首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
Leakage of the entrapped anionic fluorophore carboxyfluorescein was used as a measure of the permeability of liposomes to several different acids. Carboxyfluorescein leakage increased with increasing buffer concentration at a given pH and depended on its chemical nature: apolar weak acids such as acetic or pyruvic acids induced fast leakage at relatively high pH (4 to 5), while glycine, aspartic, citric and hydrochloric acids induced leakage only at lower pH. Fluorescence leakage measurements reflected the acidification of the liposomes' aqueous spaces, which was primarily caused by the diffusion of undissociated acid molecules across the lipid bilayer. A simple mathematical model in accord with this hypothesis and assuming that carboxyfluorescein leakage was directly related to the proportion of its neutral lactone form, described satisfactorily the carboxyfluorescein leakage kinetics and allowed rough estimation of permeability coefficients for carboxyfluorescein (neutral lactone form; 9 · 10?9 cm · s?1), acetic acid (>1 · 10?7cm · s?1) and glycine (cation: 6 · 10?9 cm · s?1). These results are consistent with low effective proton permeability of liposomes (<5 · 10?12cm · s?1) and with the permeability coefficient of HCl (3 · 10?3 cm · s?1) reported by Nozaki and Tanford ((1981) Proc. Natl. Acad. Sci. U.S.A. 78, 4324–4328). Diffusion of weak acid molecules across lipid membranes has implications for drug encapsulation and delivery, and may be of biological significance.  相似文献   

2.
(1) Treatment of (Na+ + K+)-ATPase from rabbit kidney outer medulla with the γ-35S labeled thio-analogue of ATP in the presence of Na+ + Mg2+ and the absence of K+ leads to thiophosphorylation of the enzyme. The Km value for [γ-S]ATP is 2.2 μM and for Na+ 4.2 mM at 22°C. Thiophosphorylation is a sigmoidal function of the Na+ concentration, yielding a Hill coefficient nH = 2.6. (2) The thio-analogue (Km = 35 μM) can also support overall (Na+ + K+)-ATPase activity, but Vmax at 37°C is only 1.3 γmol · (mg protein)? · h?1 or 0.09% of the specific activity for ATP (Km = 0.43 mM). (3) The thiophosphoenzyme intermediate, like the natural phosphoenzyme, is sensitive to hydroxylamine, indicating that it also is an acylphosphate. However, the thiophosphoenzyme, unlike the phosphoenzyme, is acid labile at temperatures as low as 0°C. The acid-denatured thiophosphoenzyme has optimal stability at pH 5–6. (4) The thiophosphorylation capacity of the enzyme is equal to its phosphorylation capacity, indicating the same number of sites. Phosphorylation by ATP excludes thiophosphorylation, suggesting that the two substrates compete for the same phosphorylation site. (5) The (apparent) rate constants of thiophosphorylation (0.4 s?1 vs. 180 s?1), spontaneous dethiophosphorylation (0.04 s?1 vs. 0.5 s?1) and K+-stimulated dethiophosphorylation (0.54 s?1 vs. 230 s?1) are much lower than those for the corresponding reactions based on ATP. (6) In contrast to the phosphoenzyme, the thiophosphoenzyme is ADP-sensitive (with an apparent rate constant in ADP-induced dethiophosphorylation of 0.35 s?1, KmADP = 48 μM at 0.1 mM ATP) and is relatively K+-insensitve. The Km for K+ in dethiophosphorylation is 0.9 mM and in dephosphorylation 0.09 mM. The thiophosphoenzyme appears to be for 75–90% in the ADP-sensitive E1-conformation.  相似文献   

3.
Furosemide (1 · 10?4M) inhibits a proportion of the total passive (ouabain-insensitive) K+ influx into primary chick heart cell cultures (85%), BC3H1 cells (75%), MDCK cells (40%) and HeLa cells (57%). This action of furosemide upon K+ influx is independent of (Na+ + K+)-pump inhibition since the furosemide-sensitive component of the K+ influx is identical in the presence and absence of ouabain (1 · 10?3M). For HeLa cells the passive, furosemide-sensitive component of K+ influx is markedly dependent upon the external K+, Na+ and Cl? content. Acetate, iodide and nitrate are ineffective as substitutes for Cl?, whereas Br? is partially effective. Partial Cl? replacement by NO3? gave an apparent affinity of 100 mM [Cl]. Na+ replacement by choline+ abolishes the furosemide-sensitive component, whereas Li+ replacement reduces this component by 48%. Partial Na+ replacement by choline+ gives an apparent affinity of 25 mM [Na+]. Variation in the external K+ content gives an affinity for the furosemide-sensitive component of approx. 1.0 mM. Furosemide inhibition of the passive K+ inflúx is of high affinity, half-maximal inhibition being observed at 5 · 10?6M furosemide. Piretanide (1 · 10?4M) and phloretin (1 · 10?4M) inhibit the same component of passive K+ influx as furosemide; ethacrynic acid and amiloride (both 1 · 10?4M) partially so. The stilbene, SITS (1 · 10?6M), was ineffective as an inhibitor of the furosemide-sensitive component.  相似文献   

4.
(5-Isoleucine)-angiotensin II applied to black lipid membranes produced current fluctuations varying between Δ>G = 5 · 10?11 Ω? and 3.5 · 10?10 Ω?1. These fluctuations depend on the voltage and the hydrostatic pressure. The membrane resistance is lowered by Δ>R = 6.1 · 107 Ω · cm2. With (5-isoleucine, 8-leucine)-angiotensin II the jumps are of a single amplitude (Δ>G = 2 · 10?10 Ω?1). In both cases water and ions are transported across the membrane.  相似文献   

5.
The antibiotic A23187 carries Ca2+ across Müller-Rudin membranes made from 1,2-dierucoyl-sn-glycero-3-phosphocholine and n-decane. The conductance of the membranes is not increased by the Ca2+-transport. The flux depends linearly on Ca2+ concentration and ionophore concentration (above pH 6). It increases with increasing pH, approximately by a factor of 4–5 between pH 6 and pH 8. Maximal Ca2+-fluxes of about 10?10mol · cm?2 · s?1 were found. A counter transport of H+ could not be detected.The complex formation between A23187 and Ca2+ in egg phosphatidylcholine vesicles was studied spectroscopically. The results are consistent with the formation of a 2 : 1 complex. Optical absorption measurements on single phosphatidylcholine membranes were used to calculate the concentration of membrane-bound ionophore A23187.  相似文献   

6.
The binding of the crustacean selective protein neurotoxin, toxin B-IV, from the nemertine Cerebratulus lacteus to lobster axonal vesicles has been studied. A highly radioactive, pharmacologically active derivative of toxin B-IV has been prepared by reaction with Bolton-Hunter reagent. Saturation binding and competition of 125I-labeled toxin B-IV by native toxin B-IV have shown specific binding of 125I-labeled toxin B-IV to a single class of binding sites with a dissociation constant of 5–20 nM and a binding site capacity, corrected for vesicle sidedness, of 6–9 pmol per mg membrane protein. This compares to a value of 3.8 pmol [3H]saxitoxin bound per mg in the same tissue. Analysis of the kinetics of toxin B-IV association (k+1=7.3·105M?1·s?1) and dissociation (k? 1=2·10?3s?1) shows a nearly identical Kd of about 3 nM. There is no competition of toxin B-IV binding by purified toxin from Leiurus quinquestriatus venom while Centruroides sculpturatus Ewing toxin I appears to cause a small enhancement of toxin B-IV binding.  相似文献   

7.
The lateral diffusion coefficients (D) of the molecular fluorescence probe 3,3′-dioctadecylindocarbocyanine iodide (DII) in the membrane of discoid erythrocyte ghosts has been measured with the photobleaching technique between 7°C and 40°C. A fluorescence microscope which allows bleaching experiments within small local fields (approx. 1 μm2) at high magnification (X1600) has been used for these measurements. The diffusion coefficient increases from D = 9 · 10?10cm2/s to D = 7.5 · 10?9cm2/s from 7 to 40°C. An increase in membrane fluidity between 12°C and 17°C indicates a conformational change of the lipid bilayer moiety in this temperature region. The diffusion coefficient measured in the regions between the spicules of echinocytes is appreciably smaller than in the untransformed discoid ghosts. In the myelin tubes originating from cells, the lateral diffusion is somewhat larger (about a factor of 2) than in the non-transformed ghosts. With the fluorescence probe technique the rate of growth of myelin tubes of 0.3 μm diameter has been estimated.  相似文献   

8.
Robert F. Anderson 《BBA》1983,723(1):78-82
The bimolecular decay rates (2k) of the flavosemiquinones (FH·F?) of riboflavin, FMN and FAD have been determined using pulse radiolysis. The rates (defined as d[FH·F?]dt = ?2k[FH·F?]2) for the neutral flavosemiquinones at zero ionic strength and pH 5.9 are (in units of mol?1·dm3·s?1): (1.2 ± 0.1)·109, (5.0 ± 0.2)·108 and (1.4 ± 0.1)·108; and for the anionic flavosemiquinones at pH 11.2 (5.4 ± 0.9)·108, (4.5 ± 0.3)·107 and (8.5 ± 1.3)·106, respectively. The kinetic salt effect has been used to formulate rate equations for each flavin to adjust for ionic strength effects.  相似文献   

9.
10.
Dispersed acini from dog pancreas were used to examine the ability of dopamine to increase cyclic AMP cellular content and the binding of [3H]dopamine. Cyclic AMP accumulation caused by dopamine was detected at 1·10?8 M and was half-maximal at 7.9±3.4·10?7M. The increase at 1·10?5 M, (7.5-fold) was equal to the half-maximal increase caused by secretin at 1·10?9 M. Haloperidol, a dopaminergic receptor antagonist inhibited cyclic AMP accumulation caused by dopamine. The IC50 value for haloperidol, calculated from the inhibition of cyclic AMP increase caused by 1·10?5 M dopamine was 2.3±0.9·10?6M. Haloperidol did not alter basal or secretin-stimulated cyclic AMP content. [3H]Dopamine binding was studied on the same batch of cells as cyclic AMP accumulation. At 37°C, it was rapid, reversible, saturable and stereospecific. The Kd value for high affinity binding sites was 0.43±0.1·10?7M and 4.7±1.6·10?7M for low affinity binding sites. The concentration of drugs necessary to inhibit specific binding of dopamine by 50% was 1.2±0.4·10/t-7M noradrenaline, 2·10/t-7 M epinine, 4.1±1.8·10/t-6M fluphenazine, 8.0±1.6·10/t-6M haloperidol, 4.2±1.2·10?6Mcis-flupenthixol, 2.7±0.4·10?5Mtrans-flupenthixol, >1·10?5M apomorphine, sulpiride, naloxone and isoproterenol.  相似文献   

11.
10?5 M cyclic AMP has high permeability in human erythrocyte ghosts (p = 0.061 · 10?6cm · s?1). Saturation of influx and efflux occurs. Kztoi = 4.43 mM. Vztoi = 259.6 μM · min?1. Kztio = 0.475 μM. Vztio = 28.3 μM · min?1 at 30°C. Equilibrium exchange entry of cyclic AMP has similar kinetics to zero trans influx, though the system does show counterflow. Cythochalasin B is an apparent competitive inhibitor of cyclic AMP exit. (Ki = 3.9 · 10?7M).Control experiments indicated that cyclic AMP remains intact during incubation with red blood cell ghosts and is contained within the intravesicular space during the transport experiments.  相似文献   

12.
The diffusion coefficients D(cm2 · s?1) of the sodium salts of a series of hydrophilic mono- and dicarboxylic acids, have been measured in the hydrophilic layers of phosphatidylcholine-water lamellar phases, as a function of phase hydration. At pH 9.0, the diffusion rates of the anionic (RCOO?) form of the acid exhibit a prominent increase within a narrow range of water content, specific to each anion. This high diffusion rate seems to occur when the Stokes diameter of an anion is equal to the thickness of the aqueous layer between the two planes formed by the quaternary ammonium groups of the choline phosphate dipoles of two facing layers of phosphatidylcholine molecules. This phenomenon demonstrates the importance of the spatial organization of successive binding sites in the rate constant of diffusional processes in hydrophilic channels.  相似文献   

13.
The nonionic detergent Triton X-100, introduced into artificial membranes of various lipid compositions, induced current fluctuations that may correspond to the formation of channels across the bilayer. Independently of the lipid used, these fluctuations vary in amplitude between 1 and 4·10?10, Ω?1, show a strong dependence on the applied voltage, and are selective for cations in the sequence Rb+ > K+ > Na+ > Li+. These results are discussed in relation to the chemical structure of the Triton X-100 molecule.  相似文献   

14.
15.
ATP-enriched human red cells display high rates of Ca2+-dependent ATP hydrolysis (16 mmol·litre cells?1·h?1) with a high Ca2+ affinity (K0.5~0.2 μM). The finding suggests a mechanism for regulation of cell Ca2+ levels, involving highly-cooperative stimulation of active Ca2+ extrusion following binding of calmodulin to the (Ca2+ + Mg2+)-ATPase.  相似文献   

16.
Cultured epithelial monolayers of MDCK cells grown upon Millipore filter supports and mounted in Ussing chambers for transport studies respond to addition of 5 · 10?7M adrenalin from only the basal bathing solution by an increased short-circuit current, due both to an increased transmonolayer potential difference (basal solution electropositive) and an increased transmonolayer conductance. Measurement of tracer Na+, K+ and Cl? fluxes demonstrate that the adrenalin-stimulated short-circuit current results primarily from basal to apical net Cl? secretion. Half-maximal stimulation of the short-circuit current was observed at (3.1 ± 0.3) · 10?8M adrenalin; the order of potency of adrenergic agonists for short-circuit current stimulation was isoprenalin >adrenalin >noradrenalin, consistent with adrenalin action being mediated by a β-adrenergic receptor. The adrenalin-stimulated short-circuit current was sensitive to inhibition (75%) by basal additions of furosemide (1 · 10?4M); phloretin inhibition (54%, 57%) was observed from both epithelial surfaces. Amiloride (10?4 M) and 4-acetamido-4-isothiocyanostilbene-2, 2′-disulphonic acid (SITS) (10 μM) were ineffective as inhibitors of the adrenalin response. The increased short-circuit current was sensitive to replacement of medium Na+ by choline (87%) and Tris (93%). Li+ was a partially effective substitute cation for Na+ · NO3?, and isethionate were ineffective substitutes for Cl? whereas Br? was partially effective. Partial replacement of medium Na+ by choline gave an upward-curving non-saturable dependence of the adrenalin-stimulated short-circuit current upon [Na]; partial replacement of Cl? by NO3? in contrast gave a saturable increase with a K12 of approx. 65 mM Cl?.  相似文献   

17.
The technique of laser Doppler electrophoresis was applied for the study of the surface charge properties of (Na+,+)-ATPase containing microsomal vesicles derived from guinea-pig kidney. The influence of pH, the screening and binding of uni- and divalent cations and the binding of ATP show: (1) one net negative charge per protein unit with a pK = 3.9; (2) deviation from the Debye relation between surface potential and ionic strength for univalent cations, with no difference in the effect of Na+ and K+; (3) Mg2+ binds with an association constant of Ka = 1.1 · 102M?1 while ATP binds with an apparent Ka = 1.1 · 104M?2 for 1 mM Nacl, 0.2 mM KCI, 0.1 mM MgCl2, 0.1 mM Tris-HCI (pH 7.3). The binding is weaker at higher Mg2+ concentrations. There is no ATP binding in the absence of Mg2+. In addition, the average vesicle size derived from the linewidth of the quasi-elastic light scattering spectrum is 203.7 ± 15.2 nm. In the presence of ATP a reduction in size is observed.  相似文献   

18.
In an accompanying publication by Duckwitz-Peterlein, Eilenberger and Overath ((1977) Biochim. Biophys. Acta 469, 311–325) it is shown that the exchange of lipid molecules between negatively charged vesicles consisting of total phospholipid extracts from Escherichia coli occurs by the transfer of single lipid monomers or small micelles through the water. Here a kinetic interpretation is presented in terms of a rate constant, k?, for the escape of lipid molecules from the vesicle bilayer into the water. The evaluated rate constants are k?P = (0.86 ± 0.05) · 10?5s?1 and k?E = (1.09 ± 0.13) · 10?6s?1 for phospholipid molecules with trans-Δ9-hexadecenoate and trans-Δ9-octadecenoate, respectively, as the predominant acyl chain component. The rate constants are discussed in terms of the acyl chain and polar head group composition of the lipids.  相似文献   

19.
A method for calculating the rate constant (KA1A2) for the oxidation of the primary electron acceptor (A1) by the secondary one (A2) in the photosynthetic electron transport chain of purple bacteria is proposed.The method is based on the analysis of the dark recovery kinetics of reaction centre bacteriochlorophyll (P) following its oxidation by a short single laser pulse at a high oxidation-reduction potential of the medium. It is shown that in Ectothiorhodospira shaposhnikovii there is little difference in the value of KA1A2 obtained by this method from that measured by the method of Parson ((1969) Biochim. Biophys. Acta 189, 384–396), namely: (4.5±1.4) · 103s?1 and (6.9±1.2) · 103 s?1, respectively.The proposed method has also been used for the estimation of the KA1A2 value in chromatophores of Rhodospirillum rubrum deprived of constitutive electron donors which are capable of reducing P+ at a rate exceeding this for the transfer of electron from A1 to A2. The method of Parson cannot be used in this case. The value of KA1A2 has been found to be (2.7±0.8) · 103 s?1.The activation energies for the A1 to A2 electron transfer have also been determined. They are 12.4 kcal/mol and 9.9 kcal/mol for E. shaposhnikovii and R. rubrum, respectively.  相似文献   

20.
A thermodynamic characterization of the Na+-H+ exchange system in Halobacterium halobium was carried out by evaluating the relevant phenomenological parameters derived from potential-jump measurements. The experiments were performed with sub-bacterial particles devoid of the purple membrane, in 1 M NaCl, 2 M KCl, and at pH 6.5–7.0. Jumps in either pH or pNa were brought about in the external medium, at zero electric potential difference across the membrane, and the resulting relaxation kinetics of protons and sodium flows were measured. It was found that the relaxation kinetics of the proton flow caused by a pH-jump follow a single exponential decay, and that the relaxation kinetics of both the proton and the sodium flows caused by a pNa-jump also follow single exponential decay patterns. In addition, it was found that the decay constants for the proton flow caused by a pH-jump and a pNa-jump have the same numerical value. The physical meaning of the decay constants has been elucidated in terms of the phenomenological coefficients (mobilities) and the buffering capacities of the system. The phenomenological coefficients for the Na+-H+ flows were determined as differential quantities. The value obtained for the total proton permeability through the particle membrane via all available channels, LH = (?JH +pH)Δψ,ΔpNa, was in the range of 850–1150 nmol H+·(mg protein)?1·h?1·(pH unit)?1 for four different preparations; for the total Na+ permeability, LNa = (?JNa+pNa)Δψ,ΔpH, it was 1620–2500 nmol Na+·(mg protein)?1·h?1·(pNa unit)?1; and for the proton ‘cross-permeability’, LHNa = (?JH+pNa)Δψ,ΔpH, it was 220–580 nmol H+·(mg protein)?1·h?1·(pNa unit)?1, for different preparations. From the above phenomenological parameters, the following quantities have been calculated: the degree of coupling (q), the maximal efficiency of Na+-H+ exchange (ηmax), the flow and force efficacies (?) of the above exchange, and the admissible range for the values of the molecular stoichiometry parameter (r). We found q ? 0.4; ηmax ? 5%; 0.36 ? r ? 2; ?JNa+ ? 1.3 · 105μmol · (RT unit)?1 at JNa = 1 μmolNa+ · (mgprotein)?1 · h?1; and ?ΔpNa ? 5 · 104 ΔpNa · (mg protein) · h · (RT unit)?1 at ΔpNa = 1 unit, for different preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号