (Na+ + K+)-ATPase by the P6 protein can be correlated with its lytic activity. (Na+ + K+)-ATPase of Yoshida sarcoma membrane fragments inactivated by P6 protein could be reconstituted by the addition of phosphatidylserine and phosphatidic acid. It is conceivable that lysis of cells by the P6 protein may be due to an imbalance of K+ and Na+ in the cell which leads to swelling and disintegration of the membrane structure. Observations indicate that the P6 protein combines with membrane constituents of susceptible cells. The overall evidence suggests that both the specificity of its protein structure and the highly basic nature of the P6 protein are factors which enable it to compete with the lipid moiety maintaining the (Na+ + K+)-ATPase of the susceptible cells in proper conformation for activity.  相似文献   

15.
Summary. The first step in normal cross-linking in elastin is the formation of α-aminoadipic-δ-semialdehyde, allysine, through oxidative deamination of specific peptidyl lysine by the enzyme lysyl oxidase (EC 1.4.3.13). For the analysis of allysine, allysine was derivatized with p-cresol. The derivatization was carried out by acid hydrolysis (6N HCl containing 5% (w/v) p-cresol at 110°C for 48 h) accompanied with the hydrolysis of elastin. A bis-p-cresol derivative of allysine was isolated from bovine ligamentum nuchae elastin hydrolysates, and was characterized by UV, FAB-MS and NMR. This derivative was identified as 2-amino-6,6-bis(2-hydroxy-5-methylphenyl)hexanoic acid. A rapid, sensitive reverse-phase high-performance liquid chromatographic method with UV detection was developed for the quantitative determination of allysine as its bis-p-cresol derivative. The lower limit of detection of the bis-p-cresol derivative was 58 pmol in the standard sample with a 20-μl injection at a signal-to-noise ratio of 3. This method was applied to the determination of allysine in bovine ligamentum nuchae, aorta, lung, and rat aorta elastin. The allysine content in rat aorta elastin dramatically increased from 1 week to 2 weeks of age. Received June 30, 2000 Accepted September 22, 2000  相似文献   

16.
Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the 13C, 15N, 2H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, HN, CO, Cα, and Cβ chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T 1Z and T2 relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein.  相似文献   

17.
《FEBS letters》1985,189(2):355-360
Inhibition of oxygen evolution in photosystem II membrane fragments from pea chloroplasts by washing with Zn2+ causes appearance of the EPR signal of Mn(H2O)62+. This Mn2+ remains associated with the membrane fraction. Release of Mn2+ into the medium was correlated with the amount of the 23 kDa protein removed from the membrane. This suggests that this protein may function as a ‘gate’ to an aqueous compartment into which Mn2+ is released. Inhibition by Zn2+ correlated with the release of 1 Mn2+ per reaction centre, out of a total stoichiometry of 4 Mn atoms per reaction centre. By comparing the release of Mn following Zn-treatment of NaCI or CaC12 washed membranes, it is concluded that the 33 kDa protein is involved in binding of 2 Mn.  相似文献   

18.
C V Rao 《Life sciences》1977,20(12):2013-2022
Pretreatment of membranes for 1 hr at 4° with up to 0.1% Triton X-100 (TX-100) and sodium desoxycholate (SDC), resulted in a greater loss of [3H] prostaglandin (PG)F2α binding compared to E1 binding. Lubrol WX (LWX) tended to cause a greater loss of [3H]PGF2α than E1 binding. However, the differential loss was not as marked as with TX-100 or SDC. Triton X-305 was relatively ineffective, but loss of [3H]PGE1 binding was greater than for PGF2α. Increasing concentrations of dimethylsulfoxide (DMSO) progressively inhibited PGF2α binding without affecting PGE1 binding. The detergent, but not DMSO, induced losses of membrane PG binding were due to solubilization of the receptors. Greater amounts of membrane protein and phospholipids were solubilized at detergent (TX-100 and SDC) concentrations that solubilized 100% of PGE1 receptors compared to 100% solubilization of F2α receptors. Neither the duration of preincubation nor the amount of membrane protein chosen were responsible for differential PGE1 and F2α receptor losses. These differential membrane PG receptor losses raise the possibility of differences in PGE1 and F2α receptors association with the membrane structure.  相似文献   

19.
Summary Changes in protein synthesis, protein phosphorylation and lipid phosphorylation in the amphibian oocyte plasma membrane have been correlated with electrical changes following steroid induction of the completion of the first meiotic division. The oocyte first depolarizes from about –60 mV (inside negative) to about –25 mV 1 to 2 hr before breakdown of the large nucleus followed by a further depolarization beginning 3 to 6 hr after nuclear breakdown. The initial depolarization is associated with appearance of previously described cycloheximide-sensitive cytoplasmic factor(s) which induce both nuclear breakdown and plasma membrane depolarization. We found a similar ED50 (0.4 m) for cycloheximide inhibition of nuclear breakdown, membrane depolarization, and [3H]-leucine incorporation. Emetine (1nm to 1mm) was inactive. The period of cycloheximide sensitivity (first 5 hr) is essentially the same for plasma membrane depolarization phase following nuclear breakdown is associated with a marked increase in the rate of [3H]-leucine and [32PO4] incorporation into membrane protein and lipid. Polyacrylamide gel electrophoresis of membrane protein and lipoprotein indicated that a major newly synthesized membrane component is proteolipid. An increase in [32PO4] incorporation into membrane phosphatidylserine and phosphatidylethanolamine (with a decrease in phosphatidylcholine [32PO4] begins during the second depolarization phase and coincides with the appearance of excitability in the oocyte plasma membrane. In toto, the bulk of the biochemical changes (proteins, phosphoproteins, proteolipids, phospholipids) appear to be associated with plasma membrane components and coincide with stepwise changes in membrane permeability to specific ions (e.g. Cl).  相似文献   

20.
《Cellular immunology》1986,103(1):216-223
Brief exposure of macrophages to the proteolytic enzymes papain, elastase, or trypsin primed them for enhanced production of superoxide anion (O2) in response to stimulation by phorbol myristate acetate (PMA). Priming by trypsin was achieved at 0 °C, at which temperature trypsin functions as a protease but is not internalized, supporting the concept that protease priming depends on modification of the plasma membrane. Analysis of external membrane proteins after radioiodination of intact cells and separation by gel electrophoresis indicated that papain treatment of macrophages resulted in the cleavage of a membrane protein with a molecular weight of approximately 305K. Membranes from macrophages primed by elicitation with Corynebacterium parvum also demonstrated a reduced amount of the membrane protein at approximately 305 kDa, as well as a reduction of a protein at about 270 kDa. Lipopolysaccharideelicited macrophages showed a reduced amount of a protein at about 175 kDa. Continuous spectrophotometric assays of O2 release from adherent macrophages indicated that after exposure to a stimulus, protease-treated cells produced O2 more quickly than did control cells (reduced lag time). Inhibitors of protein synthesis augmented the priming effect of papain when added with the protease. These results suggest that protease-induced priming results from inactivation of a membrane protein (or proteins) that exerts a down-regulating effect on the respiratory burst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号