首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since coupling between phosphorylation and electron transport cannot be measured directly in intact chloroplasts capable of high rates of photosynthesis, attempts were made to determine ATP/2 e ratios from the quamdum requirements of glycerate and phosphoglycerate reduction and from the extent of oxidation of added NADH via the malate shuttle during reduction of phosphoglycerate in light. These different approaches gave similar results. The quantum requirement of glycerate reduction, which needs 2 molecules of ATP per molecule of NADPH oxidized was found to be pH-dependent. 9-11 quanta were required at pH 7.6, and only about 6 at pH 7.0. The quantum requirement of phosphoglycerate reduction, which consumes ATP and NADPH in a 1/1 ratio, was about 4 both at pH 7.6 ant at 7.0. ATP/2 e ratios calculated from the quantum requirements and the extent of phosphoglycerate accumulation during glycerate reduction were usually between 1.2 and 1.4, occasionally higher, but they never approached 2. Although the chloroplast envelope is impermeable to pyridine nucleotides, illuminated chlrooplasts reduced added NAD via the malate shuttle in the absence of electron acceptors and also during the reduction of glycerate or CO2. When phosphoglycerate was added as the substrate, reduction of pyridine-nucleotides was replaced by oxidation and hydrogen was shuttled into the chloroplasts to be used for phosphoglycerate reduction even under light which was rate-limiting for reduction. This indicated formation of more ATP than NADPH by the electron transport chain. From the rates of oxidation of external NADH and of phosphoglycerate reduction at very low light intensities ATP/2e ratios were calculated to be between 1.1 and 1.4. Fully coupled chloroplasts reduced oxaloacetate in the light at rates reaching 80 and in some instances 130 mumoles times mg-1 chlorophyll times h-1 even though ATP is not consumed in this reaction. The energy transfer inhibitor phlorizin did not significantly suppress this reduction at concentrations which completely inhibited photosynthesis. Uncouplers stimulated oxaloacetate reduction by factors ranging from 1.5 to more than 10. Chloroplasts showing little uncoupler-induced stimulation of oxaloacetate reduction were highly active in photoreducing CO2. Measurements of light intensity dependence of quantum requirements for oxaloacetate reduction gave no indication for the existence of uncoupled or basal electron flow in intact chloroplasts. Rather reduction is brought about by loosely coupled electron transport. It is concluded that coupling of phosphorylation to electron transport in intact chloroplasts is flexible, not tight. Calculated ATP/2e ratios were obtained under con a decreENG  相似文献   

2.
Usuda H 《Plant physiology》1988,88(4):1461-1468
Recently, a nonaqueous fractionation method of obtaining highly purified mesophyll chloroplasts from maize leaves was established. This method is now used to determine adenine nucleotide levels, the redox states of the NADP system, Pi levels and dihydroxyacetone phosphate/3-phosphoglycerate ratios in mesophyll chloroplasts of Zea mays L. leaves under different light intensities. The sum of the ATP, ADP, and AMP levels was estimated to be 1.4 millimolar and the ATP/ADP ratio was 1 in the dark and 2.5 to 4 in the light. The adenine nucleotides were equilibrated by adenylate kinase. The total concentration of NADP(H) in the chloroplasts was 0.3 millimolar in the dark and 0.48 millimolar in the light. The ratio of NADPH/NADP was 0.1 to 0.18 in the dark and 0.23 to 0.48 in the light. The Pi level was estimated to be 20 millimolar in the dark and 10 to 17 millimolar in the light. The 3-phosphoglycerate reducing system was under thermodynamic equilibrium in the light. The calculated assimilatory forces were 8 per molar and 40 to 170 per molar in the dark and the light, respectively. There was no relationship between the degree of activation of pyruvate, Pi dikinase, and adenylate energy charge, or ATP/ADP ratio or ADP level under various light intensities. Only a weak relationship was found between the degree of activation of NADP-malate dehydrogenase and the NADPH/NADP ratio or NADP(H) level with increasing light intensity. A possible regulatory mechanism which is responsible for the regulation of activation of pyruvate,Pi dikinase and NADP-malate dehydrogenase is discussed.  相似文献   

3.
When envelope-free spinach chloroplasts are incubated with stromal protein, catalytic NADP, catalytic ADP, radioactive bicarbonate and fructose 1,6-bisphosphate, 14CO2 fixation starts immediately upon illumination but oxygen evolution is delayed. The delay is increased by the addition of fructose 6-phosphate and by a variety of factors known (or believed) to increase fructose bisphosphatase activity (such as dithiothreitol, more alkaline pH, higher [Mg] and antimycin A). Conversely, the lag can be decreased or eliminated by the addition of an ATP-generating system. Bearing in mind the known inhibition, by ADP, of sn-phospho-3-glycerate (3-phosphoglycerate) reduction it is concluded that the lag in O2 evolution results from the production of ribulose 5-phosphate from fructose bisphosphate and that this in turn inhibits the reoxidation of NADPH by adversely affecting the ADP/ATP ratio. The results are discussed in their relation to the mode of action of antimycin A and to regulation of the reductive pentose phosphate pathway.  相似文献   

4.
Experiments were performed with intact chloroplasts and leaf cell protoplasts isolated from spinach. The light-dependent decrease in (H+) in the chloroplast stroma counteracts carbon reduction and is offset at low light intensities by a large decrease in NADP and a significant increase in [ATP][ADP] ratios. Excess accumulation of NADPH and/or ATP permits 3-phosphogly cerate reduction to occur. With increasing light intensity, NADP levels and [ATP][ADP] ratios increased. High rates of photosynthesis were observed at high and at low [ATP][ADP] ratios. Levels of dihydroxyacetone phosphate were dramatically increased in the light. In chloroplasts, this permitted conversion to ribulose bisphosphate which on carboxylation yields 3-phosphoglycerate. The light-dependent alkalization of the chloroplast stroma is known to be responsible for phosphogly cerate retention in the chloroplasts. A high chloroplast ratio of phosphogly cerate to dihydroxyacetone phosphate aids carbon reduction. Measured ratios of dihydroxyacetone phosphate to phosphogly cerate were averages between low chloroplast ratios and high cytosolic ratios. They were far higher, even under low-intensity illumination, than dark ratios. Since cytosolic NADH levels are known to increase much less in the light than cytosolic dihydroxyacetone phosphate levels, the large increase in the ratio of didydroxyacetone phosphate to phosphogly cerate must considerably increase cytosolic phosphorylation potentials even at very low light intensities. It is proposed that this increase is communicated to the mitochondrial adenylate system, and inhibits dark respiratory activity, giving rise to the Kok effect. The extent of stroma alkalization, the efficiency of metabolite shuttles across the chloroplast envelope, and rates of cytosolic ATP consumption are proposed to be factors determining whether and to what extent the Kok effect can be observed. Light activation of chloroplast enzymes was slow at low and fast at high light intensities. This contrasts to low NADP levels at low and usually higher levels at high light intensities. Maximum enzyme activation was observed far below light saturation of photosynthesis, and light activation of enzymes was often less pronounced at very high than at intermediate light intensities.  相似文献   

5.
Levels of reduced and oxidized triphosphopyridine nucleotides have been determined in reconstituted spinach chloroplasts and compared with levels in whole isolated chloroplasts during photosynthesis and darkness. The ratio of NADPH/NADP+ reaches values slightly above 1.0 at the beginning of photosynthesis, less than half the ratio attained with whole chloroplasts. Nonetheless these lower ratios are sufficient to maintain high rates of photosynthetic carbon dioxide fixation and reduction, which are comparable in the reconstituted chloroplasts to the rates found with whole chloroplasts. As with whole chloroplasts there is a decline in the ration of NADPH/NADP+ as a function of time of photosynthesis. The effect of addition of bicarbonate (6 mM) in causing a transient drop in the ratio of NADPH/NADP/ is described and discussed in terms of the reversibility of the reduction of 3-phosphoglycerate to triose phosphate. The ratio NADPH/NADP+ can be improved by the addition of more lamellae either before or during the course of photosynthesis, and this improvement in ratio is accompanied by an improved rate of CO2 fixation or a more sustained rate of CO2 fixation with time of photosynthesis. The importance of NADPH/NADP+ ratio not only to the reduction of 3-phosphoglycerate to triose phosphate but also to the activation of the ribulose-1,5-diphosphate carboxylasemediated step is discussed.  相似文献   

6.
In photosynthetically competent chloroplasts from spinach the quantum requirements for oxygen evolution during CO2 reduction were higher, by a factor often close to 1.5, than for oxygen evolution during reduction of phosphoglycerate. Mass spectrometer experiments performed under rate-limiting light indicated that an oxygen-reducing photoreaction was responsible for the consumption of extra quanta during carbon dioxide assimilation. Uptake of 18O2 during reduction of CO2 was considerably higher than could be accounted for by oxygen consumption during glycolate formation and by the Mehler reaction of broken chloroplasts which were present in the preparations of intact chloroplasts. The oxygen reducing reaction occurring during CO2 assimilation resulted in the formation of H2O2. This was indicated by a large stimulation of CO2 reduction by catalase, but not of phosphoglycerate reduction. Catalase could be replaced as a stimulant of photosynthesis by dithiothreitol or ascorbate, compounds known to react with superoxide radicals. There was no effect of dithiothreitol and ascorbate on phosphoglycerate reduction. A main effect of superoxide radicals and/or H2O2 was shown to be at the level of phosphoglycerate formation. Evidence for electron transport of oxygen was also obtained from 14CO2 experiments. The oxidation of dihydroxyacetonephosphate during a dark period or after addition of carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone in the light was studied. The results indicated a link between the chloroplast pyridine nucleotide system and oxygen. Oxygen reduction during photosynthesis under conditions where light is rate limiting is seen as important in supplying the ATP which is needed for CO2 reduction but is not provided during electron transport to NADP. A mechanism is discussed which would permit proper distribution of electrons between CO2 and oxygen during photosynthesis.  相似文献   

7.
Oxygen ist reduced by the electron transport chain of chloroplasts during CO2 reduction. The rate of electron flow to oxygen is low. Since antimycin A inhibited CO2-dependent oxygen evolution, it is concluded that cyclic photophosphorylation contributes ATP to photosynthesis in chloroplasts which cannot satisfy the ATP requirement of CO2 reduction by electron flow to NADP and to oxygen. Inhibition of photosynthesis by antimycin A was more significant at high than at low light intensities suggesting that cyclic photophosphorylation contributes to photosynthesis particularly at high intensities. Cyclic electron flow in intact chloroplasts is under the control of electron acceptors. At low light intensities or under far-red illumination it is decreased by substrates which accept electrons from photosystem I such as oxaloacetate, nitrite or oxygen. Obviously, the cyclic electron transport pathway is sensitive to electron drainage. In the absence of electron acceptors, cyclic electron flow is supported by far-red illumination and inhibited by red light. The inhibition by light exciting photosystem II demonstrated that the cyclic electron transport pathway is accessible to electrons from photosystem II. Inhibition can be relieved by oxygen which appears to prevent over-reduction of electron carriers of the cyclic pathway and thus has an important regulatory function. The data show that cyclic electron transport is under delicate redox control. Inhibition is caused both by excessive oxidation and by over-reduction of electron carriers of the pathway.  相似文献   

8.
R. McC. Lilley  D. A. Walker 《BBA》1974,368(3):269-278
1. The rate of 3-phosphoglycerate reduction in extracts from spinach chloroplasts, assayed by spectrophotometric measurement of 3-phosphoglycerate-dependent NADPH oxidation, was strongly inhibited by ADP. AMP was much less inhibitory.

2. Oxygen evolution by reconstituted chloroplasts with 3-phosphoglycerate as substrate was also inhibited by the addition of ADP or following uncoupling by added NH4Cl.

3. In all cases the inhibitory effects of ADP were reversed by addition of phosphocreatine and creatine phosphokinase activity.

4. The stoichiometry of 3-phosphoglycerate reduction to NADPH oxidation in chloroplast extracts was 1:1 and there was negligible turnover of the Benson-Calvin cycle in either chloroplast extracts or in reconstituted chloroplasts under the particular conditions employed.

5. The maximum rate of 3-phosphoglycerate-dependent O2 evolution by reconstituted chloroplasts was ultimately limited by NADP reduction and photo-phosphorylation, and was similar to the maximum rate of oxygen evolution under optimal conditions by intact chloroplasts. In the presence of sufficient ADP phosphorylating activity, the rate of enzymic 3-phosphoglycerate reduction was relatively high. The inhibition of this reaction by ADP may represent a control mechanism in photosynthesis.  相似文献   


9.
H. Egneus  U. Heber  U. Matthiesen  M. Kirk 《BBA》1975,408(3):252-268
In photosynthetically competent chloroplasts from spinach the quantum requirements for oxygen evolution during CO2 reduction were higher, by a factor often close to 1.5, than for oxygen evolution during reduction of phosphoglycerate. Mass spectrometer experiments performed under rate-limiting light indicated that an oxygen-reducing photoreaction was responsible for the consumption of extra quanta during carbon dioxide assimilation. Uptake of 18O2 during reduction of CO2 was considerably higher than could be accounted for by oxygen consumption during glycolate formation and by the Mehler reaction of broken chloroplasts which were present in the preparations of intact chloroplasts. The oxygen reducing reaction occurring during CO2 assimilation resulted in the formation of H2O2. This was indicated by a large stimulation of CO2 reduction by catalase, but not of phosphoglycerate reduction. Catalase could be replaced as a stimulant of photosynthesis by dithiothreitol or ascorbate, compounds known to react with superoxide radicals. There was no effect of dithiothreitol and ascorbate on phosphoglycerate reduction. A main effect of superoxide radicals and/or H2O2 was shown to be at the level of phosphoglycerate formation. Evidence for electron transport to oxygen was also obtained from 14CO2 experiments. The oxidation of dihydroxyacetonephosphate during a dark period or after addition of carbonyl cyanide p-trifluoromethoxyphenylhydrazone in the light was studied. The results indicated a link between the chloroplast pyridine nucleotide system and oxygen. Oxygen reduction during photosynthesis under conditions where light is rate limiting is seen as important in supplying the ATP which is needed for CO2 reduction but is not provided during electron transport to NADP. A mechanism is discussed which would permit proper distribution of electrons between CO2 and oxygen during photosynthesis.  相似文献   

10.
Ahlert Schmidt  Achim Trebst 《BBA》1969,180(3):529-535
The reduction of sulfate by isolated spinach chloroplasts was studied. A reconstituted system of broken chloroplasts and of chloroplast extract reduced sulfate to sulfite in the light when ADP, NADP+, ferredoxin and glutathione were added. The chloroplast extract reduced sulfate to sulfite in the dark if supplemented with ATP and with reduced glutathione. Neither ferredoxin nor NADPH were needed for this reduction in the dark.

A sulfite reductase was purified from spinach leaves. Broken chloroplasts and sulfite reductase reduced sulfite to sulfide in the light when ferredoxin was added. NADP+ was not required for this reduction.

The results suggest that in chloroplasts a sulfate activated by ATP (phosphoadenosine phosphosulfate) is reduced to sulfite by a sulfhydryl compound and that sulfite is reduced to sulfide by a ferredoxin-dependent sulfite reductase.  相似文献   


11.
U. Heber  M.R. Kirk 《BBA》1975,376(1):136-150
Since coupling between phosphorylation and electron transport cannot be measured directly in intact chloroplasts capable of high rates of photosynthesis, attempts were made to determine ATP2 e ratios from the quantum requirements of glycerate and phosphoglycerate reduction and from the extent of oxidation of added NADH via the malate shuttle during reduction of phosphoglycerate in light. These different approaches gave similar results. The quantum requirement of glycerate reduction, which needs 2 molecules of ATP per molecule of NADPH oxidized was found to be pH-dependent. 9–11 quanta were required at pH 7.6, and only about 6 at pH 7.0. The quantum requirement of phosphoglycerate reduction, which consumes ATP and NADPH in a 11 ratio, was about 4 both at pH 7.6 and at 7.0. ATP2 e ratios calculated from the quantum requirements and the extent of phosphoglycerate accumulation during glycerate reduction were usually between 1.2 and 1.4, occasionally higher, but they never approached 2.Although the chloroplast envelope is impermeable to pyridine nucleotides, illuminated chloroplasts reduced added NAD via the malate shuttle in the absence of electron acceptors and also during the reduction of glycerate or CO2. When phosphoglycerate was added as the substrate, reduction of pyridine-nucleotides was replaced by oxidation and hydrogen was shuttled into the chloroplasts to be used for phosphoglycerate reduction even under light which was rate-limiting for reduction. This indicated formation of more ATP than NADPH by the electron transport chain. From the rates of oxidation of external NADH and of phosphoglycerate reduction at very low light intensities ATP2e ratios were calculated to be between 1.1 and 1.4.Fully coupled chloroplasts reduced oxaloacetate in the light at rates reaching 80 and in some instances 130 μmoles · mg?1 chlorophyll · h?1 even though ATP is not consumed in this reaction. The energy transfer inhibitor phlorizin did not significantly suppress this reduction at concentrations which completely inhibited photosynthesis. Uncouplers stimulated oxaloacetate reduction by factors ranging from 1.5 to more than 10. Chloroplasts showing little uncoupler-induced stimulation of oxaloacetate reduction were highly active in photoreducing CO2. Measurements of light intensity dependence of quantum requirements for oxaloacetate reduction gave no indication for the existence of uncoupled or basal electron flow in intact chloroplasts. Rather reduction is brought about by loosely coupled electron transport. It is concluded that coupling of phosphorylation to electron transport in intact chloroplasts is flexible, not tight. Calculated ATP2e ratios were obtained under conditions, where coupling should be expected to be optimal, i.e. at low phosphorylation potentials [ATP][ADP] [Pi]. Flexible coupling implies, that ATP2e ratios should decrease with increasing phosphorylation potentials inside the chloroplasts.  相似文献   

12.
Protoplasts and mitochondria were isolated from leaves of homozygous barley ( Hordeum vulgare L.) mutant deficient in glycine decarboxylase complex (GDC, EC 2.1.2.10) and wild-type plants. The photosynthetic rates of isolated protoplasts from the mutant and wild-type plants under saturating CO2 were similar, but the respiratory rate of the mutant was two-fold higher. Respiration in the mutant plants was much more strongly inhibited by antimycin A than in wild-type plants and a low level of the alternative oxidase protein was found in mitochondria. The activities of NADP- and NAD-dependent malate dehydrogenases were also increased in mutant plants, suggesting an activation of the malate-oxaloacetate exchange for redox transfer between organelles. Mutant plants had elevated activities of NADH- and NADPH-dependent glyoxylate/hydroxypyruvate reductases, which may be involved in oxidizing excess NAD(P)H and the scavenging of glyoxylate. We estimated distribution of pools of adenylates, NAD(H) and NADP(H) between chloroplasts, cytosol and mitochondria. Under photorespiratory conditions, ATP/ADP and NADPH/NADP ratios in the mutant were higher in chloroplasts as compared to wild-type plants. The cytosolic NADH/NAD ratio was increased, whereas the ratio in mitochondria decreased. It is concluded that photorespiration serves as an effective redox transfer mechanism from the chloroplast. Plants with a lowered GDC content are deficient in this mechanism, which leads to over-reduction and over-energization of the chloroplasts.  相似文献   

13.
ATP concentrations were measured in isolated intact spinach chloroplasts under various light and dark conditions. The following results were obtained: (1) Even in darkened chloroplasts and in the absence of exogenous substrates, ATP levels in the chloroplast stroma were significant. They decreased on addition of glycerate, phosphoglycerate or dihydroxyacetone phosphate. When dihydroxyacetone phosphate and oxaloacetate were added together, ATP levels increased in darkened chloroplasts owing to substrate level phosphorylation. (2) Under illumination with saturating single turnover flashes, oxygen evolution in the presence of phosphoglycerate, whose reduction requires ATP, was no lower on a unit flash basis at the low flash frequency of 2 Hz than at higher frequencies. Quenching of 9-aminoacridine fluorescence, which indicates the formation of a proton gradient in intact chloroplasts, decreased with decreasing flash frequencies, until there was no significant fluorescence quenching at a flash frequency of about 2 Hz. In contrast to intact chloroplasts, broken chloroplasts did not phosphorylate much ADP at the low flash frequency of 2 Hz. (3) Flashing at extremely low frequencies (0.2 Hz) caused ATP hydrolysis rather than ATP synthesis in intact chloroplasts. At higher flash frequencies, synthesis replaced hydrolysis. Still, even at high frequencies (10 Hz), the first flashes of a series of flashes given after a long dark time always decreased chloroplast ATP levels.From these results, it is concluded that the enzyme, which mediates ATP synthesis in the light, is inactive in darkened intact chloroplasts. Its light activation can be separated from the formation of the high energy condition, which results in ATP synthesis. After its activation, the enzyme catalyzes a reversible reaction.  相似文献   

14.
ATP concentrations were measured in isolated intact spinach chloroplasts under various light and dark conditions. The following results were obtained: (1) Even in darkened chloroplasts and in the absence of exogenous substrates, ATP levels in the chloroplast stroma were significant. They decreased on addition of glycerate, phosphoglycerate or dihydroxyacetone phosphate. When dihydroxyacetone phosphate and oxaloacetate were added together, ATP levels increased in darkened chloroplasts owing to substrate level phosphorylation. (2) Under illumination with saturating single turnover flashes, oxygen evolution in the presence of phosphoglycerate, whose reduction requires ATP, was no lower on a unit flash basis at the low flash frequency of 2 Hz than at higher frequencies. Quenching of 9-aminoacridine fluorescence, which indicates the formation of a proton gradient in intact chloroplasts, decreased with decreasing flash frequencies, until there was no significant fluorescence quenching at a flash frequency of about 2 Hz. In contrast to intact chloroplasts, broken chloroplasts did not phosphorylate much ADP at the low flash frequency of 2 Hz. (3) Flashing at extremely low frequencies (0.2 Hz) caused ATP hydrolysis rather than ATP synthesis in intact chloroplasts. At higher flash frequencies, synthesis replaced hydrolysis. Still, even at high frequencies (10 Hz), the first flashes of a series of flashes given after a long dark time always decreased chloroplast ATP levels. From these results, it is concluded that the enzyme, which mediates ATP synthesis in the light, is inactive in darkened intact chloroplasts. Its light activation can be separated from the formation of the high energy condition, which results in ATP synthesis. After its activation, the enzyme catalyzes a reversible reaction.  相似文献   

15.
Oscillations in the rate of photosynthesis of sunflower (Helianthus annuus L.) leaves were induced by subjecting leaves, whose photosynthetic apparatus had been activated, to a sudden transition from darkness or low light to high-intensity illumination, or by transfering them in the light from air to an atmosphere containing saturating CO2. It was found that at the first maximum, light-and CO2-saturated photosynthesis can be much faster than steady-state photosynthesis. Both QA in the reaction center of PS II and P700 in the reaction center of PS I of the chloroplast electron-transport chain were more oxidized during the maxima of photosynthesis than during the minima. Maxima of P700 oxidation slightly preceded maxima in photosynthesis. During a transition from low to high irradiance, the assimilatory force FA, which was calculated from ratios of dihydroxyacetone phosphate to phosphoglycerate under the assumption that the reactions catalyzed by NADP-dependent glyceraldehydephosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase are close to equilibrium, oscillated in parallel with photosynthesis. However, only one of its components, the calculated phosphorylation potential (ATP)/(ADP)(Pi), paralleled photosynthesis, whereas calculated NADPH/NADP ratios exhibited antiparallel behaviour. When photosynthetic oscillations were initiated by a transition from low to high CO2, the assimilatory force FA declined, was very low at the first minimum of photosynthesis and increased as photosynthesis rose to its second maximum. The observations indicate that the minima in photosynthesis are caused by lack of ATP. This leads to overreduction of the electron-transport chain which is indicated by the reduction of P700. During photosynthetic oscillations the chloroplast thylakoid system is unable to adjust the supply of ATP and NADPH rapidly to demand at the stoichiometric relationship required by the carbonreduction cycle.Abbreviations PGA 3-phosphoglycerate - DHAP dihydroxyacetone phosphate - P700 electron-donor pigment in the reaction enter of PS I - QA quinone acceptor in the reaction center of PS II This work received support from the Estonian Academy of Sciences, the Bavarian Ministry of Science and Art and the Sonderforschungsbereich 251 of the University of Würzburg. We are grateful for criticism by D.A. Walker, Robert Hill Institute, University of Sheffield, U.K. and by Mark Stitt, Institute of Botany, University of Heidelberg, FRG.  相似文献   

16.
R. Scheibe  J. -P. Jacquot 《Planta》1983,157(6):548-553
The chloroplastic NADP-dependent malate-dehydrogenase (EC 1.1.1.82) activity is modulated by light and dark. The enzyme is activated upon illumination of intact or broken chloroplasts or by incubation with dithiothreitol, whereas dark has the opposite effect. The present communication shows an additional regulation of the light modulation: in isolated intact pea chloroplasts, light activation was inhibited in the presence of electron acceptors such as sodium bicarbonate, 3-phosphoglycerate or oxaloacetate, which consume NADPH2 and produce NADP. With broken chloroplasts, addition of NADP resulted in a pronounced lag phase of NADP-dependent malate dehydrogenase light activation, while NADPH2 was without any effect. The extent of the lag phase was correlated to the amount of NADP added. When light was replaced by dithiotreitol, the inhibition effect was even more pronounced. It was assumed that NADP inhibits the modulation reaction directly: reduced thioredoxin, a potent mediator of activation by light, or dithiotreitol appear to counteract NADP in a competitive manner. The results indicate a physiological role of NADP in the regulation of chloroplastic NADP-dependent malate dehydrogenase which is capable of removing electrons from the chloroplast, via oxaloacetate reduction and malate export. Thus an NADP concentration sufficient for continuous photosynthetic electron flow may be achieved.  相似文献   

17.
The ATP/ADP and NADP/NADPH ratios have been measured in whole-cell extract of the green alga Chlamydomonas reinhardtii, to understand their availability for CO(2) assimilation by the Calvin cycle in vivo. Measurements were performed during the dark-light transition of both aerobic and anaerobic cells, under illumination with saturating or low light intensity. Two different patterns of behavior were observed: (a) In anaerobic cells, during the lag preceding O(2) evolution, ATP was synthesized without changes in the NADP/NADPH ratio, consistently with the operation of cyclic electron flow. (b) In aerobiosis, illumination increased the ATP/ADP ratio independently of the intensity used, whereas the amount of NADPH was decreased at limiting photon flux and regained the dark-adapted level under saturating photon flux. Moreover, under these conditions, the addition of low concentrations of uncouplers stimulated photosynthetic O(2) evolution. These observations suggest that the photosynthetic generation of reducing equivalents rather than the rate of ATP formation limits the photosynthetic assimilation of CO(2) in C. reinhardtii cells. This situation is peculiar to C. reinhardtii, because neither NADPH nor ATP limited this process in plant leaves, as shown by their increase upon illumination in barley (Hordeum vulgare) leaves, independent of light intensity. Experiments are presented and were designed to evaluate the contribution of different physiological processes that might increase the photosynthetic ATP/NADPH ratio-the Mehler reaction, respiratory ATP supply following the transfer of reducing equivalents via the malate/oxaloacetate shuttle, and cyclic electron flow around PSI-to this metabolic situation.  相似文献   

18.
《BBA》1986,848(3):392-401
Spinach leaves were illuminated at various temperatures or CO2 concentrations until steady-state photosynthesis could be measured. Subsequently, they were frozen rapidly in liquid nitrogen and freeze-dried. From the dry material, chloroplasts were isolated in a mixture of organic solvents in which polar metabolites are insoluble. Metabolite levels were determined in the chloroplast fraction. From measured levels of dihydroxyacetone phosphate, fructose 6-phosphate (Fru-6-P), ribulose 1,5-bisphosphate (Rbu-1,5-P2), ATP and ADP, mass-action ratios of the reaction dihydroxyacetone phosphate + 2 glyceraldehyde 3-phosphate + 3 ATP + Fru-6-P → 3 Rbu-1,5-P2 + 3 ADP + Pi were computed. They increased at constant light intensity with increasing CO2 concentration or increasing temperature as photosynthetic flux increased. Surprisingly, however, mass action ratios decreased as flux increased with increasing light intensities. Moreover, mass-action ratios were linearly correlated to light-limitation coefficients which were obtained by computing the light limitation of photosynthesis from the slopes of light and CO2 response curves and multiplying obtained values with that increment of photosynthesis which was measured on increasing the light intensity to saturation. The results are interpreted to indicate tight enzymic control of the formation of ribulose bisphosphate by light. As light intensities are increased, light-regulated enzymes are activated to an extent which permits a decrease in the mass action ratios instead of the increase expected to drive increased carbon flux. Since the reactions catalyzed by phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase and triosephosphate isomerase are close to thermodynamic equilibrium even when photosynthetic fluxes are large, ratios of dihydroxyacetone phosphate to 3-phosphoglycerate indicated the state of chloroplast phosphorylation potentials and the redox state of NADP which together form the assimilatory power [ATP] · [ADP]−1 · [Pi]−1 · [NADPH] · [NADP+]−1. Assimilatory power decreased as carbon flux increased with increasing light intensity and increasing CO2 concentration, but increased as carbon flux increased with increasing temperature. Again this indicates a decrease in the flow resistance of the carbon cycle as light or CO2 is increased. The decrease in the flow resistance is attributed to enzyme activation when light is increased, or to increased carboxylation when CO2 is increased.  相似文献   

19.
PSI cyclic electron transport is essential for photosynthesis and photoprotection. In higher plants, the antimycin A-sensitive pathway is the main route of electrons in PSI cyclic electron transport. Although a small thylakoid protein, PGR5 (PROTON GRADIENT REGULATION 5), is essential for this pathway, its function is still unclear, and there are numerous debates on the rate of electron transport in vivo and its regulation. To assess how PGR5-dependent PSI cyclic electron transport is regulated in vivo, we characterized its activity in ruptured chloroplasts isolated from Arabidopsis thaliana. The activity of ferredoxin (Fd)-dependent plastoquinone (PQ) reduction in the dark is impaired in the pgr5 mutant. Alkalinization of the reaction medium enhanced the activity of Fd-dependent PQ reduction in the wild type. Even weak actinic light (AL) illumination also markedly activated PGR5-dependent PSI cyclic electron transport in ruptured chloroplasts. Even in the presence of linear electron transport [11 mumol O2 (mg Chl)(-1) h(-1)], PGR5-dependent PSI electron transport was detected as a difference in Chl fluorescence levels in ruptured chloroplasts. In the wild type, PGR5-dependent PSI cyclic electron transport competed with NADP+ photoreduction. These results suggest that the rate of PGR5-dependent PSI cyclic electron transport is high enough to balance the production ratio of ATP and NADPH during steady-state photosynthesis, consistently with the pgr5 mutant phenotype. Our results also suggest that the activity of PGR5-dependent PSI cyclic electron transport is regulated by the redox state of the NADPH pool.  相似文献   

20.
Klaus Lendzian  James A. Bassham 《BBA》1976,430(3):478-489
Levels of reduced and oxidized triphosphopyridine nucleotides have been determined in reconstituted spinach chloroplasts and compared with levels in whole isolated chloroplasts during photosynthesis and darkness. The ratio of NADPH/NADP+ reaches values slightly above 1.0 at the beginning of photosynthesis, less than half the ratio attained with whole chloroplasts. Nonetheless these lower ratios are sufficient to maintain high rates of photosynthetic carbon dioxide fixation and reduction, which are comparable in the reconstituted chloroplasts to the rates found with whole chloroplasts. As with whole chloroplasts there is a decline in the ratio of NADPH/NADP+ as a function of time of photosynthesis. The effect of addition of bicarbonate (6 mM) in causing a transient drop in the ratio of NADPH/NADP+ is described and discussed in terms of the reversibility of the reduction of 3-phosphoglycerate to triose phosphate. The ratio NADPH/NADP+ can be improved by the addition of more lamellae either before or during the course of photosynthesis, and this improvement in ratio is accompanied by an improved rate of CO2 fixation or a more sustained rate of CO2 fixation with time of photosynthesis. The importance of NADPH/NADP+ ratio not only to the reduction of 3-phosphoglycerate to triose phosphate but also to the activation of the ribulose-1,5-diphosphate carboxylasemediated step is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号