首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two membrane fractions prepared from the Ehrlich ascites-tumor cell show non-identical stimulatory responses to certain amino acids in their Mg2+-dependent activity to cleave ATP, despite the presence of ouabain and the absence of Na+ or K+. The first of these, previously described, shows little (Na+ + K+)-ATPase activity, and is characteristically stimulated by the presence of certain diamino acids with low pK2, and at pH values suggesting that the cationic forms of these amino acids are effective. The evidence indicates that these effects are not obtained through occupation of the kinetically discernible receptor site serving characteristically for the uphill transport of these amino acids into the Ehrlich cell. The second membrane preparation was purified with the goal of concentrating the (Na+ + K+)-ATPase activity. It also is stimulated by the model diamino acid, 4-amino-1-methylpiperidine-4-carboxylic acid, and several ordinary amino acids. The diamino acids were most effective at pH values where the neutral zwitterionic forms might be responsible. Among the optically active amino acids tested, the effects of ornithine and leucine were substantially stronger for the l than for d isomers. The list of stimulatory amino acids again corresponds poorly to any single transport system, although the possibility was not excluded that stimulation might occur for both preparations by occupation of a membrane site which ordinarily is kinetically silent in the transport sequence. The high sensitivity to deoxycholate and to dicyclohexylcarbodiimide of the hydrolytic activity produced by the presence of l-ornithine and 4-amino-1-methyl-piperidine-4-carboxylic acid suggests that the stimulatory effect is not merely a general intensification of the background Mg+-dependent hydrolytic activity.  相似文献   

2.
Changes in neutral amino acid transport activity caused by addition of phytohaemagglutinin-P to quiescent peripheral pig lymphocytes have been evaluated by measurements of 14C-labelled neutral and analogue amino acids under conditions approaching initial entry rates. Utilizing methylaminoisobutyric acid, the best model substrate of System A, we confirmed our previous report (Borghetti, A.F., Kay, J.E. and Wheeler, K.P. (1979) Biochem. J. 182, 27–32) on the absence of this transport system in quiescent cells and its emergence following stimulation. Furthermore, we demonstrated the presence in quiescent cells of an Na+-dependent transport system for neutral amino acids that has been characterized as System ASC by several criteria including intolerance to methylaminoisobutyric acid, strict Na+-dependence, the property of transtimulation and specificity for pertinent substrates such as alanine, serine, cysteine and threonine. Analysis of the relationship between influx and substrate concentration revealed that two independent saturable components contribute to entry of alanine in quiescent cells: a low affinity (Km = ≈4 mM) and a high affinity (Km = ≈0.2 mM) component. The high affinity component could be inhibited in a competitive way by serine, cysteine and threonine, but methylaminoisobutyric acid did not change appreciably its constants. The enhanced activity of alanine transport through the ASC system observed in activated cells resulted from a large increase in the capacity (V) of the high affinity component without any substantial change in the apparent affinity constant (Km).  相似文献   

3.
The active transport of neutral amino acids into Streptomyces hydrogenans is inhibited by external Na+. There is no indication that in these cells amino acid accumulation is driven by an inward gradient of Na+. The extent of transport inhibition by Na+ depends on the nature of the amino acid. It decreases with increasing chain length of the amino acid molecules i.e. with increasing non-polar properties of the side chain. Kinetic studies show that Na+ competes with the amino acid for a binding site at the amino acid carrier. There is a close relation between the Ki values for Na+ and the number of C atoms of the amino acids. Other cations also inhibit neutral amino acid uptake competitively; the effectiveness decreases in the order Li+ > Na+ > K+ > Rb+ > Cs+. Anions do not have a significant effect on the uptake of neutral amino acids. After prolonged incubation of the cells with 150 mM Na+, in addition to the competitive inhibition of transport Na+ induces an increase in membrane permeability for amino acids.  相似文献   

4.
Cells depleted of amino acids show lower rates of glycine or aminoisobutyric acid uptake than do freshly isolated cells. In the amino acid-depleted cells, addition of valinomycin stimulates amino acid influx at least to the level observed in freshly isolated cells. In cells containing high levels of cellular amino acids, valinomycin has little effect on influx of amino acids. It is concluded that the transport of amino acids in freshly isolated cells is elevated compared to depleted cells because the cells are hyperpolarized by the continuous loss of cellular amino acids during the transport assay. During this hyperpolarization by amino acid loss, transport of amino acids is not further stimulated by valinomycin at low external [K+] (10 mM ± 5 mM).With the exception of preloading with glycine, cells preloaded with a single amino acid to a concentration greater than 20 mM show reduced rates of glycine and aminoisobutyric acid influx at early times (less than 15 min) compared to amino acid-depleted cells. The reduction of infiux is transient and by 30 min, influx is greater in preloaded than in amino acid-depleted cells.Knowing that increases and decreases in the membrane potential are achieved by using varying external [K+] in the presence of valinomycin and propranolol, and using amino acid-depleted cells, it can be shown that an increased membrane potential increases the V for glycine and aminoisobutyric acid influx. A decrease in the potential difference results in a decreased V. Changes in Km also occur when the membrane potential is varied.  相似文献   

5.
Analysis of the cation composition of growing Mycoplasma mycoides var. Capri indicates that these organisms have a high intracellular K+ concentration (Ki: 200–300 mM) which greatly exceeds that of the growth medium, and a low Na+ concentration (Nai+: 20 mM). Unlike Nai+, Ki+ varies with cell aging.The K+ transport properties studied in washed organisms resuspended in buffered saline solution show that cells maintain a steady and large K+ concentration gradient across their membrane at the expense of metabolic energy mainly derived from glycolysis. In starved cells, Ki+ decreases and is partially compensated by a gain in Na+. This substitution completely reverses when metabolic substrate is added (K+ reaccumulation process). Kinetic analysis of K+ movement in cells with steady K+ level shows that most of K+ influx is mediated by an autologous K+-K+ exchange mechanism. On the other hand, during K+ reaccumulation by K+-depleted cells, a different mechanism (a K+ uptake mechanism) with higher transport capacity and affinity drives the net K+ influx. Both mechanisms are energy-dependent.Ouabain and anoxia have no effect on K+ transport mechanisms; in contrast, both processes are completely blocked by dicyclohexylcarbodiimide, an inhibitor of the Mg2+-dependent ATPase activity.  相似文献   

6.
With the aid of direct microfluorimetric determination of marker organic anions (fluorescein and uranin) accumulated in the proximal tubules the influence of Na+ in the bath medium on the active transport of these anions was studied. Kinetic analysis of the rate dependence of organic acid active transport into tubules on their concentration in the bath medium with a constant Na+ concentration permitted to define values of apparent Km and V for uranin and fluorescein transport in the medium with different Na+ content. It was shown that a decrease of Na+ concentration in the medium increases Km and lowers the V/Km ratio with uncharged V. By varying the Na+ concentration in the medium with a constant concentration of the marker anion the KmNa+ and VNa+ values for fluorescein and uranin transport were determined. A KmNa+ value for fluorescein in twice as much that for uranin. The 1/Km value for uranin transport is a linear function of Na+ concentration, while for fluorescein transport it is a quadratic one. Therefore it is concluded that two Na+ from the medium participate in active transfer of one fluorescein anion whereas only one Na+ from the medium is required for active transfer of one uranin anion. The run out of fluorescein from tubules preloaded with this acid is sharply reinforced by the Na+ omission from the medium. Thus, active transport of organic acids in proximal tubules of frog kidney is Na+-dependent, and Na+ from the medium is likely to participate directly in formation of a transport complex. When Na+ is absent in the medium a carrier fulfils a facilitated diffusion only.  相似文献   

7.
The Michaelis-Menten parameters, JM and Km of the initial 1-min fluxes of uptake of l-phenylalanine and of α-aminoisobutyric acid were determined for extracellular concentrations of Na+ ranging from 0.5 to 110 mequiv/l for Ehrlich ascites tumor cells. The maximal initial flux, JM, decreased with decrease in extracellular Na+ for both α-aminoisobutyric acid and phenylalanine but the Km for α-aminoisobutyric acid increased markedly as the Na+ concentration fell whereas the Km for phenylalanine decreased. Cycloleucine behaved like phenylalanine.The data provides strong evidence that the Na+-independent flux of phenylalanine is an exchange diffusion flux that can be varied by changing the intracellular level of amino acids such as phenylalanine. For phenylalanine, cyclolcucine, and methionine this exchange diffusion flux appears to be additive with the Na+-dependent initial flux. α-Aminoisobutyric acid also has an exchange diffusion that is Na+-independent but it has a high Km and is not additive with the Na+-dependent flux.  相似文献   

8.
9.
The uptake of d-glucose, 2-aminoisobutyric acid and glycine was studied with intestinal brush border membrane vesicles of a marine herbivorous fish: Boops salpa. The uptake of these three substances is stimulated by an Na+ electrochemical gradient (CoutCin). For glucose, an increase of the electrical membrane potential generated by a concentration gradient of the liposoluble anion, SCN?, increases the Na+-dependent transport. This responsiveness to the membrane potential was confirmed by valinomycin. Differently from glucose, uptake of glycine and 2-aminoisobutyric acid requires, besides the Na+ gradient, the presence of Cl? on the external side of the vesicles. In the absence of Cl?, amino acid uptake is not stimulated by the Na+ gradient and is not influenced by an electrical membrane potential generated by SCN? gradient (Cout>Cin) or by a K+ diffusion potential (Cin>Cout). This Cl? requirement differs from the Na+ requirement, since a Cl? gradient (Cout>Cin) does not result in an accumulation of glycine or 2-aminoisobutyric acid similar to that produced by an Na+ gradient.  相似文献   

10.
The transport of [14C]Gly-Pro was examined using a mutant of Salmonella typhimurium (strain TN87) deficient in an X-Pro dipeptidase and an X-Pro-Y iminopeptidase. The dipeptide was taken up by one saturable transport system having a Km of 5.3 · 10?7M and a V of 1.4 nmol/mg dry wt cell per min. The uptake of Gly-Pro was not inhibited by amino acids or tripeptides and the transport system exhibited a rather broad side chain specificity for dipeptides. Dipeptides containing hydrophobic residues were the most potent inhibitors of this dipeptide transport system exhibiting Ki values between 10?8 and 10?7 M. In contrast, dipeptides containing glycine residues were particularly weak inhibitors. Finally, Gly-Pro was found to be in the intact form inside the cell and was concentrated more than 1000-fold.  相似文献   

11.
Influx and efflux of glycine have been examined as a function of external and internal Na+ concentrations, respectively, when ΔμNa = 0. With ΔμNa = 0 it was found that at comparable external and cellular Na+ levels, the Km for efflux was larger by an order of magnitude than the value for influx and the V for efflux was several times greater than the V for influx. For both fluxes the major effect of Na+ was to decrease the Km value. The observations are consistent with the conclusion that the Na+-dependent transport system is asymmetric per se. Influx and efflux of glycine were increased in a near linear manner by increasing the Na+ concentration from 13 to 100 mM, the half-time for glycine equilibration being a function of the Na+ concentration in absence of an electrochemical potential difference for Na+. In Na+-free media ([Na+] < 5 mM) equilibration of glycine between cells and medium was not achieved after 60 min at 25°C. With ΔμNa= 0, efflux (or uptake) of glycine was not affected by internal (or external) K+ between 20 and 120 mM suggesting that K+ plays no direct role in Na+-dependent transport of glycine in Ehrlich cells.  相似文献   

12.
Quercetin inhibited a dog kidney (Na+ + K+)-ATPase preparation without affecting Km for ATP or K0.5 for cation activators, attributable to the slowly-reversible nature of its inhibition. Dimethyl sulfoxide, a selector of E2 enzyme conformations, blocked this inhibition, while the K+-phosphatase activity was at least as sensitive to quercetin as the (Na+ + K+)-ATPase activity, all consistent with quercetin favoring E1 conformations of the enzyme. Oligomycin, a rapidly-reversible inhibitor, decreased the Km for ATP and the K0.5 for cation activators, and its inhibition was also diminished by dimethyl sulfoxide. Although oligomycin did not inhibit the K+-phosphatase activity under standard assay conditions, a reaction presumably catalyzed by E2 conformations, its effects are nevertheless accommodated by a quantitative model for that reaction depicting oligomycin as favoring E1 conformations. The model also accounts quantitatively for effects of both dimethyl sulfoxide and oligomycin on Vmax, Km for substrate, and K0.5 for K+, as well as for stimulation of phosphatase activity by both these reagents at low K+ but high Na+ concentrations.  相似文献   

13.
14.
We determine the kinetic parameters V and KT of lactose transport in Escherichia coli cells as a function of the electrical potential difference (Δψ) at pH 7.3 and ΔpH = 0. We report that transport occurs simultaneously via two components: a component which exhibits a high KT (larger than 10 mM) and whose contribution is independent of Δψ, a component which exhibits a low KT independent of Δψ (0.5 mM) but whose V increases drastically with increasing Δψ. We associate these components of lactose transport with facilitated diffusion and active transport, respectively. We analyze the dependence upon Δψ of KT and V of the active transport component in terms of a mathematical kinetic model developed by Geck and Heinz (Geck, P. and Heinz, E. (1976) Biochim. Biophys. Acta 443, 49–63). We show that within the framework of this model, the analysis of our data indicates that active transport of lactose takes place with a H+/lactose stoichiometry greater than 1, and that the lac carrier in the absence of bound solutes (lactose and proton(s)) is electrically neutral. On the other hand, our data relative to facilitated diffusion tend to indicate that lactose transport via this mechanism is accompanied by a H+/lactose stoichiometry smaller than that of active transport. We discuss various implications which result from the existence of H+/lactose stoichiometry different for active transport and facilitated diffusion.  相似文献   

15.
(1) Treatment of (Na+ + K+)-ATPase from rabbit kidney outer medulla with the γ-35S labeled thio-analogue of ATP in the presence of Na+ + Mg2+ and the absence of K+ leads to thiophosphorylation of the enzyme. The Km value for [γ-S]ATP is 2.2 μM and for Na+ 4.2 mM at 22°C. Thiophosphorylation is a sigmoidal function of the Na+ concentration, yielding a Hill coefficient nH = 2.6. (2) The thio-analogue (Km = 35 μM) can also support overall (Na+ + K+)-ATPase activity, but Vmax at 37°C is only 1.3 γmol · (mg protein)? · h?1 or 0.09% of the specific activity for ATP (Km = 0.43 mM). (3) The thiophosphoenzyme intermediate, like the natural phosphoenzyme, is sensitive to hydroxylamine, indicating that it also is an acylphosphate. However, the thiophosphoenzyme, unlike the phosphoenzyme, is acid labile at temperatures as low as 0°C. The acid-denatured thiophosphoenzyme has optimal stability at pH 5–6. (4) The thiophosphorylation capacity of the enzyme is equal to its phosphorylation capacity, indicating the same number of sites. Phosphorylation by ATP excludes thiophosphorylation, suggesting that the two substrates compete for the same phosphorylation site. (5) The (apparent) rate constants of thiophosphorylation (0.4 s?1 vs. 180 s?1), spontaneous dethiophosphorylation (0.04 s?1 vs. 0.5 s?1) and K+-stimulated dethiophosphorylation (0.54 s?1 vs. 230 s?1) are much lower than those for the corresponding reactions based on ATP. (6) In contrast to the phosphoenzyme, the thiophosphoenzyme is ADP-sensitive (with an apparent rate constant in ADP-induced dethiophosphorylation of 0.35 s?1, KmADP = 48 μM at 0.1 mM ATP) and is relatively K+-insensitve. The Km for K+ in dethiophosphorylation is 0.9 mM and in dephosphorylation 0.09 mM. The thiophosphoenzyme appears to be for 75–90% in the ADP-sensitive E1-conformation.  相似文献   

16.
l-Ascorbate is taken up into brush border vesicles from kidney cortex of rat, rabbit and guinea pig by an efficient, Na+-dependent and potential-sensitive transport process. This uptake shows saturation (Km:0.1–0.3 mM) and is strongly stimulated by low concentrations of N3?. Erythorbate (d-isoascorbate) seems to be another, but poorer, substrate of the same transporter.  相似文献   

17.
An ATPase is demonstrated in plasma membrane fractions of goldfish gills. This enzyme is stimulated by Cl? and HCO3?, inhibited by SCN?.Biochemical characterization shows that HCO3? stimulation (Km = 2.5 mequiv./l) is specifically inhibited in a competitive fashion by SCN? (Ki = 0.25 mequiv./l). The residual Mg2+-dependent activity is weakly is weakly affected by SCN?.In the microsomal fraction chloride stimulation of the enzyme occurs in the presence of HCO3? (Kmfor chloride = 1 mequiv./l); no stimulation is observed in the absence of HCO3?. Thiocyanate exhibits a mixed type of inhibition (Ki = 0.06 mequiv./l) towards the Cl? stimulation of the enzyme.Bicarbonate-dependent ATPase from the mitochondrial fraction is stimulated by Cl?, but this enzyme has a relatively weak affinity for this substrate (Km = 14 mequiv./l).  相似文献   

18.
Phosphate uptake by yeast at pH 7.2 is mediated by two mechanisms, one of which has a Km of 30 μM and is independent of sodium, and a sodium-dependent mechanism with a Km of 0.6 μM, both Km values with respect to monovalent phosphate. The sodium-dependent mechanism has two sites with affinity for Na+, with affinity constants of 0.04 and 29 mM. Also lithium enhances phosphate uptake; the affinity constants for lithium are 0.3 and 36 mM. Other alkali ions do not stimulate phosphate uptake at pH 7.2. Rubidium has no effect on the stimulation of phosphate uptake by sodium.Phosphate and arsenate enhance sodium uptake at pH 7.2. The Km of this stimulation with regard to monovalent orthophosphate is about equal to that of the sodium-dependent phosphate uptake.The properties of the cation binding sites of the phosphate uptake mechanism and those of the phosphate-dependent cation transport mechanism have been compared. The existence of a separate sodium-phosphate cotransport system is proposed.  相似文献   

19.
Neutral amino acid transport was investigated in Leishmania promastigotes. Proline and alanine transport occur against their concentration gradient although there is a very rapid (40% at 30 min) conversion of proline to alanine. Uptake of these amino acids occurs by a sodium-independent route which is completely eliminated by addition of CCCP or KCN. Km values for proline and alanine are 80 μM and 63 μM with Vmax values of 6.4 and 7.2 nmol/min per mg dry weight, respectively. Countertransport of proline, alanine and phenylalanine was measured by loading the cells with a variety of neutral amino acids and proline analogs, followed by CCCP addition. The effect of aminooxyacetic acid, an inhibitor of alanine aminotransferase (EC 2.6.1.2), on proline and alanine countertransport was also examined. The results obtained are consistent with the presence of at least two systems for neutral amino acid transport in Leishmania promastigotes.  相似文献   

20.
Initial rates of taurocholate uptake into isolated hepatocytes stored at 0°C increased 3-fold during a 25 min preincubation. Concomitantly, V increased while Km remained unaffected. There are several possible explanations for the preincubation effects, such as new synthesis of carrier protein, altered fluidity of the membrane or stimulation of the sodium-dependent taurocholate uptake via a change in the cation distribution. The experiments presented strongly favor the latter explanation as the sodium gradient as well as the uptake of the bile acid reach their steady state within 20–30 min and replacement of sodium by potassium in the medium abolished the effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号